
Solving the Park-and-loop Routing Problem by
Branch-price-and-cut

Nicolás Cabreraa, Jean-François Cordeaua, Jorge E. Mendozaa

a
HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7 Canada

Abstract

The park-and-loop routing problem is a variation of the vehicle routing prob-
lem in which routes include a main tour that is completed using a vehicle and
subtours that are carried out on foot after parking the vehicle. Additionally,
the route duration and total walking distance are bounded. To solve the prob-
lem, we propose an exact solution method based on the branch-price-and-cut
framework. In particular, our method uses problem-specific components to
solve the pricing problem. We report on computational experiments carried
out on a standard set of 40 instances with up to 50 customers. The results
show that our method delivers solutions that compare favorably to exist-
ing metaheuristic algorithms, matching all previously best-known solutions
and improving 11 of them in reasonable computational times. Moreover, our
method provides optimality certificates for 39 out of the 40 instances.

Keywords: vehicle routing problem, branch-price-and-cut, column
generation, transportation, park-and-loop

1. Introduction

Let G = (V ,A) be a directed multigraph where V is the set of vertices
and A denotes the set of directed arcs. The set of vertices comprises a depot
0 and the set of customers C = {1, ..., C}. Each customer i 2 C has a service
time si. There are k homogeneous workers available to serve the customers.
These workers can either drive or walk between locations. Accordingly, the
set of arcs A = {(i, j)m|m = {d, w}} contains two arcs between each pair of
vertices, namely, a driving arc (d) and a walking arc (w). Each arc (i, j)m 2 A

has two main attributes: the distance �ij and the time ⌘ij. Each worker has
a maximum daily walking distance ⇣ and is hired for a full working day

Preprint submitted to Transportation Research Part C February 4, 2023

Manuscript File Click here to view linked References

https://www.editorialmanager.com/trc/viewRCResults.aspx?pdf=1&docID=12552&rev=0&fileID=150125&msid=74cec1c7-fab5-4f35-9735-e18f3209096d
https://www.editorialmanager.com/trc/viewRCResults.aspx?pdf=1&docID=12552&rev=0&fileID=150125&msid=74cec1c7-fab5-4f35-9735-e18f3209096d

lasting � units of time. The maximum distance that a worker may walk
between two points is ✓. The fixed cost of hiring a worker is cf . Additionally,
there is a variable cost associated with driving (cv per unit of distance).
The park-and-loop routing problem (PLRP) consists in finding a set of least
cost routes (starting and ending at the depot) while ensuring that: each
customer is served precisely once; the total duration of each route does not
exceed the working day duration; and the distance walked by any worker
does not exceed the limit. Because it is a generalization of the well-known
vehicle routing problem (VRP), the PLRP is NP-hard.

In order to serve the set of customers three types of routes can be designed:
pure vehicle routes performed by a worker driving between customers; pure
walking routes performed by a worker walking between customers; and finally
park-and-loop routes that are vehicle routes with walking subtours. Figure 1
shows a feasible solution to a small PLRP instance with 6 customers. In this
solution, customers 1 and 2 are served by a worker driving a vehicle (i.e., a
pure vehicle route), while customers 3 to 6 are served by a worker following
a park-and-loop route. More specifically, the worker leaves (i.e., parks) the
vehicle at the depot and walks to serve customer 3. The worker then walks
back to the depot to pick up the vehicle and drives to customer 4. After
serving customer 4, the worker parks the vehicle and walks to serve customer
5. The worker then walks back to customer 4. Finally, the worker drives to
customer 6 and then returns to the depot.

!!

"

#

$

%

&

'

(a) Node locations

�r

!

"

#

$

%

&
walking

driving

(b) PLRP solution

Figure 1: PLRP instance and solution example.

