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Abstract

In this paper, we study an inventory routing problem in which goods are perishable. In this problem,

a single supplier is responsible for delivering a perishable product to a set of customers during a given

finite multiperiod planning horizon. The product is assumed to have a fixed shelf-life during which it

is usable and after which it must be discarded. Age-dependent revenues and inventory holding costs

are considered. We introduce four mathematical formulations for the problem, two with a vehicle

index and two without a vehicle index. Branch-and-cut algorithms are proposed to solve them. In

addition, we propose a hybrid heuristic solution method for the problem. The method is based on the

combination of an iterated local search metaheuristic and two mathematical programming components.

We present extensive computational experiments using instances from the literature as well as new larger

instances. Our results indicate that, when compared to an arc-based formulation from the literature, the

formulations without a vehicle index can provide a considerably larger number of optimal and feasible

solutions within the imposed time limit. Additionally, a considerable speed-up is achieved for those

instances solved to optimality within the time limit. The results with the hybrid method show that it

is able to provide high-quality solutions in relatively short running times for small- and medium-sized

instances while good quality solutions are found within reasonable running times for larger instances.

Keywords: Logistics, Inventory routing, Perishability, Hybrid method, Iterated local search.

1. Introduction

Research on the integration of multiple activities throughout the supply chain has increased con-

siderably in the last decades. Today, it is well known that such integration can lead to significant

advantages in both economic and performance terms. In particular, the integration of transportation

and inventory management activities has been shown to provide substantial economic benefits and to

improve the usage of the available resources. However, challenging problems can arise from this inte-

gration, one of which is the inventory routing problem (IRP). The IRP consists of defining the optimal

replenishment plan of the customers of a supplier throughout a planning horizon as well as the routing

schedule in each time period such that a given objective is optimized.

∗Corresponding author.
Email addresses: aldair@dep.ufscar.br (Aldair Alvarez), jean-francois.cordeau@hec.ca (Jean-François

Cordeau), raf.jans@hec.ca (Raf Jans), munari@dep.ufscar.br (Pedro Munari), morabito@ufscar.br (Reinaldo
Morabito)

Preprint submitted to European Journal of Operational Research October 17, 2018



In many different industries, raw materials, as well as intermediate and final products, are often

perishable. Moreover, perishability may appear in more than one activity throughout the supply chain

and can influence service levels (Amorim et al., 2013). Thus, managing perishability becomes a relevant

issue in the supply chain, particularly in the inventory control activities. Perishability was first studied

in the context of IRPs by Federgruen et al. (1986), who addressed an inventory management and

distribution problem for a product that must be discarded if it not used during a given fixed lifetime.

The authors studied different patterns and policies for the distribution part of the problem. The

objective was to minimize the sum of transportation and expected shortage and discarding costs.

Hemmelmayr et al. (2009) studied the problem faced by a blood bank in the distribution to hospitals.

In their problem, no vehicle capacity constraints were considered (given the small size of the blood bags)

but the maximum length of the routes was limited. Also, no inventory holding costs were considered

since it is preferable to maintain high inventory levels rather than to experience stockouts, given the

nature of the service being provided. The objective is to minimize travel costs over a finite horizon.

The authors proposed different strategies for the distribution process. Le et al. (2013) studied an IRP

with perishability features also motivated by a healthcare application. In their problem, it was assumed

that the perishable goods have a fixed shelf-life, and they are not usable when this lifetime is exceeded.

Upper bounds on the inventory levels of customers were determined only by the perishability constraints

since the discarding of products is not allowed. Thus, deliveries to customers at any given time period

were limited only by the shelf-life of the goods. The objective was to minimize the sum of travel and

inventory holding costs. Diabat et al. (2016) addressed the same problem as Le et al. (2013) but only

minimizing travel costs.

Coelho and Laporte (2014) considered an IRP with a fixed shelf-life perishable product with age-

dependent revenues and holding costs. They presented a mathematical formulation and explored dif-

ferent strategies to model the product consumption at the customer facilities. Mirzaei and Seifi (2015)

addressed an IRP for perishable goods in which the objective function included a penalty that depends

on the age of the product that is used to satisfy the demands. This penalty was included in an attempt

to avoid overstocking to reduce transportation costs. The objective was to minimize the sum of routing,

inventory and penalty costs. Soysal et al. (2015) addressed an IRP with a fixed shelf-life perishable

product. The authors proposed models that also considered fuel consumption and demand uncertainty.

Split deliveries and backlogging of the demand were allowed as well. The objective was to minimize the

sum of routing (driver wages and fuel consumption), inventory and spoilage costs. Azadeh et al. (2017)

studied an IRP of a single perishable product with an exponentially decaying inventory. The authors

included the possibility of transshipments between customers (performed by an outsourced third-party

operator) since a single vehicle with limited capacity was considered. Backlogging was not allowed and

the objective was to minimize the sum of inventory and travel costs (including transshipments costs)

as well as spoilage costs. Crama et al. (2018) addressed an IRP for a single perishable product with

stochastic demands (with a known probability distribution). A maximum time on the duration of the

routes was imposed and no salvage value was included in their problem.

Finally, Shaabani and Kamalabadi (2016) and Qiu et al. (2018) studied production-routing prob-

lems (PRP) for perishable products. PRPs add production decisions to the IRP in an attempt to

jointly optimize production, inventory and routing decisions (Adulyasak et al., 2015). Shaabani and

Kamalabadi (2016) addressed the case with multiple products. In their problem, perishability was
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modeled as in Le et al. (2013), i.e., upper bounds on the inventory levels are determined only by the

perishability constraints and discarding of products is forbidden. Qiu et al. (2018) addressed an PRP

including deterioration rates and inventory holding costs that are both age-dependent. The authors

tested different delivery and selling priority policies.

In this paper, we address the IRP for a single perishable product as proposed by Coelho and Laporte

(2014), which we will refer to as the PIRP (perishable IRP). In this problem, the perishability feature is

modeled by defining a fixed shelf-life for an aging product as well as setting inventory holding costs and

sales revenues varying with the product freshness. The contributions of this paper are threefold. First,

we present and compare four mathematical formulations of the problem, which are solved using branch-

and-cut (B&C) algorithms. We also report an inconsistency in the mathematical formulation presented

by Coelho and Laporte (2014) and show how we addressed it. Second, we develop a hybrid heuristic

method based on the combination of an iterated local search (ILS) metaheuristic and two mathematical

programming components. Third, we report the results of extensive computational experiments and

introduce new large-sized problem instances. The results show the different advantages of the proposed

formulations and also reveal the effectiveness of our method. We also present a further analysis of the

robustness of the algorithm’s behavior.

The remaining sections of this paper are organized as follows. In Section 2, we describe the problem

that we address in this research. Section 3 presents the mathematical formulations introduced for

the problem and the B&C algorithms used to solve them. Then, the hybrid solution method that we

developed is described in detail in Section 4. Section 5 shows the computational experiments that we

performed with the formulations and the hybrid method. Finally, in Section 6 we conclude the paper

and discuss future research.

2. Problem description

In the PIRP (Coelho and Laporte, 2014), a supplier is responsible for delivering a single perishable

product to a set of customers during a given finite multiperiod planning horizon. The product is

assumed to have a fixed shelf-life during which it is usable and after which it must be discarded.

The problem can be defined on a complete undirected graph G = (N , E) where N = {0, 1, . . . , N}
is the vertex set and E = {(i, j) : i, j ∈ N , i < j} is the edge set. Vertex 0 represents the supplier

depot which has a homogeneous fleet of K vehicles of capacity Q, denoted by set K = {1, . . . ,K}. The

remaining vertices of set N , denoted by C = {1, . . . , N}, represent the customers. Therefore, the vertex

set N represents all the facilities of the distribution network.

The planning horizon is denoted by a set of time periods T = {1, . . . , T}. The perishable product

under consideration spoils S time periods after becoming available at the supplier and its age increases

by one unit in every time period. Thus, the age of the product belongs to a discrete set S = {0, 1, . . . , S}.
The age of the product defines its value, according to the sales revenue uis specified for each unit of

age s ∈ S consumed by customer i ∈ C. A travel cost cij is associated with every edge (i, j) ∈ E and

an age-dependent inventory holding cost his is charged at both the supplier 0 and the customers i ∈ C
for each unit of product of age s ∈ S at the end of every time period. Each customer i ∈ C has a

limited storage capacity Ci and each facility i ∈ N has an initial inventory I0i0 of fresh product (of age

0) available at the beginning of the planning horizon (t = 0). Thus, the initial inventory will be of age
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1 in the first time period of the planning horizon (t = 1). Each customer i ∈ C has a known demand dti

for the product in every time period t ∈ T , which is the minimum amount of product that the supplier

must guarantee to be available at the customer at that time period. In addition, the supplier produces

or receives a quantity rt of fresh products (of age 0) in each time period t ∈ T . However, this quantity

is available for delivery only one time period after becoming available at the supplier’s facility.

To illustrate the aging process of the inventory during the planning horizon, Figure 1 shows an

example of the evolution of the end-of-period inventory for a given customer. Assume a maximum age

of two time periods (S = 2), no consumptions during the planning horizon and two deliveries from the

supplier of 70 and 50 units of age 1 (s = 1) in time periods two and three, respectively. The initial

inventory of the customer consists of 100 units (s = 0 at t = 0), which become of age 1 in the first

time period (s = 1 at t = 1) and then of age 2 in the second time period (s = 2 at t = 2) of the

planning horizon. Notice that these 100 units of the product reached the maximum age (s = S = 2)

in time period 2, in which they are still usable to satisfy potential demand in period 2. These units of

maximum age will still be held in inventory at the end of period 2, but they will be discarded in period

3 and hence do not appear in the inventory in time period 3. Similarly, the amount received in t = 2,

which was of age 1 (s = 1), becomes of age 2 (s = 2) in time period 3, reaching the maximum age but

still being usable to satisfy potential demand in period 3. This amount will be discarded in period 4

and will not be in the usable inventory from time period 4 onwards.
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Figure 1: Aging process of the inventory at a customer in the PIRP

The PIRP consists of determining the time periods in which the customers will be visited; the

quantity of product of each available age that will be delivered in every visit; the quantity of product

of each available age that will be used to satisfy the demand; and the delivery routes to perform those

visits. The objective is to maximize the total profit, given by the sales revenue minus the sum of

inventory holding and routing costs. The holding costs are charged on the inventories at the end of

each time period at both the supplier and customers. We consider that products of different ages share

the same joint holding space at all facilities. It is also assumed that the supplier holding capacity is

unbounded. In addition, according to the usual practice in the literature, we assume that the customers

who receive a delivery in a given time period can use this to fulfill the demand in the same time period.
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As in Coelho and Laporte (2014), we assume that the product that has reached its maximum age (s = S)

at the end of a time period, will not go into the regular storage area, but will be kept separately in

inventory to be discarded in the next period. Thus, these amounts incur the inventory holding costs but

do not limit the quantity that the customer can receive in the next time period. Table 1 summarizes

all the previously introduced notation as well as the one that will be used in the following sections.

Sets:
C Set of customers
N Set of vertices/facilities
E Set of edges
T Set of time periods
S Set of ages of the product
K Set of vehicles

Indices:
i, j, h Vertices/facilities
s Ages of the product
k Vehicles
t,m, p Time periods

Parameters:
uis Unit revenue for product of age s at customer i
his Unit inventory holding cost for product of age s at facility i
cij Transportation cost between facilities i and j
dti Demand of customer i in time period t
rt Amount made available at the supplier in time period t
Ci Storage capacity of customer i
I0i0 Initial inventory at facility i
Q Capacity of the vehicles

Table 1: Sets, indices and parameters of the problem

3. Mathematical formulations

This section presents the mathematical formulations we introduce for the PIRP. First, we present

a corrected version of the arc-based formulation introduced by Coelho and Laporte (2014) and show

why there is an inconsistency in their formulation. Then, in the subsequent sections we present several

reformulations of the problem.

3.1. Arc-based formulation

To formulate the PIRP using arc variables as in Coelho and Laporte (2014), consider the following

notation. First, we introduce the set St = {s ∈ S : 1 ≤ s ≤ t}, which is the subset of product ages

that can be available at all facilities in time period t. This set indicates the ages that can be delivered

by the supplier in each time period and also specifies the ages that can be used to satisfy the demand

of the customer in the given time period. Notice that this set does not contain age 0, which is also

part of the ages set S and is available at the supplier in each time period, given that the supplier never

delivers products of age 0 to the customers because the amount made available at the supplier facility

in a certain period can only be delivered in the following period. Also, let Ui = min{Q,Ci} be an

upper bound on the amount that can be delivered to customer i in time period t. Finally, consider the

following decision variables:

xktij ∈ {0, 1, 2} : number of times vehicle k ∈ K traverses edge (i, j) ∈ E in time period t ∈ T ,
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ykti ∈ {0, 1} : 1 if facility i ∈ N is visited by vehicle k ∈ K in period t ∈ T , 0 otherwise;

Itis ≥ 0 : inventory of age s ∈ S at facility i ∈ N at the end of time period t ∈ T ;

qktis ≥ 0 : quantity of product of age s ∈ S delivered to customer i ∈ C by vehicle k ∈ K
in period t ∈ T ;

dtis ≥ 0 : quantity of product of age s ∈ S used to fulfill the demand of customer i ∈ C
in period t ∈ T .

Given these variables, the arc-based (AB) formulation of the problem can be stated as:

max
∑

i∈C

∑

t∈T

∑

s∈St
uisd

t
is −

∑

(i,j)∈E

∑

k∈K

∑

t∈T
cijx

kt
ij −

∑

i∈N

∑

t∈T

∑

s∈St
hisI

t
is −

∑

t∈T
h00r

t (1)

s.t. It0s = rt t ∈ T , s = 0, (2)

It0s = It−10,s−1 −
∑

i∈C

∑

k∈K
qktis t ∈ T , s ∈ St, (3)

Itis = It−1i,s−1 +
∑

k∈K
qktis − dtis i ∈ C, t ∈ T , s ∈ St, (4)

dti =
∑

s∈St
dtis i ∈ C, t ∈ T , (5)

∑

s∈St−1\{S}
It−1is +

∑

k∈K

∑

s∈St
qktis ≤ Ci i ∈ C, t ∈ T , (6)

∑

s∈St
qktis ≤ Uiy

kt
i i ∈ C, k ∈ K, t ∈ T , (7)

∑

i∈C

∑

s∈St
qktis ≤ Qykt0 k ∈ K, t ∈ T , (8)

∑

j∈N :j<i

xktji +
∑

j∈N :j>i

xktij = 2ykti i ∈ N , k ∈ K, t ∈ T , (9)

∑

i∈B

∑

j∈B:j>i

xktij ≤
∑

i∈B
ykti − ykte ∀B ⊆ C, |B| ≥ 2, k ∈ K, t ∈ T , e ∈ B, (10)

∑

k∈K
ykti ≤ 1 i ∈ C, t ∈ T , (11)

Itis ≥ 0 i ∈ N , t ∈ T , s ∈ St, (12)

qktis ≥ 0 i ∈ C, k ∈ K, t ∈ T , s ∈ St, (13)

dtis ≥ 0 i ∈ C, t ∈ T , s ∈ St, (14)

ykti ∈ {0, 1} i ∈ N , k ∈ K, t ∈ T , (15)

xktij ∈ {0, 1} (i, j) ∈ E : i 6= 0, k ∈ K, t ∈ T , (16)

xktij ∈ {0, 1, 2} (i, j) ∈ E : i = 0, k ∈ K, t ∈ T . (17)

The objective function (1) consists of maximizing the total profit, given by the total revenue minus

the sum of transportation and inventory holding costs. The last term of the objective function accounts

for the inventory holding cost incurred by the amount of fresh product made available at the supplier in

each time period of the planning horizon. This term can be ignored as it is a constant, but for the sake of

completeness, we decided to keep it in the objective function. Constraints (2)–(3) define the inventory
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conservation at the supplier, where the first constraint set explicitly defines the inventory of age 0 in

each time period and the second constraint set defines the inventory for ages in set St. Constraints

(4) define the inventory conservation at the customers. Constraints (5) guarantee the fulfillment of

the customer demands, which can be done with products of different ages (but only with the ages

that are available in the time period of the demand). Constraints (6) impose that the inventory level

after delivery at the customer facilities cannot exceed their storage capacity. Notice that products of

different ages share the same storage space. Also, note that products of age S still available at the end

of time period t−1 will not enter into the storage space and hence do not limit the amount that can be

delivered in period t. Constraints (7) permit a vehicle to perform a delivery to a specific customer only

if this customer is visited by the vehicle. Constraints (8) guarantee that the capacity of each vehicle

is respected. Constraints (9) ensure the flow conservation. Constraints (10) are subtour elimination

constraints (SECs). Constraints (11) impose that each customer can be visited at most once in each

time period. Finally, the domain of the decision variables is defined in constraints (12)–(17). Notice

that when i 6= 0 and j > i, xktij can only take the values 0 or 1; if i = 0, then xktij can also be equal to

2, indicating that vehicle k makes a round trip between the depot and customer j in time period t.

This formulation has two main differences with respect to the one proposed by Coelho and Laporte

(2014). First of all, in their formulation, sums over variables of different ages (as in constraints (5)–(8)

and in the objective function) consider the whole set of ages S, instead of the subset St, which we

introduce here. Second, the authors define inventory conservation constraints for products of age 0 for

the customers (in the form Iti0 =
∑

k∈K q
kt
i0 − dti0, ∀i ∈ C, t ∈ T ), although the supplier cannot deliver

these products and the customers never receive products of age 0, according to the assumptions of

the problem as defined by Coelho and Laporte (2014) via their supplier inventory constraints. These

two differences can lead to an internal inconsistency in their formulation. More specifically, in the

Coelho and Laporte (2014) formulation, the variable qkti0 is defined, but only appears in the inventory

conservation constraint for products of age 0 at the customers. Furthermore, their demand fulfillment

constraints enable the satisfaction of the demand using products of age 0. As a result, the solutions

of their formulation can have consumptions (dtis) and deliveries (qtis) of products of age 0 without

subtracting these amounts from the supplier’s inventory. This can be beneficial in a solution because

the products of age 0 have a high revenue in the instances proposed by those authors. Notice that if

deliveries of products of age 0 were to be allowed, the term
∑

i∈C
∑

k∈K q
kt
i0 should be subtracted from

the right-hand side of constraints (2) and the set St should include 0 as well.

3.2. Transportation formulation I

The first reformulation we propose uses decision variables that explicitly indicate the detailed use of

the deliveries of each age, i.e., the time periods in which the delivery will cover all or part of the demand,

as in the facility location formulation of the single item uncapacitated lot sizing problem, introduced by

Krarup and Bilde (1977). For this, we introduce some additional notation. Let T t
s = min{T, t− s+ S}

be the last time period in which product that is of age s in time period t can be used to satisfy any

demand. We also consider an additional fictitious time period T + 1 in order to handle inventories at

the end of the planning horizon. Consider the following decision variables:

qktmis ≥ 0 : quantity of product of age s ∈ S delivered to customer i ∈ C by vehicle k ∈ K
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in period t ∈ T to cover the demand of period m ∈ {t, . . . , T t
s + 1};

bti ≥ 0 : amount of the initial inventory of customer i ∈ C used to fulfill its own demand

in time period t ∈ T .

Note that in the definition of the variable qktmis , the index age (s) refers to the age of the product

at the time of the delivery. Notice that when m = T + 1 in the delivery variables (q), it indicates that

the quantity delivered will remain in the customer inventory at the end of the planning horizon. Also,

when m = (t − s + S) + 1 it means that the product will spoil and will be discarded at the customer

facility in period m.

Using the introduced notation and variables, the transportation formulation (TP-I) can be stated

as follows:

max (1)

s.t. It0s = rt−s −
∑

i∈C

∑

k∈K

s−1∑

t′=0

T t
s+1∑

m=t−t′
qk,t−t

′,m
i,s−t′ t ∈ T , s ∈ St, (18)

Itis =
∑

k∈K

s−1∑

t′=0

T t
s+1∑

m=t+1

qk,t−t
′,m

i,s−t′ i ∈ C, t ∈ T , s ∈ St : s < t, (19)

Itis =
∑

k∈K

s−1∑

t′=0

T t
s+1∑

m=t+1

qk,t−t
′,m

i,s−t′ + I0i0 −
t∑

t′=1

bt
′
i i ∈ C, t ∈ T : t ≤ S, s = t, (20)

dtis =
∑

k∈K

s−1∑

t′=0

qk,t−t
′,t

i,s−t′ i ∈ C, t ∈ T , s ∈ St : s < t, (21)

dtis =
∑

k∈K

s−1∑

t′=0

qk,t−t
′,t

i,s−t′ + bti i ∈ C, t ∈ T : t ≤ S, s = t, (22)

∑

s∈St−1\{S}
It−1is +

∑

k∈K

∑

s∈St

T t
s+1∑

m=t

qktmis ≤ Ci i ∈ C, t ∈ T , (23)

∑

s∈St

T t
s+1∑

m=t

qktmis ≤ Uiy
kt
i i ∈ C, k ∈ K, t ∈ T , (24)

∑

i∈C

∑

s∈St

T t
s+1∑

m=t

qktmis ≤ Qykt0 k ∈ K, t ∈ T , (25)

qktmis ≥ 0 i ∈ C, k ∈ K, t ∈ T , s ∈ St,m ∈ {t, . . . , T t
s + 1}, (26)

bti ≥ 0 i ∈ C, t ∈ T : t ≤ S, (27)

(5), (9)− (12) and (14)− (17).

Constraints (18) define the inventory at the supplier for all time periods and available ages (where

r0 = I000). Constraints (19)–(20) define the inventory at the customers for all the different ages of

the product, with (20) including the amount from the initial inventory that is not used to satisfy any

demand. These constraints can be easily generalized for the case when the initial inventory is composed

of products of different ages. Constraints (21)–(22) define the amount of product of each different age
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used to fulfill the demand of the customers. Notice that constraints (22) include the demand that can

be fulfilled using the initial inventory as well. Constraints (23) impose that the inventory level after

delivery at the customers cannot exceed their storage capacity. Constraints (24) allow a vehicle to

perform a delivery to a specific customer only if this customer is visited by the vehicle. Constraints

(25) guarantee that the capacity of each vehicle is respected. Finally, constraints (26)–(27) define the

domain of the new decision variables.