2

The PLRP is closely related to the two-echelon last-mile delivery prob-
lem (2E-LMDP) discussed by Martinez-Sykora et al. (2020); a variant of the
traveling salesman problem (TSP) consisting in finding a single park-and-
loop route to serve a set of customers. The authors propose an exact branch-
and-cut algorithm capable of solving instances with up to 30 customers. As
opposed to the PLRP, the number of walking subtours starting at a given
parking spot is limited to one. More recently, Reed et al. (2022) introduced
the capacitated delivery problem with parking (CDPP). This problem ex-
tends the 2E-LMDP by allowing the worker to perform an unlimited number
of walking subtours starting at the same parking spot. The authors propose
a mixed integer programming (MIP) formulation that can solve instances
with up to 50 customers. In addition, they describe a two-step heuristic that
can handle instances with up to 100 customers. However, the authors limit
the number of customers in a walking subtour to three. In the PLRP, the
number of customers in a walking subtour is not constrained.

The PLRP is also related to the truck and trailer routing problem (TTRP)
introduced by Semet (1995). This variant of the VRP considers a fleet of
trucks pulling trailers to serve a set of customers. The problem also consid-
ers a set of decoupling locations (i.e., parking places), where trailers can be
detached as some of the customers are only accessible by the truck without
the trailer. Most of the work on the TTRP has focused on heuristic algo-
rithms (Chao, 2002; Sheuerer, 2006; Lin et al., 2009; Villegas et al., 2011;
Derigs et al., 2013; Villegas et al., 2013). These methods are capable of pro-
viding high quality solutions for instances with up to 150 customers. In the
TTRP, routes are constrained by the combined capacity of the truck and the
trailer. In contrast, routes in the PLRP are constrained by the maximum
walking distance and the working day duration.

In the last decade, researchers have turned their attention to developing
exact methods for more restricted TTRP variants (Belenguer et al., 2016;
Parragh & Cordeau, 2017; Rothenbächer et al., 2018). Belenguer et al. (2016)
propose a branch-and-cut algorithm for the single truck and trailer routing
problem with satellite depots (STTRPSD). This algorithm is capable of opti-
mally solving instances with up to 50 customers when limiting the number of
parking places to 10. Parragh & Cordeau (2017) propose a branch-and-price
algorithm to solve the truck and trailer routing problem with time windows
(TTRPTW). Their method is capable of solving instances with up to 100
customers. Rothenbächer et al. (2018) propose a branch-price-and-cut algo-
rithm that outperforms the algorithm of Parragh & Cordeau (2017) on the

3

same TTRPTW variant. Their method is capable of finding the optimal so-
lution for 35 additional instances. As opposed to the TTRPTW, customers
in the PLRP do not have an associated time window. Therefore, the latter
can be expected to be more di�cult to solve using branch-price-and-cut.

Another related problem is the doubly open park-and-loop routing prob-
lem (DOPLRP) introduced by Cabrera et al. (2022). This variant of the
VRP consists in finding a set of least-cost routes that may start and end
at any customer. To solve the DOPLRP, the authors propose a two-phase
matheuristic called MSH. This approach was capable of handling instances
with up to 3,800 customers. As opposed to the PLRP, the time duration of
each walking subtour is bounded. More recently, Le Colleter et al. (2023) de-
fined the park-and-loop routing problem with parking selection (PLRP-PS).
The main di↵erence with other problem variants is that the vehicle can only
be parked at dedicated parking locations. To solve the PLRP-PS, the authors
introduce a small and large neighborhood search methaeuristic (SLNS). The
authors use new specific techniques to select parking spots that significantly
speed up the algorithm. Their algorithm was capable of providing solutions
for instances with up to 400 customers and 352 dedicated parking spots.

The closest problem to the PLRP is the VRP with transportable resources
(VRPTR) introduced by Coindreau et al. (2019). In the VRPTR, a set of
workers has to serve a set of customers. The workers can either walk or drive
to their next location and are allowed to carpool (i.e., share a vehicle). To
solve their VRPTR, the authors use a mixed integer linear program (MILP).
Their experiments show that their MILP can only solve instances with up to
18 customers. Thus, they also propose a variable neighborhood search (VNS)
algorithm. This method can solve instances with up to 50 customers with a
running time limit of 10 hours. The authors also studied a version of their
problem in which carpooling is not allowed. The latter perfectly matches the
PLRP definition. Le Colleter et al. (2023) reported results benchmarking
VNS, MSH, and SLNS on the Coindreau et al. (2019) instances. Their study
sets SLNS as the state-of-the-art algorithm since it unveiled eight new best-
known solutions. Note, however, that neither of these methods is exact.
Moreover, none of those approaches has been assessed with respect to a
lower bound. In other words, no optimality gaps have been reported for the
solutions they provide.