3.3. Formulation TP-I without a vehicle index

The previous formulation can be reformulated by dropping the vehicle index of the variables, as

we consider a homogeneous vehicle fleet (in both capacity and travel cost terms) and assume at most

one visit to each customer in each time period. All the variables maintain the same meaning, except

for yt0 which becomes an integer variable indicating the number of vehicles used in period t ∈ T . The

formulation, which we will refer to as TP-I-nk, can be stated as:

max
∑

i∈C

∑

t∈T

∑

s∈St
uisd

t
is −

∑

(i,j)∈E

∑

t∈T
cijx

t
ij −

∑

i∈N

∑

t∈T

∑

s∈St
hisI

t
is −

∑

t∈T
h00r

t (28)

s.t. It0s = rt−s −
∑

i∈C

s−1∑

t′=0

T t
s+1∑

m=t−t′
qt−t

′,m
i,s−t′ t ∈ T , s ∈ St, (29)

Itis =
s−1∑

t′=0

T t
s+1∑

m=t+1

qt−t
′,m

i,s−t′ i ∈ C, t ∈ T , s ∈ St : s < t, (30)

Itis =
s−1∑

t′=0

T t
s+1∑

m=t+1

qt−t
′,m

i,s−t′ + I0i0 −
t∑

t′=1

bt
′
i i ∈ C, t ∈ T : t ≤ S, s = t, (31)

dtis =

s−1∑

t′=0

qt−t
′,t

i,s−t′ i ∈ C, t ∈ T , s ∈ St : s < t, (32)

dtis =
s−1∑

t′=0

qt−t
′,t

i,s−t′ + bti i ∈ C, t ∈ T : t ≤ S, s = t, (33)

∑

s∈St−1\{S}
It−1is +

∑

s∈St

T t
s+1∑

m=t

qtmis ≤ Ci i ∈ C, t ∈ T , (34)

∑

s∈St

T t
s+1∑

m=t

qtmis ≤ Uiy
t
i i ∈ C, t ∈ T , (35)

∑

j∈N :j<i

xtji +
∑

j∈N :j>i

xtij = 2yti i ∈ N , t ∈ T , (36)

Q
∑

i∈B

∑

j∈B:j>i

xtij ≤
∑

i∈B
(Qyti −

∑

s∈St

T t
s+1∑

m=t

qtmis ) ∀B ⊆ C, |B| ≥ 2, t ∈ T , (37)

yt0 ≤ K t ∈ T , (38)

qtmis ≥ 0 i ∈ C, t ∈ T , s ∈ St,m ∈ {t, . . . , T t
s + 1}, (39)

yt0 ∈ Z+ t ∈ T , (40)

yti ∈ {0, 1} i ∈ C, t ∈ T , (41)
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xtij ∈ {0, 1} (i, j) ∈ E : i 6= 0, t ∈ T , (42)

xtij ∈ {0, 1, 2} (i, j) ∈ E : i = 0, t ∈ T , (43)

(5), (12), (14) and (27).

The objective function (28) consists of maximizing the total profit. Constraints (29) and (30)–(31)

define the inventory level for the different ages of the product at the supplier and customers, respectively,

where r0 = I000 in constraints (29). Constraints (32)–(33) define the amount of each different age used

to fulfill the demand of the customers. Constraints (34) impose the maximum storage capacity at the

customers. Constraints (35) allow to perform deliveries to a specific customer only if it is visited by a

vehicle. Constraints (36) ensure the conservation of the flow. Constraints (37) are SECs and ensure

that the vehicle capacities are respected as well. Constraints (38) limit the number of vehicles that can

be used in each time period. Constraints (39)–(43) define the domain of the decision variables.

Notice that, as pointed out by Adulyasak et al. (2014), if one divides the inequalities (37) by Q,

they have a form similar to the generalized fractional SECs (GFSECs) for the vehicle routing problem

(VRP) (Toth and Vigo, 2002). However, GFSECs in the form (37) are numerically more stable than

the original GFSECs, which contain a fractional right-hand side.

3.4. Transportation formulation II

This reformulation, similar to TP-I, uses decision variables that explicitly indicate the detailed use

of the deliveries of each age. However, in this case we consider implicitly the age of the product being

delivered. Thus, the delivery variable is defined as follows:

qktpmi ≥ 0 : amount of product that was made available at the supplier in time period t ∈ {0} ∪ T
and was delivered to customer i ∈ C by vehicle k ∈ K in period p ∈ T to cover

the demand of period m ∈ {p, . . . , T t
0 + 1}.

Note that in the definition of the variable qktpmi , the age of the product at delivery and consumption

periods is given by the difference between index t and indices p and m, respectively. Notice that

when t = 0, the amount delivered comes from the initial inventory of the supplier. Notice also that,

analogously to formulation TP-I, when m = T + 1 in the delivery variables (q) the quantity delivered

will remain in the customer inventory at the end of the planning horizon and when m = t+ S + 1 the

product delivered will spoil and be discarded at the customer facility in period m. The formulation,

which we will refer to as TP-II, can be stated as:

max (1)

s.t. It0s = rt−s −
∑

i∈C

∑

k∈K

t∑

p=t−s+1

T t
s+1∑

m=p

qk,t−s,p,mi t ∈ T , s ∈ St, (44)

Itis =
∑

k∈K

t∑

p=t−s+1

T t
s+1∑

m=t+1

qk,t−s,p,mi i ∈ C, t ∈ T , s ∈ St : s < t, (45)

Itis =
∑

k∈K

t∑

p=1

T t
s+1∑

m=t+1

qk0pmi + I0i0 −
t∑

t′=1

bt
′
i i ∈ C, t ∈ T : t ≤ S, s = t, (46)
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dtis =
∑

k∈K

t∑

p=t−s+1

qk,t−s,p,ti i ∈ C, t ∈ T , s ∈ St : s < t, (47)

dtis =
∑

k∈K

t∑

p=1

qk0pti + bti i ∈ C, t ∈ T : t ≤ S, s = t, (48)

∑

s∈St−1\{S}
It−1is +

∑

k∈K

∑

s∈St

T t
s+1∑

m=t

qk,t−s,tmi ≤ Ci i ∈ C, t ∈ T , (49)

∑

s∈St

T t
s+1∑

m=t

qk,t−s,tmi ≤ Uiy
kt
i i ∈ C, k ∈ K, t ∈ T , (50)

∑

i∈C

∑

s∈St

T t
s+1∑

m=t

qk,t−s,tmi ≤ Qykt0 k ∈ K, t ∈ T , (51)

qktpmi ≥ 0 i ∈ C, k ∈ K, t ∈ {0} ∪ T \{T}, p ∈ {t+ 1, . . . , T t
0},m ∈ {p, . . . , T t

0 + 1}, (52)

(5), (9)− (12), (14)− (17) and (27).

Constraints (44) calculate the inventory at the supplier for the available ages, where r0 = I000.

Constraints (45)–(46) define the inventory at the customers for all the different ages of the product.

Constraints (47)–(48) state that the demand of the customers can be satisfied using products of all the

available ages. Notice that constraints (48) include the demand that can be fulfilled using the initial

inventory as well. Constraints (49) impose the maximum storage capacity after delivery at the customer

facilities. Constraints (50) allow deliveries to a customer by a specific vehicle only if it is visited by

the same vehicle. Constraints (51) guarantee that the capacity of each vehicle is respected. Finally,

constraints (52) define the domain of the new decision variable.

3.5. Formulation TP-II without a vehicle index

As in Section 3.3, an additional formulation can be obtained by dropping the vehicle index of the

variables for cases in which the vehicle fleet is considered to be homogeneous and at most a single visit

is allowed to each customer in each time period. This formulation (TP-II-nk) can be stated as:

max (28)

s.t. It0s = rt−s −
∑

i∈C

t∑

p=t−s+1

T t
s+1∑

m=p

qt−s,p,mi t ∈ T , s ∈ St, (53)

Itis =
t∑

p=t−s+1

T t
s+1∑

m=t+1

qt−s,p,mi i ∈ C, t ∈ T , s ∈ St : s < t, (54)

Itis =

t∑

p=1

T t
s+1∑

m=t+1

q0pmi + I0i0 −
t∑

t′=1

bt
′
i i ∈ C, t ∈ T : t ≤ S, s = t, (55)

dtis =
t∑

p=t−s+1

qt−s,p,ti i ∈ C, t ∈ T , s ∈ St : s < t, (56)

dtis =
t∑

p=1

q0pti + bti i ∈ C, t ∈ T : t ≤ S, s = t, (57)
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∑

s∈St−1\{S}
It−1is +

∑

s∈St

T t
s+1∑

m=t

qt−s,tmi ≤ Ci i ∈ C, t ∈ T , (58)

∑

s∈St

T t
s+1∑

m=t

qt−s,tmi ≤ Uiy
t
i i ∈ C, t ∈ T , (59)

Q
∑

i∈B

∑

j∈B:j>i

xtij ≤
∑

i∈B
(Qyti −

∑

s∈St

T t
s+1∑

m=t

qt−s,tmi ) ∀B ⊆ C, |B| ≥ 2, t ∈ T , (60)

qtpmi ≥ 0 i ∈ C, t ∈ {0} ∪ T \{T}, p ∈ {t+ 1, . . . , T t
0},m ∈ {p, . . . , T t

0 + 1}, (61)

(5), (12), (14), (27), (36), (38) and (40)− (43).

Constraints (53) and (54)–(55) define the inventory levels of the available ages of the product at the

supplier and customers, respectively, where r0 = I000 in constraints (53). Constraints (56)–(57) specify

that the demand of the customers can be satisfied using products of all the available ages. Constraints

(58) enforce the maximum storage capacity at the customer facilities. Constraints (59) allow deliveries

to customers in a given time period if they are visited by a vehicle in the same time period. Constraints

(60) are the GFSECs and guarantee that the capacity of each vehicle is respected as well. Finally,

constraints (61) define the domain of the new decision variable.

3.6. Branch-and-cut algorithms

Given that all the presented formulations contain an exponentially large number of SECs, we must

apply a B&C algorithm to solve them. These constraints are dropped from the formulations and added

in an iterative fashion every time they are violated at the nodes of the branch-and-bound (B&B) tree.

In this section we provide the details of our B&C approaches for both the formulations with and without

a vehicle index as well as further improvements. Additionally, in the supplementary material of this

paper, we show some valid inequalities that we used to further strengthen the formulations and provide

detailed results of all the formulations when including them.

3.6.1. Branch-and-cut for the vehicle index formulations

To solve the formulations with a vehicle index, we use an exact separation algorithm that solves a

series of minimum s− t cut problems to detect violated SECs for each vehicle in each time period of the

planning horizon. At a given node of the B&B tree, let ȳkti and x̄ktij denote the values of the visit (y)

and flow variables (x) of the solution, respectively. A graph for vehicle k in time period t is constructed

from the set of nodes where ȳkti > 0, setting the weights of the graph edges to x̄ktij , ∀(i, j) ∈ E . Then,

for each customer node of the constructed graph, we solve a minimum s − t cut problem, setting the

supplier node as the source node (s) and the customer node as the sink node (t). A violated SEC is

identified if the capacity of the minimum cut is less than 2ȳkti (Adulyasak et al., 2014). If a subtour on a

set of nodes B ⊆ C is found for vehicle k in period t, we add constraints (10) with e = arg maxi∈B{ȳkti }
to the formulation, for all vehicles and time periods of the planning horizon. To solve the minimum

s− t cut problem, we used the Concorde solver (Applegate et al., 2018).

These SECs are separated only at the root node and then every time an integer solution is found

at a node of the B&B tree, to avoid generating too many cuts in the tree. Notice that constraints (10)

can be added to the formulation in many different ways, among which we tested: adding the cut only
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for the specific vehicle and time period for which it was violated; adding the cut for all vehicles in the

same time period in which the violated cut was identified; and, finally, adding the cut for all vehicles

and time periods. The latter strategy resulted in a slightly better performance. Regarding the selection

of the customer e ∈ B for which the cut would be set, we tried including the cut only for the customer

e such that e = arg maxi∈B{ȳkti } and, for every customer in the identified subset of customers B. In

this case, the former strategy resulted in a better performance of the B&C algorithms.

3.6.2. Branch-and-cut for the formulations without a vehicle index

To separate GFSECs (37) and (60) of formulations TP-I-nk and TP-II-nk, respectively, we use the

separation package developed by Lysgaard et al. (2004) for the VRP, as in Adulyasak et al. (2014). This

algorithm consists of four heuristic algorithms, which are applied sequentially. One of these heuristics

is an exact separation algorithm when all the flow variables (x) take integer values.

For a given solution, we call the algorithm for each time period t ∈ T . At a given node of the

B&B tree, let ȳkti , x̄ktij and q̄tmis (q̄tpmi ) denote the values of variables ykti , xktij and qtmis (qtpmi ) for the

formulation TP-I-nk (TP-II-nk). The input required by the separation package (a VRP solution) in

period t is constructed considering customer nodes with ȳkti > 0, setting the weight of each edge (i, j)

to x̄ktij and setting the delivery quantity for customer i to
∑

s∈St
∑T t

s+1
m=t q

tm
is and to

∑
s∈St

∑T t
s+1

m=t q
t−s,tm
i

for the formulations TP-I-nk and TP-II-nk, respectively.

Similar to the formulations with a vehicle index, we separate GFSECs only at the root node and

then whenever an integer solution is found at a given node of the B&B tree to avoid generating too many

cuts. Every time we identify a violated cut, we add the corresponding constraint for all time periods.

In addition, to further strengthen formulations TP-I-nk and TP-II-nk, we included the following SECs,

as used in the formulations with a vehicle index (AB, TP-I, TP-II):

∑

i∈B

∑

j∈B:j>i

xtij ≤
∑

i∈B
yki − yke ∀B ⊆ C, |B| ≥ 2, k ∈ K, e ∈ B. (62)

Using these constraints together with GFSECs resulted in an improved performance by the formu-

lations without a vehicle index. These last SECs are separated as described in Section 3.6.1.

4. Optimization-based iterated local search

In this section, we present the hybrid algorithm that we propose to solve the PIRP. This algorithm

is based on the ILS metaheuristic for the basic variant of the IRP presented by Alvarez et al. (2018).

Additionally, we include two mathematical programming components within its structure. The basic

idea of ILS is to iteratively apply a local search algorithm to solutions resulting from the perturbation

of the previously visited local optima, which leads to a randomized walk in the space of local optimal

solutions (Lourenço et al., 2003). In the proposed method, the various decisions of the problem are

handled by different components. On the one hand, routing decisions (x) are managed by the local

search phase of the method while the visit variables (y) are mostly handled in the perturbation phase.

On the other hand, a multicommodity flow (MCF) problem formulation is used to determine the optimal

values of the continuous variables (q, d and I) for a given set of visit variables (y). Additionally, a

mixed-integer programming (MIP) formulation that can remove and insert customers from a solution
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given as input is used as a solution improvement (SI) step in the final phase of the method. An overview

of the proposed method is shown in Algorithm 1.

Algorithm 1: Optimization-based iterated local search
1 begin
2 O0 ← construction heuristic();
3 if O0 6= ∅ then
4 O∗ ← rvnd heuristic(O0);
5 while stop criterion is not met do

6 O
′ ← perturbation(O∗);

7 O
′ ← rvnd heuristic(O

′
);

8 O
′ ← optimize amounts(O

′
);

9 if f(O
′
) > f(O∗) then O∗ ← O

′
;

10 end
11 O∗ ← SI formulation(O∗);

12 end

13 end

The algorithm starts with an initial feasible solution (line 2), which is generated using the con-

struction heuristic that will be described in Section 4.1. If the construction heuristic cannot find a

feasible solution, the algorithm stops; otherwise, the search process continues. A randomized variable

neighborhood descent (RVND) heuristic is used as local search algorithm (lines 4 and 7), and a multi-

operator algorithm is used as a perturbation mechanism (line 6). The continuous variables (deliveries,

consumptions and inventories) of the solution are then optimized by solving a MCF formulation (line

8). The acceptance criterion admits the resulting solution only if it is better than the current best

solution (line 9). Finally, after reaching a stopping criterion, the method applies the SI formulation

(line 11). All components of the hybrid method are described in detail in the following sections.

In the description of the hybrid method, we use the subsequent notation. Given a solution O, we

denote by Ītis, q̄
kt
is , d̄tis and ȳkti the values of its inventory, delivery, consumption and visit variables,

respectively. In addition,

• R(O) is the set of all vehicle routes of the solution;

• Ct(O) = {i ∈ C :
∑

k∈K ȳ
kt
i = 1} is the set of customers visited by routes of the solution in time

period t;

• Ti(O) = {t ∈ T :
∑

k∈K ȳ
kt
i = 1} is the set of time periods in which customer i is visited by routes

of the solution.

Also, given a route r ∈ R(O) of the solution,

• t(r) is the time period of the route; and

• V(r) is the set of customers visited by the route.

4.1. A construction heuristic for the PIRP

To obtain feasible solutions, we devised a decomposition construction heuristic which iteratively

separates the decisions of the problem into two phases. In the first phase, the heuristic defines the size
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of the potential delivery to each customer and assigns a priority to each one of them. Then, in the

second phase, feasible delivery routes are designed to deliver the amounts set in the first phase.

The heuristic starts by using the initial inventory of each customer to satisfy the maximum number

of demands. The values for the respective consumption variables (dtis) are set as follows:

d̄tis =





min{Īt−1i , dti} if t ≤ S, s = t,

0 otherwise,
∀i ∈ C, t ∈ T , s ≤ St. (63)

Then, the heuristic computes the aggregated inventory levels Iti for each customer i ∈ C at the end

of each time period t ∈ T given the initial consumptions, as follows:

Iti =




I0i0 −

∑t
p=1 d̄

p
ip if t < S,

0 otherwise,
∀i ∈ C, t ∈ T . (64)

These inventory levels will be updated at the end of each iteration based on the deliveries and

consumptions. They are used to determine the delivery sizes in each period given that the amount

a customer can receive is bounded by the holding capacity and the inventory level at the end of the

previous time period. Notice that, initially, Iti = 0 for t = S since the initial inventory will spoil at the

end of this time period and, as stated in Section 2, the spoiled inventory does not limit the amount

that the customer can receive in the next period.

Using these values, the heuristic performs one iteration for each time period t ∈ T , starting from

t = 1. In the first phase of iteration t, the heuristic sets a potential delivery quantity to each customer

by computing the difference between its capacity and aggregated inventory level in the previous time

period, also respecting the vehicle capacity. To simplify the heuristic, we apply a greedy approach in

which all the deliveries are of the freshest possible product, which in our case is product of age s = 1.

Therefore, the potential delivery (q̃) to each customer i is set as:

q̃ti1 = min{ratio demand× (Ci − It−1i ), Q}, (65)

where ratio demand ∈ (0, 1] is a parameter that defines the proportion of the maximum possible

quantity that will be actually delivered. Next, the priority πi of customer i is set as the number of

upcoming look ahead periods (including t) in which its demand is not fully covered yet, i.e., πi is

the number of times in which
∑

s∈Sp d̄
p
is < dpi , for p = t, . . . ,min{T, t + look ahead}, ∀i ∈ C. The

value of look ahead determines how much to look forward in the planning horizon, trying to anticipate

forthcoming stockouts.

After defining these deliveries and priorities, the second phase of iteration t starts. It consists of

determining one or more vehicle routes using a nearest-neighbor insertion heuristic that first routes

customers with higher priority as long as the insertion satisfies the vehicle capacity. At most K routes

can be defined in this phase. Then, given the deliveries actually performed, we set the values of q̄kti1

and update the values of the consumption (using the first-in first-consumed (FIFC) rule) and inventory

variables. Finally, a new iteration is started for the next period (t+ 1), until reaching time period T .

A pseudo-code of the heuristic is given in Algorithm 2. Since the heuristic runs in a short time,
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it was defined inside two outer loops, exploring different values for ratio demand and look ahead,

aiming at finding a reasonably good feasible solution, as in Alvarez et al. (2018). Furthermore, at the

end of the execution of the heuristic, the continuous variables of the best feasible solution found (if

any) are optimized using the MCF formulation of Section 4.4. Finally, as will be shown in Section 5,

this heuristic was able to find feasible solutions for all the benchmark instances used in this paper.

Algorithm 2: Construction heuristic for the PIRP
1 begin
2 O∗ ← ∅;
3 Use initial inventory to set as many consumptions (d̄) as possible, using (63);
4 Compute aggregated inventory levels Iti as in (64), for all i ∈ C and t ∈ T ;
5 ratio demand← 1.0;
6 while ratio demand > 0 do
7 look ahead← 0;
8 while look ahead ≤ S do
9 for t ∈ T do

10 for i ∈ C do
11 q̃ti1 ← min{ratio demand× (Ci − It−1i ), Q};
12 πi ← 0;
13 for p = t, . . . ,min{T, t+ look ahead} do
14 if

∑
s∈Sp d̄

p
is < dpi then πi ← πi + 1 ;

15 end

16 end
17 Apply a nearest-neighbor insertion heuristic, routing customers with higher πi first;

18 For all routed customers, set the corresponding q̄kti1 values and compute the corresponding
d̄tis values using the FIFC rule and update Ītis and Iti ;

19 end
20 Update best feasible solution O∗;
21 look ahead← look ahead + 1;

22 end
23 ratio demand← ratio demand− 0.1;

24 end
25 if O∗ 6= ∅ then O∗ ← optimize amounts(O∗) ;

26 end

4.2. Randomized variable neighborhood descent heuristic

For the local search procedure of the proposed method, we use a variable neighborhood descent

heuristic (Mladenović and Hansen, 1997) with random neighborhood ordering. In this algorithm, local

search operators are selected randomly from a predefined set and applied to the incumbent solution until

none of them can improve it (Subramanian et al., 2012; Alvarez and Munari, 2017; Alvarez et al., 2018).

The randomized behavior of RVND enhances the diversification of the method because different local

search operators can provide distinct local optimal solutions. Therefore, a different final solution can be

obtained every time RVND is applied over the same starting solution. Moreover, the randomized order

leads to a more balanced exploration of the neighborhoods, given that when a fixed sequential order is

adopted most of the effort is spent on the first operators (Deng and Bard, 2011). In our implementation,

a set containing several local search operators is initialized at the beginning of the procedure. Then,

while the set is not empty, an operator is chosen at random and applied to the incumbent solution. If

the operator improves the solution, the set is re-established to its initial configuration (containing all
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the local search operators). Otherwise, the operator is removed from the set and the process continues

with the remaining operators. A pseudo-code of the RVND heuristic is shown in Algorithm 3.

Algorithm 3: Randomized variable neighborhood descent heuristic
1 begin
2 O∗ ← O0 (save initial solution);
3 L ← initialize the set of local search operators;
4 while |L| > 0 do
5 l← select at random a local search operator from L;
6 Apply l to O∗;
7 if l improved O∗ then
8 L ← reinitialize the set of local search operators;
9 else

10 remove l from L;
11 end

12 end

13 end

In our method, we use the local search phase to handle the routing decisions of the solution. For

this, the RVND heuristic uses the following classical VRP operators: Or-opt-k, k ∈ {1, 2, 3}; Shift(k),

k ∈ {1, 2, 3}; Swap(k1, k2), k1, k2 ∈ {1, 2}, k1 ≥ k2; and k-opt, k ∈ {2, 3}. All operators explore the

search space using the first improvement strategy, allowing only feasible solutions in the search process.

4.3. Perturbation mechanism

Since in the PIRP there are different decisions that must be made simultaneously, we designed a

perturbation algorithm that can change multiple attributes of a solution in a single call. The algorithm

uses the following operators to modify the visit and delivery decisions of an input solution O.