The contribution of this article is two-fold. From a methodological per-
spective, we propose a branch-price-and-cut algorithm to solve the PLRP.
The key algorithmic component of our method is the pulse algorithm used

4

to solve the pricing problem. The latter extends the procedure introduced in
Lozano et al. (2015) to handle the park-and-loop structure of the routes and
the inclusion of the subset row inequalities proposed by Jepsen et al. (2008).
In addition, we present a set of acceleration strategies tailored to the PLRP.
From a computational perspective, we perform extensive experiments on the
set of 40 instances introduced by Coindreau et al. (2019), arguably the most
widely used testbed for VRPs with park-and-loop structure. Our algorithm
is the first to prove optimality for 39 of the instances. In addition, we de-
veloped an online web application 1 that allows researchers to visualize and
download the best-known solutions for the PLRP. They can also upload
their solutions for plotting and checking.

This paper is organized as follows. Section 2 presents the mathematical
formulation. Section 3 describes the proposed branch-price-and-cut algo-
rithm. Section 4 presents the acceleration strategies that crucially improve
the algorithm’s performance. Section 5 contains the computational exper-
iments. Finally, Section 6 presents the conclusions and outlines potential
paths for future research.

2. Problem formulation

We define a route r as an ordered set of directed arcs starting and ending
at the depot. The customers served in the route are represented by the set
Cr. Let the subsets Ad

r and A
w
r contain the driving and the walking arcs in

r respectively. A route r is time-feasible if
!

(i,j)!A d
r "A w

r

⌘ij +
!

i!C r

si  �. (1)

Similarly, a route r is walking-feasible if
!

(i,j)!A w
r

�ij  ⇣. (2)

The cost cr of a route is equal to the sum of the variable and the fixed cost,
that is,

cr =
!

(i,j)!A d
r

�ijc
v + cf . (3)

1Available at https://chairelogistique.hec.ca/en/scientific-data/

5

https://chairelogistique.hec.ca/en/scientific-data/

Let R be the set of all feasible routes and let air be a parameter that takes
the value 1 if and only if route r 2 R serves customer i 2 C. Finally, let xr

be a binary variable equal to 1 if route r 2 R is selected and 0 otherwise. A
set covering (SC) formulation for the PLRP can be stated as follows:

min
!

r!R

xrcr (4)

subject to
!

r!R

airxr = 1 8i 2 C (5)

!

r!R

xr �

" #
i!C si
�

$
(6)

!

r!R

xr  k (7)

xr 2 {0, 1} 8r 2 R. (8)

The objective function (4) minimizes the total cost. Constraints (5) en-
sure that all customers are served exactly once. Constraints (6) and (7)
provide, respectively, a lower and an upper bound on the number of routes
used to serve the set of customers. Constraints (8) are the domain restric-
tions. Note that the number of feasible routes |R| grows exponentially. Thus,
solving SC by enumerating all the feasible routes is usually not possible. As
an alternative, the SC can be solved using a branch-price-and-cut algorithm
which is described next.

3. Solution method

In this section, we present an exact branch-price-and-cut algorithm (BPC)
to solve the SC model. A BPC algorithm is a branch-and-bound algorithm
in which, at each node of the enumeration tree, the linear relaxation of an
integer formulation is solved using column generation (CG) and tightened by
adding valid inequalities (i.e., cuts). For completeness, Section 3.1 describes
the column generation algorithm. Section 3.2 defines the pricing problem.
Section 3.3 describes the key strategies used in the pricing problem algorithm.
Section 3.4 presents the valid inequalities. Finally, Section 3.5 describes the
branching rules.

6

3.1. Column generation

CG is a solution method that can solve integer programs with a large
number of decision variables (i.e., columns). To achieve this goal, two opti-
mization problems are solved iteratively: A master problem that considers
only a small subset of variables and a pricing problem that generates promis-
ing variables to be added to the master problem. If, at a given iteration, no
variables are added to the master problem, the CG algorithm ends. We refer
the interested reader to the book by Desaulniers et al. (2006) and the study
by Lübbecke & Desrosiers (2005) for a review of techniques and applications
of column generation.

In our case, the MP corresponds to the relaxed version of formulation
(4)-(8). The relaxed set covering problem (RSCP) considers only a subset of
feasible routes (columns) R ✓ R and is obtained by relaxing the integrality
constraints on the xr variables. Let ⇡i 2 R, � � 0, and ⇢  0 be the
dual variables associated with constraints (5), (6), and (7) respectively. The
reduced cost of variable xr is then given by the following expression:

rr = cr �
!

i!C

air⇡i � � � ⇢. (9)

Having minr! R {rr} � 0 ensures that the RSCP is solved optimally. If
there exists a route r with rr < 0, we add the corresponding variable xr to
the subset R. Therefore, the goal after solving the RSCP is to identify a
route with negative reduced cost. This problem is referred to as the pricing
problem and is the topic of the next section.

3.2. Pricing problem

Let G#= (V#,A#) be a directed multigraph, henceforth referred to as the
modified network, where V

is the set of nodes including a start depot 0 and
an end depot 0. Thus, V# = C [

%
0, 0

&
and A

= A
1
[A

2
[A

3
[A

4
[A

5,
where

¥ A
1 =

%
(i, j)d|i 2 C [{0} , j 2 C

&
is the set of driving arcs arriving to

any customer,

¥ A
2 = {(i, j)w|i 2 C [{0} , j 2 C} is the set of walking arcs arriving to

any customer,

¥ A
3 =

%
(i, 0)d|i 2 C

&
is the set of driving arcs going from any customer

to the end depot,

7

¥ A
4 = {(i, 0)w|i 2 C} is the set of walking arcs going from any customer

to the start depot, and

¥ A
5 =

%
(0, 0)w

&
is a fictitious arc connecting the start and end depots.

The attributes of the arc connecting 0 and 0 are set to zero. Note that
arcs A

4 are necessary in order to allow workers to start walking subtours
from the depot. Figure 2 shows how the routes in Figure 1b are mapped to
the modified network.

walking

driving

�r

!

"

#

$

%

&

�r

Figure 2: Route representation on the modiÞed network.

As mentioned previously, the objective of the pricing problem is to find
routes from 0 to 0 with a negative reduced cost. With this in mind, we
must define the reduced cost of each arc in G

#. The reduced cost of an arc
(i, j)m 2 A

is defined as:

rij =

'
(((((()

((((((*

�ijcv � ⇡j, (i, j)m 2 A
1;

�⇡j, (i, j)m 2 A
2;

�ijcv, (i, j)m 2 A
3;

0, (i, j)m 2 A
4;

0, (i, j)m 2 A
5.

(10)

In terms of network flows, the start depot o↵ers one unit of flow that is
demanded by the end depot. Thus, the formulation of the pricing problem

8

partially follows that of the shortest path problem in which the weight of the
arcs corresponds to their reduced cost. Nevertheless, in the context of the
PLRP, a node in graph G

can only be visited once (unless the node is used
as a parking spot), which means that paths are pseudo-elementary. More-
over, paths (i.e., routes) are constrained by two resources: the time � and
the walking distance ⇣. Hence, the pricing problem corresponds to solving
an (elementary) shortest path problem with resource constraints and park-
and-loop (SPPRC-PL). The pricing problem itself is NP-hard. However,
several algorithms exist for solving the elementary shortest path problem
with resource constraints. The interested reader is referred to the article
by Pugliese & Guerriero (2013) for a review of exact algorithms for solving
resource-constrained shortest path problems. In this paper, we adapt the
pulse algorithm (PA) proposed by Lozano et al. (2015) for solving the ele-
mentary shortest path problem with resource constraints (ESPPRC). This
algorithm has been successfully used as a component to solve other hard
combinatorial optimization problems (Restrepo et al., 2012; Montoya et al.,
2016; Lozano & Smith, 2017; Arslan et al., 2018; Schrotenboer et al., 2019).