1. Insert visits: choose randomly a route r ∈ R(O) and customer i such that i /∈ Ct(r)(O). The

customer is inserted into the cheapest insertion position in the route. Then the values of q̄, d̄ and

Ī are re-optimized using the MCF formulation;

2. Remove visits: choose a random route r ∈ R(O) and a customer i ∈ V(r) and then remove i from

r. After that, the values of q̄, d̄ and Ī are re-optimized using the MCF formulation;

3. Move visit: choose a random route r ∈ R(O) and a customer i ∈ V(r) such that |Ti(O)| < T , i.e.,

a customer that is not visited in every time period of the planning horizon. Then, the visit to

i is removed from r and inserted into the cheapest position of a route of a period p ∈ T \Ti(O),

choosing both, p and the route, at random. Finally, the values of q̄, d̄ and Ī are re-optimized

using the MCF formulation;

4. Reduce deliveries: choose a random route r ∈ R(O) and a delivery (of a certain age s) to a

customer i ∈ V(r) such that the amount delivered is not completely consumed by the customer.

This can happen, for instance, when it is profitable to accumulate inventory at the customer to

save holding costs at the supplier. Then, the delivery is reduced by the amount not consumed by

the customer. Both the customer and the delivery to be reduced are chosen at random.

After applying each operator, the objective function value of the solution is recomputed. The aim

of these operators is twofold. First, helping to determine the periods in which each customer must be

visited and, second, creating slack in the routes for the local search heuristic. In the Remove and Move
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operators, infeasible solutions are rejected. In such a case, the operator chooses another customer of

the same route. If all customers of the chosen route are unsuccessfully explored (resulting in infeasible

solutions), the operator chooses another route and the process is applied in the same fashion.

Note that the performance of an ILS-based algorithm is strongly related to the strength of its

perturbation mechanism given that it defines much of the behavior of the method. This mechanism

must be able to diversify the search process without turning it into a randomized restart search. For

this purpose, we use the parameter max perturb, which defines the maximum number of elements of

the solution that can be changed each time the perturbation mechanism is called. Thus, similar to the

RVND heuristic, our perturbation algorithm can use multiple operators in a single call, applying one

operator at a time (changing at most one element of the solution) until either the number of changes

performed to the solution reaches max perturb or none of the operators can change the solution.

4.4. Multicommodity flow (MCF) formulation

Given the values of ȳ from a solution O, one can determine the optimal values for the delivery,

consumption and inventory variables that maximize the total profit by solving the following MCF

problem formulation:

max
∑

i∈C

∑

t∈T

∑

s∈St
uisd

t
is −

∑

i∈N

∑

t∈T

∑

s∈St
hisI

t
is (66)

s.t.
∑

s∈St
qktis ≤ Uiȳ

kt
i i ∈ C, k ∈ K, t ∈ T , (67)

∑

i∈C

∑

s∈St
qktis ≤ Qȳkt0 k ∈ K, t ∈ T , (68)

(2)− (6) and (12)− (14),

where ȳkt0 = 1 indicates that vehicle k is used in time period t and ȳkti = 1 indicates that vehicle k

visits customer i in time period t. The objective function (66) consists of maximizing the total profit,

given by the total revenue minus the total inventory cost. Constraints (67) allow a vehicle to perform

a delivery to a specific customer in a given time period only if the customer is visited by the vehicle

in that time period in the solution O. Finally, constraints (68) impose the vehicle capacity. This is a

linear program (LP) that can be solved using a general-purpose solver.

Notice that empty visits can result from this phase, i.e., cases with
∑

s∈St q
kt
is = 0 and ȳkti = 1 for

a given i ∈ C, k ∈ K, t ∈ T . In such a case, the customer is removed from the route and the objective

function value of the solution is updated.

4.5. Solution improvement (SI) formulation

As an improvement step, we use a MIP formulation for a customer assignment problem, as in

Archetti et al. (2012). This model can be used to remove and insert customers into a given solution O.

Let ∆kt
i be the savings in the travel cost when customer i is removed from the route of vehicle k in time

period t. This value is computed as chi + cij − chj , where h and j are the predecessor and successor of

the customer in the route, respectively. We set ∆kt
i as 0 when the customer is not visited by vehicle k

in time period t (i.e., ∆kt
i = 0 if ȳkti = 0). Similarly, let Γkt

i be the cost of inserting customer i into its

cheapest position in the route of vehicle k in time period t. Γkt
i equals 0 for those customers that are
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already visited by vehicle k in time period t. The formulation uses two binary decision variables. Let

δkti be a binary variable equal to 1 if and only if customer i is removed from the route of vehicle k in

period t, and let γkti be a binary variable equal to 1 if and only if customer i is inserted into the route

of vehicle k in time period t. Then, the solution improvement formulation can be stated as follows:

max
∑

i∈C

∑

t∈T

∑

s∈St
uisd

t
is −

∑

i∈N

∑

t∈T

∑

s∈St
hisI

t
is

+
∑

i∈C

∑

t∈T

∑

k∈K
∆kt

i δ
kt
i −

∑

i∈C

∑

t∈T

∑

k∈K
Γkt
i γ

kt
i (69)

s.t.
∑

s∈St

T t
s+1∑

m=t

qktmis ≤ Ui(ȳ
kt
i − δkti + γkti ) i ∈ C, k ∈ K, t ∈ T , (70)

∑

i∈C

∑

s∈St

T t
s+1∑

m=t

qktmis ≤ Qȳkt0 k ∈ K, t ∈ T , (71)

γkti ≤ 1− ȳkti i ∈ C, k ∈ K, t ∈ T , (72)

δkti ≤ ȳkti i ∈ C, k ∈ K, t ∈ T , (73)

γkti ≤ ȳkt0 i ∈ C, k ∈ K, t ∈ T , (74)
∑

i∈C
(δkti + γkti ) ≤ β k ∈ K, t ∈ T , (75)

δkti ∈ {0, 1} i ∈ C, k ∈ K, t ∈ T , (76)

γkti ∈ {0, 1} i ∈ C, k ∈ K, t ∈ T , (77)

(5), (12), (14), (18)− (23) and (26)− (27).

The objective function (69) consists of maximizing the total profit, given by the total revenue minus

the total inventory cost plus the difference between the savings and additional travel cost given by the

removal and insertion operations, respectively. Constraints (70) allow vehicle k to perform deliveries to

customer i in period t only if either this customer is already visited by the vehicle in the solution and it

was not removed from the route or if the customer was inserted into the route of the vehicle in the given

time period. Constraints (71) impose the vehicle capacity. Constraints (72) ensure that if a customer

is already visited by a route, it cannot be reinserted into the same route. Analogously, constraints (73)

allow the removal of a customer from a route only if it is visited by the route. Constraints (74) forbid

the insertion of customers into routes of vehicles that are not used in the given time period. Notice

that if more than one visit is removed or inserted from a vehicle route, then the values of ∆ and Γ

provide only an approximation of the actual routing costs. For this reason, we impose constraints (75)

which limit the number of changes that can be performed to every single route to a value β. Finally,

constraints (76) and (77) define the domain of the removal and insertion decision variables.

Note that to model the inventory part of this model, we use delivery variables as in the formulation

TP-I (Section 3.2) given that we need delivery variables with a vehicle index and, as will be shown in

the computational experiments, formulation TP-I had a slightly better performance than TP-II.

19



4.6. Details on the computational implementation

In this section we provide some details on the computational implementation of the optimization-

based ILS. We tested many different additional strategies and components to further improve the

performance of the method, among which it is worth mentioning the following. First, we tried including

the MCF formulation to optimize the continuous amounts of every feasible solution found by the

construction heuristic. This resulted in considerably better initial solutions but the gain in solution

quality did not pay off the additional computational effort required for solving many LPs, particularly

for the largest problem instances. Additionally, using these better initial solutions did not result in

better final solutions. Therefore, we decided to use the construction heuristic as stated in Section 4.1.

For the perturbation phase, we developed biased operators and rules for the selection of the compo-

nents of the solutions that would be perturbed. However, using more sophisticated operators resulted

in only marginal gains and, therefore, we opted for setting simple random selection rules.

Finally, for each instance we only construct the MCF formulation once and then we update the right-

hand side of constraints (67) and (68) every time the formulation is solved. It is worth highlighting

that this allowed us to obtain a speed-up of five times when compared to a method that constructs the

entire MCF formulation every time it is called.

5. Computational experiments

In this section we describe the computational experiments performed with the proposed formulations

and the hybrid method. All the algorithms were coded in C++ and run on a 2.67 GHz Intel Xeon

X5650 Westmere processor with one thread and 36 GB of RAM. We used CPLEX 12.8 as MIP and LP

solver. We turned off CPLEX’s parallel mode and set the CPLEX MIP tolerance parameter to 10−6.

All other CPLEX parameters were set to their default values. The test instances and computational

experiments are discussed in the subsequent sections.

5.1. Test instances

In our computational experiments we used two sets of problem instances. The first one, proposed

by Coelho and Laporte (2014) (which we will refer to as set CL), is composed of 60 instances divided

into 12 subsets with 5 instances each. In addition, we propose a second set of instances, containing 55

(larger) problem instances divided into 11 subsets of 5 instances each. We will refer to this new set

as set A. The sizes of the instances of both sets vary in terms of the number of customers (N), the

maximum age of the product (S), the number of vehicles (K) and the size of the planning horizon (T ).

The ranges of these dimensions for both sets are summarized in Table 2. Notice that the instances that

we propose are larger than those of set CL in terms of the length of the planning horizon, number of

vehicles and maximum age of the product, rather than in terms of the number of customers.

Parameter Set CL Set A

N From 10 to 50 From 10 to 40
S From 2 to 5 From 5 to 10
K From 1 to 3 From 2 to 8
T From 3 to 10 From 10 to 20

Table 2: Dimensions of the problem instances
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In our new instances, the parameters were generated according to the procedure described in Coelho

and Laporte (2014), except for rt and I000 (amount made available and initial inventory at the supplier,

respectively) given that the authors do not describe how the values of these parameters are generated.

Therefore, following the common practice in the IRP literature (Archetti et al., 2007, 2012) we assume

that the supplier has a supply of products large enough to always be able to serve all its customers

in each time period. Thus, we set rt = 1.5
∑

i∈C d
1
i , ∀t ∈ T and I000 = r1. It is worth mentioning

that the instances have revenues that are nonincreasing with the age, i.e., uis ≥ ui,s+1, ∀s ∈ S\{S},
and the inventory holding costs are random for both the supplier and the customers (using a formula

that includes an increase with the age of the product). Notice that random inventory holding costs

represent the most general case for these values. Travel costs correspond to Euclidean distances rounded

to the nearest integer. Additionally, in Section 5.4, we analyze the results of some further experiments

performed with different configurations for the values of revenue, holding and travel costs.

5.2. Comparison of the formulations

In this section, we compare the results obtained with the proposed formulations. Recall that we have

stated five formulations: arc-based (AB), transportation-based I and II with and without a vehicle index

(TP-I, TP-II, TP-I-nk and TP-II-nk, respectively). It is worth remembering that, for these experiments,

we did not include any additional valid inequality to the formulations. Experiments including additional

valid inequalities are presented in the supplementary material of this paper.