The PA is a recursive algorithm based on the idea of propagating pulses
through the network from a start node (i.e., the start depot) 0 to an end
node (i.e., the end depot) 0. While traversing the network node by node,
the pulse builds a partial path P that includes all the nodes already visited.
Additionally, the pulse contains information on the attributes associated with
the path, such as the cumulative reduced cost or the resource consumption.
Whenever a pulse reaches the end node 0 it contains all the information of a
feasible path P from 0 to 0. If the path has a negative reduced cost, it can
be added to the subset R and the best solution can be updated.

The PA ensures that the optimal path P
$ is always found by implicitly

enumerating all paths from 0 to 0. However, one can easily truncate the PA
to accelerate the search by solving the problem heuristically, as it is discussed
in Section 4.2. To prevent the PA from explicitly enumerating all possible
paths, the algorithm uses a set of pruning strategies. These strategies allow
the PA to stop (prune) the propagation of a partial path as soon as there
is enough evidence that the partial path will not improve the current best
solution or that it will lead to an infeasible solution. Note that stopping a
partial path from propagating allows for discarding a large number of paths,
as it discards all the paths that begin with it. Thus, the earlier a partial
path is stopped, the better. This idea is shared with other algorithms, like
branch-and-bound, where an implicit enumeration is performed. Similarly,

9

the strength of the pulse algorithm depends on the pruning strategies. In
what follows the terms stopping or pruning a path are used interchangeably.

Algorithm 1 presents the main logic of the pulse algorithm. Line 1 ini-
tializes the partial path. Lines 2 to 4 initialize the reduced cost and the
cumulative resource consumption. Line 5 runs the bounding procedure given
the bound step size � and the bounding time limits [t, t]. Line 6 extends a
pulse at the start node. Finally, line 7 returns the optimal path. Note that
in the case where reaching the end node 0 is not possible due to the resource
constraints (i.e., the pricing problem is infeasible), the optimal path ends up
empty.

Algorithm 1 pulseSearch function
Require: G

#, directed multi graph; �, duration limit; ⇣, walking distance
limit; 0, start node; 0, end node; �, bound step size; [t, t], bounding time
limits.

Ensure: P
$, optimal path.

1: P$
 ;

2: r(P) 0
3: t(P) 0
4: w(P) 0
5: bound(G#,�, [t, t]) . see ¤3.3.2
6: pulse (0, r(P), t(P), w(P),P) . see Algorithm 2
7: return P

$

Algorithm 2 shows the recursive procedure pulse , where �+
w(i) corre-

sponds to the set of arcs leaving node i on foot and �+
d (i) by driving. Lines

1 to 4 use the pruning strategies, namely, infeasibility, bounds, rollback, and
path completion, to try to prune a partial path. If the pulse is not pruned,
line 5 adds the node to the partial path. From lines 6 to 10, the algorithm
recursively propagates the pulse by driving to node j. From lines 11 to 17,
the algorithm recursively propagates the pulse using Algorithm 3 by walking
to node j, thus parking the vehicle at node i.

10

Algorithm 2 pulse function
Require: i, current node; r, cumulative reduced cost; t, cumulative time;

w, cumulative walking distance; P , partial path.
1: if ¬feasibility (i, t(P), w(P)) then . see ¤3.3.1
2: if ¬bounds(i, r(P), t(P)) then . see ¤3.3.2
3: if ¬rollback (i, r(P), t(P), w(P),P) then . see ¤3.3.3
4: if ¬complete path(i, r(P), t(P), w(P),P) then . see ¤3.3.4
5: P

#
 P [{i}

6: for j 2 �+
d (i) do

7: r(P#) r(P) + rij
8: t(P#) t(P) + ⌘ij + sj
9: pulse (j, r(P#), t(P#), w(P),P#)

10: end for
11: for j 2 �+

w(i) do
12: r(P#) r(P) + rij
13: t(P#) t(P) + ⌘ij + sj
14: w(P#) w(P) + �ij
15: ps i
16: pulse parked(j, r(P#), t(P#), w(P#), ps,P#)
17: end for
18: end if
19: end if
20: end if
21: end if
22: return void

Algorithm 3 shows the recursive procedure pulse parked. Lines 1 to 3
try to prune the partial path using the infeasibility, bounds, and rollback
pruning strategies. If the pulse is not pruned, line 4 adds the node to the
partial path. From lines 5 to 22, the algorithm recursively propagates the
pulse by walking to node j. At line 9, we check if the path is returning to the
parking spot. If so, at line 14 the algorithm checks if it is possible to prune
the partial path by using the subtour fixing strategy. If the partial path is
not pruned, the algorithm recursively propagates the pulse using Algorithm
2.