First, in Table 3, we report the values of the LP relaxations provided by the formulations and the

running times required to solve them. When solving the LP relaxations, in addition to removing the

integrality conditions on the variables, we drop the SECs (and GFSECs) of all the formulations. We

do this because the separation algorithm that we use for the formulations without a vehicle index is a

heuristic procedure for fractional solutions, i.e., it may fail to find a violated inequality. However, as

we will show in the upcoming experiments, despite the fact that we use this heuristic procedure, the

formulations without a vehicle index had a better performance than the formulations with a vehicle

index (which use an exact separation algorithm). In the table, columns 1 and 2 display the instance set

and the number of instances in the respective set, respectively. Columns labeled with “Difference to

AB” show the relative difference between the values of the LP relaxation of the respective formulations

and formulation AB, computed using the formula 100× (z∗− zAB)/zAB, where z∗ is the LP relaxation

value of the formulation and zAB is the value of the LP relaxation of formulation AB. Columns labeled

with “Running time” report the time in seconds that the solver required to solve the LP. The results

are reported separately in the same table for the two sets of instances (sets CL and A).

It is possible to observe that the LP relaxations of the formulations without a vehicle index can be

considerably worse than the other formulations since, on average, the LP relaxation bounds provided

by them are 3.85% and 13.30% greater than the ones of formulation AB, for set CL and A, respectively

(with a maximum difference of 24.56%). The LP relaxation of the reformulations with a vehicle index

is only slightly worse than the ones of formulation AB (less than 0.5%, for all sets). Notice also that the

bounds of formulations TP-I and TP-II (and their respective counterparts without a vehicle index) are

identical. In addition, as a result of the considerably larger number of variables in the reformulations

with a vehicle index, the times to solve their LP relaxation are large when compared to formulation AB

and to the reformulations without a vehicle index. These differences are remarkably larger for those
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sets with the largest values of S and T in set A, given that the number of delivery variables (q) in those

formulations grows quickly with increasing values for these parameters.

Instance set Difference to AB (%) Running time
(N -S-K-T ) # TP-I TP-I-nk TP-II TP-II-nk AB TP-I TP-I-nk TP-II TP-II-nk

10-2-1-3 5 0.11 1.72 0.11 1.72 0.00 0.00 0.00 0.00 0.00
10-3-1-6 5 0.26 5.10 0.26 5.10 0.01 0.01 0.01 0.01 0.01
10-5-1-10 5 0.28 4.10 0.28 4.10 0.02 0.03 0.03 0.03 0.03
20-2-2-3 5 0.39 4.55 0.39 4.55 0.01 0.01 0.00 0.02 0.01
20-3-2-6 5 0.25 4.47 0.25 4.47 0.03 0.05 0.01 0.04 0.02
20-5-2-10 5 0.13 4.78 0.13 4.78 0.18 0.33 0.08 0.34 0.07
30-2-2-3 5 0.16 2.06 0.16 2.06 0.01 0.02 0.01 0.02 0.01
30-3-2-6 5 0.26 3.85 0.26 3.85 0.07 0.07 0.04 0.08 0.03
30-5-2-10 5 0.14 4.35 0.14 4.35 0.32 0.48 0.10 0.47 0.10
40-2-3-3 5 0.45 3.42 0.45 3.42 0.06 0.07 0.01 0.06 0.01
40-3-3-6 5 0.26 4.21 0.26 4.21 0.19 0.25 0.04 0.26 0.04
50-2-3-3 5 0.27 3.59 0.27 3.59 0.06 0.09 0.02 0.08 0.02
All 60 0.25 3.85 0.25 3.85 0.08 0.12 0.03 0.12 0.03

10-7-2-15 5 0.41 11.20 0.41 11.20 0.14 0.33 0.09 0.32 0.09
10-10-2-15 5 0.30 13.72 0.30 13.72 0.19 0.64 0.18 0.75 0.16
10-10-2-20 5 0.36 11.89 0.36 11.89 0.41 1.33 0.34 1.49 0.32
20-7-4-15 5 0.19 11.89 0.19 11.89 1.15 4.18 0.26 3.63 0.22
20-10-4-15 5 0.18 10.78 0.18 10.78 1.52 7.35 0.43 6.52 0.38
20-10-6-15 5 0.17 24.56 0.17 24.56 1.98 11.40 0.37 11.33 0.38
30-7-4-15 5 0.14 8.84 0.14 8.84 2.24 9.75 0.35 8.45 0.36
30-7-8-15 5 0.12 16.71 0.12 16.71 6.29 25.11 0.37 27.07 0.33
30-10-8-15 5 0.15 18.38 0.15 18.38 8.40 52.17 0.67 57.97 0.60
40-5-4-10 5 0.08 7.37 0.08 7.37 1.14 2.85 0.15 2.52 0.13
40-5-8-10 5 0.13 10.93 0.13 10.93 2.87 9.08 0.15 6.97 0.13
All 55 0.20 13.30 0.20 13.30 2.39 11.29 0.31 11.55 0.28

Table 3: Comparison of the LP relaxation of the formulations

Table 4 reports the results when we impose a time limit of two hours to solve the MIP formulations.

In the table, column “#” indicates the number of instances in each set. Then, for each formulation,

column “#O” shows the number of instances of the set solved to optimality, column “#F” shows

the number of instances of the set for which a feasible solution was found. In addition, we report

the average relative optimality gap (“Opt gap”) of the solutions of the set (as a percentage) and the

average total execution time (“Total time”) in seconds for all the instances of the set. Unfilled cells

(“–”) indicate that no feasible solution was found for all the instances of the set. The results are

reported separately in the same table for the two sets of instances. It is possible to observe that all

the reformulations were able to find a number of feasible solutions that is larger than or equal to the

number of feasible solutions found by formulation AB. The differences are especially remarkable for the

formulations without a vehicle index (TP-I-nk and TP-II-nk), which were able to find feasible solutions

to 67% and 71% more instances than formulation AB, respectively. Additionally, the reformulations

with a vehicle index (TP-I and TP-II) found three and two optimal solutions more than formulation

AB, respectively, while both reformulations without a vehicle index found eight optimal solutions more

than formulation AB (which represent 30% more optimal solutions). It is worth mentioning that when

for a given set no optimal solution was found but at least a feasible solution was obtained and the

average time is less than 7200 seconds, it means that the optimizer ran out of memory before reaching

the time limit. Specifically, that happened once (one instance of subset 20-5-2-10) and three times

(one instance of subset 20-5-2-10, 30-5-2-10 and 10-7-2-15) for the formulation TP-I-nk and TP-II-nk,

respectively. Finally, notice that when the instance size grows, the solver starts failing to find feasible

solutions within the time limit, especially for the formulations with a vehicle index. As expected, this
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degradation in the performance is more noticeable when we increase T , S and K than when we increase

N . This is because the number of variables and constraints of the formulations increases faster with

increasing values of those former parameters.

Table 5 summarizes the relative optimality gaps of the solutions but only considering instances for

which all the formulations found at least a feasible solution. Column 2 (“#”) displays the number of in-

stances of the set (column 1) for which at least a feasible solution was found by all the formulations. The

first set of columns (“B&C optimality gap”) shows, for each formulation, the relative optimality gaps

of the computed feasible solutions using the upper (dual) bound of the corresponding B&C algorithm.

“Best dual bound gap” shows the relative difference of the solutions of the respective formulations com-

pared to the best upper (dual) bound among all the formulations, computed as 100× (z̄−z)/z, where z̄

is the best dual upper bound computed at the end of the B&C algorithm over all five formulations and

z is the objective value of the solution of the model. The results show that, despite the fact that the

formulations without a vehicle index can have a considerably worse LP relaxation, better optimality

gaps can be obtained at the end of their B&C algorithms. These formulations can provide solutions

of better quality for the largest instances of the table, as shown by the values of the gaps to the best

dual bounds. Notice that for sets 10-7-2-15 and 10-10-2-15 (which are part of set A), the formulations

without a vehicle index (TP-I-nk and TP-II-nk) found solutions with gaps to the best dual bounds

significantly better than the ones provided by the other three formulations. Also, the results highlight

the sensitivity of the formulations to increases in the values of S, K and T .

Finally, Table 6 shows the results for only those instances that were solved to optimality within the

time limit by all the formulations. Column 2 (“#”) displays the number of instances of the set (column

1) for which all formulations found the optimal solution. The results reveal the speed-up obtained with

the reformulations, especially the ones without a vehicle index. In particular, formulations TP-I-nk and

TP-II-nk use, in total, only 6.85% and 4.93% of the time required by formulation AB, respectively. The

results also reveal that a significant portion of the total running time (“Total time”) is spent proving

the optimality of the solutions since in most of the cases the optimal solutions are found early (“Time

to optimal”) in the B&C tree.

5.3. Results with the optimization-based ILS

Next, we analyze the performance of the optimization-based ILS hybrid method. In all tables of

this section, column “Best sol gap” shows the relative difference of the solutions obtained with our

heuristic method (zh) to the best feasible solution found by all the MIP formulations (zf ), computed

as 100× (zf −zh)/zf ; “Opt gap” shows the relative optimality gap of the obtained solutions, computed

using the formula 100× (z̄ − zh)/z̄, where z̄ is the best dual upper bound computed at the end of the

B&C algorithm over all five formulations (Section 5.2); “Total time” displays the total time (in seconds)

required by the algorithm; and “Imp” shows the relative improvement in the objective function value

(profit) obtained by including the SI formulation in the method, computed as 100 × (zh2 − zh1)/zh1 ,

where zh1 and zh2 are the solutions found by the heuristic before and after applying the SI formulation

in the method, respectively. Notice that negative values of “Best sol gap” indicate that our method

found a feasible solution that is better than the best solution provided by the five formulations since

we are maximizing profit.

Tables 7 and 8 show the results obtained with the optimization-based ILS. The stopping criterion
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Instance set B&C optimality gap (%) Best dual bound gap (%)
(N -S-K-T ) # AB TP-I TP-I-nk TP-II TP-II-nk AB TP-I TP-I-nk TP-II TP-II-nk

10-2-1-3 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10-3-1-6 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10-5-1-10 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20-2-2-3 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20-3-2-6 5 1.14 0.47 0.43 0.67 0.39 0.46 0.33 0.41 0.41 0.39
20-5-2-10 4 5.75 5.58 2.88 5.56 2.29 4.36 4.37 2.52 4.31 2.27
30-2-2-3 5 0.23 0.00 0.05 0.00 0.02 0.01 0.00 0.01 0.00 0.00
30-3-2-6 5 1.43 1.22 0.90 1.28 0.73 0.86 0.74 0.89 0.71 0.73
30-5-2-10 2 3.71 5.35 0.75 1.30 0.51 3.14 4.86 0.75 0.82 0.50
40-2-3-3 5 3.47 2.73 0.18 2.33 0.33 1.91 1.31 0.18 0.92 0.33
50-2-3-3 5 2.78 2.25 1.07 2.63 0.91 1.97 1.43 1.05 1.89 0.90
10-7-2-15 4 14.34 12.49 4.59 17.20 4.76 9.06 7.53 4.56 11.96 4.66
10-10-2-15 2 9.99 10.51 3.40 18.95 3.44 6.43 7.00 3.31 14.94 3.40
All 57 2.68 2.41 0.90 2.91 0.84 1.74 1.58 0.86 2.04 0.83

Table 5: Results for instances with feasible solutions found by all the formulations

AB TP-I TP-I-nk TP-II TP-II-nk
Instance set Total Time Total Time Total Time Total Time Total Time
(N -S-K-T ) # time to best time to best time to best time to best time to best

10-2-1-3 5 0.05 0.05 0.04 0.04 0.32 0.31 0.04 0.04 0.35 0.33
10-3-1-6 5 0.29 0.24 0.40 0.35 1.01 0.98 0.37 0.32 0.51 0.45
10-5-1-10 5 3.00 2.62 3.19 2.55 4.33 4.05 3.32 2.66 4.71 4.48
20-2-2-3 5 43.96 23.34 21.85 12.82 36.08 28.02 25.11 13.57 21.83 17.32
20-3-2-6 1 1,888.53 213.08 753.52 51.25 12.09 11.41 1,984.50 77.44 10.66 10.34
30-2-2-3 3 368.49 151.97 61.23 28.75 5.80 4.40 85.25 45.30 6.24 5.49
30-3-2-6 1 427.71 182.28 585.22 304.36 12.19 11.73 487.02 58.48 13.84 13.75
All 25 146.33 39.30 65.99 20.83 10.02 8.13 114.86 14.19 7.21 6.14

Table 6: Results for instances with optimal solutions found by all the formulations

was the number of iterations, which we set to 500. The value of max perturb was set to d0.7 × Ne.
This value was determined through empirical preliminary experiments using a random subset of the

problem instances. Recall that this parameter defines the number of elements of a solution that will be

changed in each call of the perturbation mechanism. For the SI formulation, we defined a time limit of

60 seconds and set β to 1, i.e., we allow at most one removal or insertion per route. We present both

results, with and without the SI formulation. We run the algorithm only once for each instance given

that, as will be shown in Section 5.3.1, the results are relatively consistent between different runs. We

separated the results into two tables. Each row displays the average result of the five instances of the

given set (column 1), except for “Best sol gap”, whose values were calculated over the instances for

which we could find a feasible solution with at least one of the formulations. Recall that for set A none

of the formulations was able to find a feasible solution for all the instances. Column 2 (“#”) shows

the number of instances of the set (column 1) for which at least one of the formulations could find a

feasible solution.

The results on the instance set CL (Table 7) show that the proposed method is able to find high-

quality solutions in relatively short running times. Specifically, solutions with an average optimality

gap of 2.12% (1.90%) were obtained within 5.81 (6.39) seconds, on average, for all the instances of this

set without (with) the SI formulation. Note that the average CPU time on this data set using the B&C

algorithm with the TP-I-nk (TP-II-nk) formulation is 3275 (3306) seconds. The results also reveal the

sensitivity of the method to an increase in the number of periods (T ), mainly given that the effort

required in the local search phase of the method, as well as the size of the MCF formulation, depend

primarily on T . The inclusion of the SI formulation as a post-optimization phase provided an average

relative improvement on the objective function value (profit) of the solutions of 0.23% with an increase
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of 8.43% in the running time.

The results on the new problem instances (set A, Table 8) show the impact of solving larger instances

since, as expected, significantly larger running times are required to perform 500 iterations. Also, larger

optimality gaps are obtained for the solutions on these instances. This fact does not necessarily reflect

a degradation in the quality of the solutions that our method can provide for these instances, but can

reflect the low quality of the dual upper bounds provided by the formulations on these instances. Recall

that, using the B&C algorithms, even finding feasible solutions was difficult for these instances. On

average, the hybrid method finds solutions with objective function values 0.47% (1.86%) better than

the best solutions found by all the formulations without (with) the SI formulation, for the instances

for which the formulations could provide a feasible solution. An average relative improvement on the

objective function value (profit) of 1.15% was obtained when the SI formulation was included in the

method at a cost of an increase of around 60% on the total running time. Note that the average CPU

time of the B&C algorithm with the TP-I-nk (TP-II-nk) formulation (for those instances of set A for

which a feasible solution was found) was 7200 (7167) seconds.

Without SI With SI
Instance set Best sol Opt Total Best sol Opt Total Imp
(N -S-K-T ) # gap (%) gap (%) time gap (%) gap (%) time (%)

10-2-1-3 5 0.00 0.00 0.22 0.00 0.00 0.23 0.00
10-3-1-6 5 0.12 0.12 0.35 0.12 0.12 0.39 0.00
10-5-1-10 5 0.64 0.64 0.71 0.54 0.54 0.90 0.10
20-2-2-3 5 0.97 0.97 0.62 0.50 0.50 0.66 0.49
20-3-2-6 5 2.13 2.42 1.31 1.88 2.18 1.55 0.25
20-5-2-10 5 0.97 3.11 13.08 0.56 2.70 15.11 0.42
30-2-2-3 5 0.43 0.43 1.20 0.37 0.37 1.26 0.06
30-3-2-6 5 1.26 1.74 2.74 1.13 1.61 3.19 0.14
30-5-2-10 5 1.19 2.04 23.84 0.86 1.72 26.34 0.33
40-2-3-3 5 5.22 5.40 2.06 4.92 5.10 2.25 0.32
40-3-3-6 5 1.71 4.00 20.22 1.35 3.67 21.27 0.34
50-2-3-3 5 3.94 4.54 3.36 3.65 4.25 3.55 0.30
All 60 1.55 2.12 5.81 1.32 1.90 6.39 0.23

Table 7: Results with the optimization-based ILS on instance set CL

Without SI With SI
Instance set Best sol Opt Total Best sol Opt Total Imp
(N -S-K-T ) # gap (%) gap (%) time gap (%) gap (%) time (%)

10-7-2-15 5 4.02 8.04 12.60 2.11 6.20 69.34 2.02
10-10-2-15 5 3.16 8.55 16.10 0.99 6.51 76.11 2.24
10-10-2-20 5 2.54 10.57 21.51 0.65 8.82 81.53 1.98
20-7-4-15 5 -1.03 10.81 51.39 -3.04 9.05 111.44 1.99
20-10-4-15 2 -0.64 8.98 69.11 -1.13 8.80 129.18 0.20
20-10-6-15 3 3.36 15.81 114.12 3.36 15.81 174.25 0.00
30-7-4-15 4 -5.03 7.66 99.74 -6.65 6.15 159.81 1.64
30-7-8-15 4 -0.79 14.30 222.11 -0.79 14.30 282.25 0.00
30-10-8-15 1 -0.06 14.64 303.53 -0.06 14.64 363.84 0.00
40-5-4-10 5 -8.14 6.27 62.47 -9.34 5.23 122.50 1.11
40-5-8-10 5 -1.78 10.65 122.14 -3.30 9.30 182.19 1.50
All 44 -0.47 10.57 99.53 -1.86 9.53 159.31 1.15

Table 8: Results with the optimization-based ILS on instance set A

5.3.1. Evaluation of the hybrid method with different configurations

The purpose of this section is to assess the performance of the optimization-based ILS under different

configurations. First, Table 9 shows the results of the method when we change the number of iterations

used as stopping criterion (column 1). The results show that, for set CL, even for a small number of
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iterations (e.g., 100), the method is able to find relatively good quality solutions in very short running

times. For set A, notice that from 250 iterations onwards the method is able to find solutions with an

average objective function value that is better than the objective function value of the best solutions

provided by all the formulations within two hours, which further shows the ability of the method to

find good feasible solutions in relatively short running times.

Set CL Set A
# of Best sol Opt Total Best sol Opt Total
iter gap (%) gap (%) time gap (%) gap (%) time
100 2.32 2.87 1.83 0.87 12.15 79.95
250 1.69 2.24 3.83 -0.57 10.71 110.61
500 1.32 1.90 6.39 -1.86 9.53 159.31
1000 1.14 1.70 12.37 -2.72 8.72 262.79
2000 1.02 1.57 27.46 -3.62 7.79 497.17

Table 9: Results of increasing number of iterations for the hybrid method

To evaluate the impact of the randomness in our method, we executed it five times and computed

the percent coefficient of variation (%CV) of the results. The experiment resulted in a %CV of 0.57%

for the total profit considering both sets of instances. This result highlights the consistency of the

results obtained in different runs of the method. It is worth mentioning that the %CV for set CL is

0.37% while for set A it was 0.78%. Although these values are both very small, the difference between

them reveals the impact of the size of the instances of set A as, on average, the results obtained for

these instances are (slightly) more dispersed than the results for instances of set CL.

5.4. Experiments changing the parameters of the instances

To verify the impact of different scenarios on the solution structure, we perform additional experi-

ments changing the values of the parameters of the problem instances. In these experiments, we used

the first four subsets from set CL (10-2-1-3, 10-3-1-6, 10-5-1-10 and 20-2-2-3) given that these are the

only sets in which all instances can be solved to optimality within the time limit of two hours by all the

formulations. The results of the experiment are shown in Table 10. “TC” shows the results when we

increase the travel cost of each edge of the graph by 10 (cij = 10cij , ∀(i, j) ∈ E), “SR” shows the results

when we set the same revenue for all the ages, using the formula uis = ui0, ∀i ∈ C, s ∈ S. Notice that

the revenues may still be different between customers. Finally, “SH” shows the results when we set the

same value for the holding costs of all facilities and ages (his = 0.5, ∀i ∈ N , s ∈ S). “Base case” shows

the results with the original values of the parameters. For all the changes performed to the problem

instances, we report the total profit (“Profit”), which corresponds to the objective function value, the

revenue (“Revenue”) and the total routing (“Routing”) and inventory holding cost (“Inventory”) of the

optimal solutions of the considered sets. Each cell shows the average for all the instances of the respec-

tive set (indicated in the column header). It is worth remembering that the original revenue values are

nonincreasing with an increasing age (uis ≥ ui,s+1, ∀s ∈ S\{S}) and the holding costs are random.

The impact of the changes on the CPU times of the solver is shown in Section 3 of the supplementary

material.

The results show that when we increase the travel costs (TC) (compared to the base case), the

total revenue is reduced given that the sales revenue values do not pay off the cost of delivering fresh

products and consequently the demands tend to be satisfied using older products, which provide less

revenue per consumed unit. Analogously, a slight increase in the total inventory cost was observed since
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extra deliveries, which provide savings in the inventory cost, are not performed anymore given that they

are no longer profitable. In this scenario, the total routing cost increases substantially, compared to

the base case, resulting in negative profits. On the other hand, when we set the same revenue for all

the ages (SR), the total revenue increases (compared to the base case) given that the income of the

sales revenue when satisfying the demand is always maximum. In this scenario (SR), the total revenue

becomes constant because the total demand must be satisfied. Additionally, a reduction in the total

routing cost is observed, when compared to the base case, given that in this scenario it is not necessary

to perform deliveries in each period to obtain the maximum revenue and only when it is necessary to

satisfy a demand or when it can provide savings in the total inventory holding cost. Finally, when the

holding costs are set to a constant value (SH) it is possible to observe a slight reduction in the total

routing cost in most of the sets when compared to the base case. This can be explained by the fact

that deliveries that provided savings in the inventory cost are no longer performed. Again, analogously

to the total revenue in scenario SR, the total inventory cost becomes a constant term in scenario SH.

Instance subset (N -S-K-T )
10-2-1-3 10-3-1-6 10-5-1-10 20-2-2-3 All

Profit Base case 18,597.61 42,434.46 70,897.15 37,712.51 42,410.43
TC -14,753.83 -29,809.26 -55,722.49 -18,927.16 -29,803.19
SR 35,156.47 66,593.79 81,603.14 72,124.65 63,869.51
SH 18,178.50 44,247.90 89,138.20 43,147.50 48,678.03

Revenue Base case 33,580.40 81,343.00 164,797.40 72,144.60 87,966.35
TC 29,276.00 67,448.80 143,224.80 61,916.80 75,466.60
SR 47,846.80 100,993.40 168,464.20 104,097.20 105,350.40
SH 33,653.00 81,258.80 164,571.60 72,141.00 87,906.10

Routing Base case 5,661.20 13,096.20 22,000.40 8,718.00 12,368.95
TC 34,658.00 68,976.00 121,646.00 53,824.00 69,776.00
SR 3,445.80 7,177.80 13,853.00 5,688.00 7,541.15
SH 5,727.20 12,905.80 21,435.40 8,556.20 12,156.15

Inventory Base case 9,321.59 25,812.34 71,899.85 25,714.09 33,186.97
TC 9,371.83 28,282.06 77,301.29 27,019.96 35,493.79
SR 9,244.53 27,221.81 73,008.06 26,284.55 33,939.74
SH 9,747.30 24,105.10 53,998.00 20,437.30 27,071.93

Table 10: Results when the parameters of the problem instances are changed

6. Conclusions and future research

In this paper, we addressed an inventory routing problem in which goods are perishable. We present

four new mathematical formulations for the problem, two with a vehicle index and two without a vehi-

cle index, and present branch-and-cut algorithms to solve them. We also developed a hybrid solution

method for the problem by combining an iterated local search metaheuristic with two mathematical

programming components. Additionally, we introduced new instances for the problem. The results of

the computational experiments show that the formulations without a vehicle index provide a consid-

erably larger number of feasible solutions within two hours when compared to the other formulations,

in addition to a significant speed-up for instances solved to optimality within the time limit by all

the formulations. Furthermore, our hybrid heuristic solution method was able to provide high-quality

solutions within relatively short running times on small- and medium-sized problem instances. When

applied to larger instances, the method provides good feasible solutions within reasonable running

times.

An interesting perspective for future research is to extend the formulation and adapt the hybrid
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method to solve richer extensions of the problem, such as the case with multiple perishable products

or multiple sources of the products, as well as considering production as a decision within the problem,

which would lead to a production-routing problem with perishability considerations.
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Abstract

This is the online supplement of the paper “Formulations, Branch-and-Cut and a Hybrid Heuristic

Algorithm for an Inventory Routing Problem with Perishable Products”. Section 1 shows the valid

inequalities that we used to further strengthen the formulations. In Section 2, we provide some detailed

results of all the formulations when including these inequalities, while Section 3 shows the CPU times

required to solve to optimality all the instances considered in the experiments in which some parameters

of the instances were changed.

1. Valid inequalities

We can further strengthen the formulations (AB, TP-I, TP-II, TP-I-nk and TP-II-nk) by including

some valid inequalities. All these inequalities have been used in previous works (Archetti et al., 2007;

Engineer et al., 2012; Coelho and Laporte, 2014; Desaulniers et al., 2016), and can also be used in our

formulations. Constraints (1) and (2) enforce the relation between the routing variables (x) and the

visit variables (y):

xkt0i ≤ 2ykti i ∈ C, k ∈ K, t ∈ T , (1)

xktij ≤ ykti i, j ∈ E : i 6= 0, k ∈ K, t ∈ T . (2)

The respective counterparts of these inequalities for the formulations without a vehicle index are

obtained by dropping the vehicle index from the variables.

Symmetry breaking constraints can be included in the vehicle index formulations in the presence of

identical vehicles, as follows:

ykti ≤
∑

j∈C:j<i

yk−1,tj i ∈ C\{1}, k ∈ K\{1}, t ∈ T , (3)

ykt0 ≤ yk−1,t0 k ∈ K\{1}, t ∈ T . (4)
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We can use three additional sets of valid inequalities. The first set corresponds to inequali-

ties on the minimum number of visits to a single customer up to a given time period. Let Īti =

max
{

0, I0i0 −
∑t

p=1 d
p
i

}
be the minimum amount from the initial inventory that must remain at cus-

tomer i at the end of time period t, with Īti = 0,∀i ∈ C, t ∈ T , t > S and Ī0i = I0i0. Let d̄ti be the minimum

residual demand of customer i in time period t, where d̄ti = max
{

0, dti − Īt−1i

}
, ∀i ∈ C, t ∈ T , t ≤ S and

d̄ti = dti, ∀i ∈ C, t ∈ T , t > S. Then, considering all the residual demands of a customer i up to a given

time period t and the maximum size of a single delivery to the customer, it is possible to compute a

lower bound on the number of visits to the customer up to that time period. This lower bound is given

by LB1ti = d∑t
p=1 d̄

p
i /Uie. Now, it follows that the following inequalities are valid:

t∑

p=1

∑

k∈K
ykpi ≥ LB1ti, i ∈ C, t ∈ T . (5)

For the formulations without a vehicle index, the left-hand side of the inequalities is replaced by

the term
∑t

p=1 y
p
i .

The second set corresponds to inequalities on the minimum number of routes up to a given time

period. These can be obtained by summing over the residual demands of all the customers up to a time

period. Thus, a lower bound on the minimum number of routes to serve the residual demands of all

customers up to time period t is given by LB2t = d∑i∈C
∑t

p=1 d̄
p
i /Qe. Then, the following inequalities

are valid:
t∑

p=1

∑

k∈K
ykp0 ≥ LB2t, t ∈ T . (6)

Analogously, for the formulations without a vehicle index, the left-hand side of the inequalities

becomes
∑t

p=1 y
p
0 .

The final set generalizes inequalities (5) by considering any time interval [t1, t2], ∀t1, t2 ∈ T , 1 < t1 <

t2 ≤ T . Let d̄t1t2i =
∑t2

t=t1
dti denote the sum of demands over time periods t1 to t2 and Iti =

∑
s∈St I

t
is

denote the sum of inventory variables for customer i ∈ C in time period t ∈ T . Then

⌈
d̄t1t2i − It1−1i

Ui

⌉

is a lower bound on the number of visits to customer i ∈ C from t1 to t2. Notice that for t1 = 1 the

resulting inequalities correspond to (5). For t1 > 1 it results in a nonlinear bound given the presence of

the inventory variables. However, as shown by Engineer et al. (2012), linear inequalities can be derived

by appropriately bounding It1−1i . Assume that It1−1i = Ci − dt1−1i , i.e., the inventory at the end of

period t1 − 1 is at its maximum level. Then, given that It1−1i ≤ Ci − dt1−1i ,

t2∑

t=t1

∑

k∈K
ykti ≥

⌈
d̄t1t2i − (Ci − dt1−1i )

Ui

⌉
i ∈ C, 1 < t1 < t2 ≤ T (7)

is a valid inequality. Similarly, for the formulations without a vehicle index, the left-hand side of (7) is

changed to
∑t2

t=t1
yti .

2



2. Impact of the valid inequalities

The purpose of this section is to analyze the results obtained when we strengthen the formulations

by including the valid inequalities of Section 1. Table S1 show the number of optimal and feasible

solutions found when the different valid inequalities are included in the formulations. We considered

the instance set CL only. Again, we set a time limit of two hours to solve each instance by each formu-

lation. In the cells of columns 2-6, we show the number of optimal and feasible solutions, respectively

(separated by a comma), found by the formulation specified in the respective header when including

the inequalities given in column 1. “Base case” shows the results when no valid inequality is considered

in the formulation and “All” shows the results when we include all the inequalities simultaneously. Un-

filled cells (“–”) indicate that the inequalities were not applied to the formulations (symmetry breaking

constraints to the formulations without a vehicle index).

The results show that none of the valid inequalities was able to improve alone the performance of all

the formulations in terms of both the number of optimal and feasible solutions found within the time

limit. Only inequality (1) was able to provide a number of optimal and feasible solutions that is greater

than or equal to the base case for all the formulations. This could be explained by the fact that CPLEX

already includes some general valid inequalities (in addition to the preprocessing operations that the

solver applies to the formulation), which does not allow to reveal potential gains obtained by including

the given valid inequalities. Note that some of the inequalities are able to improve the performance of

some of the formulations in either the number of optimal or feasible solutions, e.g., (7) for the number

of feasible solutions, but not in both at the same time. It is worth mentioning that we tried including

combinations of these inequalities simultaneously, but no performance improvement was obtained.

Formulation
AB TP-I TP-I-nk TP-II TP-II-nk

Base case 26, 53 29, 54 34, 60 28, 52 34, 60
(1) 26, 54 29, 54 34, 60 29, 54 34, 60
(2) 24, 54 27, 54 33, 60 27, 53 32, 60
(3) 26, 55 29, 53 – 29, 52 –
(4) 26, 54 29, 53 – 28, 53 –
(5) 26, 53 29, 53 32, 60 28, 56 32, 60
(6) 25, 53 28, 52 33, 60 29, 53 33, 60
(7) 25, 56 27, 56 32, 60 29, 54 32, 60
(1)-(4) 26, 55 29, 52 33, 60 29, 53 32, 60
(5)-(7) 26, 54 28, 54 34, 60 29, 52 33, 60
All 24, 56 29, 57 32, 60 28, 57 33, 60

Table S1: Number of optimal and feasible solutions found by the formulations when including the valid inequalities

The impact of the valid inequalities on the CPU times are presented in Table S2. In the table, for

each formulation, column “#O” shows the number of instances of the set solved to optimality, column

“#F” shows the number of instances of the set for which a feasible solution was found, “Opt gap”

shows the average relative optimality gap of the solutions of the set (as a percentage) and “Total time”

displays the average total execution time in seconds for all the instances in the set. Recall that each

set contains five instances.

The results show that there is no consistency in the impact of the valid inequalities over all five

formulations and all the sets of instances when compared to the results without any valid inequality.
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For some sets, the valid inequalities improved the performance of some formulations (e.g., formulation

AB on set 20-5-2-10) but in other cases, they worsened it (e.g., formulation TP-I-nk on set 30-2-2-3).

The number of feasible solutions found by all the formulations without a vehicle index increased, while

the number of optimal solutions was reduced for some of the formulations. We believe this may be in

part due to the fact that CPLEX already generates some general valid inequalities that do not allow

to reveal potential gains obtained by including the given valid inequalities.

3. CPU times of the solver when changing the parameters of the instances

We report the CPU times required by the solver to solve to optimality all the instances considered

in the experiments in which some parameters of the instances were changed (Section 5.4 of the main

paper). It is worth remembering that we used all the instances of subsets 10-2-1-3, 10-3-1-6, 10-5-1-10

and 20-2-2-3. The results are displayed in Table S3. In the table, columns 2-6 show the average CPU

time (in seconds) required by CPLEX to solve all the instances using the formulation stated in the

respective header and when applying the change given in column 1. Recall that “Base case” shows the

result with the original values of the parameters, “TC” indicates that we increased the travel cost of

each edge of the graph by 10, “SR” shows the results when we set the same revenue for all the ages,

and “SH” shows the results when we set the same value for the holding costs of all facilities and ages.

All but one instance could be solved to optimality in less than two hours using all the formulations

(namely, one instance of set 10-5-1-10 when solved by formulation TP-I-nk and applying change SR).

In this case, we computed the average time by setting a CPU time of 7200 seconds for this instance

(which is indicated by the “*” mark in the table). It is worth mentioning that we could not solve this

instance with the applied change and formulation TP-I-nk even within a larger running time limit (14

hours).

In the table, we observe that when we increase the routing cost (TC) and when we set the same

revenue for all the ages (SR), the total time required to solve the instances increased for all the for-

mulations (compared to the base case). The increase is especially noticeable for the change SR. This

may be due to the observation that now changes on the integer decision variables (x and y) have a

reduced effect on the objective function (total profit), which directly affects the performance of the

B&C algorithm. On the other hand, when we set a constant value for the holding costs (SH), the

time required by the solver decreases, compared to the base case. This latter fact can be explained

because now the inventory part of the problem does not have any impact on the objective function

value, remaining only routing and consumption decisions as key to maximizing it. Thus, the problem

now reduces to maximizing the amount of fresh product that is sent to the customers, as long as it is

profitable by the revenue values.
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Formulation
AB TP-I TP-I-nk TP-II TP-II-nk

Base case 11.82 6.37 10.44 7.21 6.85
TC 43.17 28.71 55.57 29.02 284.88
SR 111.46 127.90 645.77* 85.84 496.27
SH 7.91 2.95 1.01 3.46 1.07

Table S3: CPU times when the parameters of the problem instances are changed
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