11

Algorithm 3 pulse parked function
Require: i, current node; r, cumulative reduced cost; t, cumulative time;

w, cumulative walking distance; ps, parking spot; P , partial path.
1: if ¬feasibility (i, t(P), w(P)) then . see ¤3.3.1
2: if ¬bounds(i, r(P), t(P)) then . see ¤3.3.2
3: if ¬rollback (i, r(P), t(P), w(P),P) then . see ¤3.3.3
4: P

#
 P [{i}

5: for j 2 �+
w(i) do

6: r(P#) r(P) + rij
7: t(P#) t(P) + ⌘ij + sj
8: w(P#) w(P) + �ij
9: if ps = j then

10: t(P#) t(P#)� sj
11: if j 2 C then
12: r(P#) r(P) + ⇡j

13: end if
14: if ¬subtour fixing (j, t(P),P) then . see ¤3.3.5
15: pulse (j, r(P#), t(P#), w(P#),P#)
16: end if
17: else if ps 6= j then
18: pulse parked(j, r(P#), t(P#), w(P#), ps,P#)
19: end if
20: end for
21: end if
22: end if
23: end if
24: return void

The following section provides further detail regarding the pruning strate-
gies used by the PA.

3.3. Pruning strategies

In Sections 3.3.1, 3.3.2, and 3.3.3 we describe the adaptation of the orig-
inal PA pruning strategies proposed by Lozano et al. (2015), namely, in-
feasibility, bounds, and rollback pruning. In Section 3.3.4 we present the
path completion strategy (line 4 in Algorithm 2) adapted from Cabrera
et al. (2020) which was used to solve the constrained shortest path prob-
lem (CSP). Finally, in Section 3.3.5 we describe a new pruning strategy for

12

the PA specifically tailored for our pricing problem called subtour fixing (line
16 in Algorithm 3).

3.3.1. Infeasibility pruning
The intuition of this pruning strategy is to stop a pulse as soon as it

becomes evident that it will not be able to reach the end node 0 while meeting
the resource constraints. Thus, we can safely stop a partial path P from
propagating if any of the following conditions holds:

¥ t(P) > �;

¥ w(P) > ⇣.

Discarding infeasible partial paths is often used as a key strategy to im-
prove the performance of labeling algorithms. Note that this strategy could
easily be extended to include other route constraints such as the presence of
time windows at customer locations or a time limit on each walking subtour.

3.3.2. Bounds pruning
Similar to the infeasibility pruning strategy, we can stop a pulse from

propagating if there is enough information to prove that the current partial
path will not lead to improving the best solution found so far. More specif-
ically, if there is evidence that the partial path will not be able to decrease
the best objective function r(P$) we can stop the partial path from propa-
gating. With this purpose, we use a bounding scheme that computes lower
bounds r(i, t(P)) for every node i 2 G

and for a set of possible values of
time resource consumption t(P). More specifically, these bounds contain the
minimum reduced cost from any node i to the end node 0 given a partial
resource consumption t(P).

To compute the lower bounds, we solve a SPPRC-PL from every node
i 2 G

to 0 given a time consumption of t(P) = t ��. These problems are
overly-constrained as the pulse only has � units of time available to reach
the end node 0. Accordingly, the pulse algorithm can easily solve these
problems to optimality. Each of the solutions found is a valid lower bound
on the minimum reduced cost that can be obtained from node i given a time
consumption t(P) � t��. After finding these bounds, we proceed to solve a
SPPRC-PL from every node i 2 G

to 0 given a time consumption of t(P) =
t � 2�. Although the resulting problems are less constrained, we already
have vital information for partial paths with a time consumption between

13

[t��, t]. We continue with this procedure, solving SPPRC-PL problems with%
t� 3�, t� 4�, ..., t

&
. Note that at the end of this procedure we have a lower

bound for every node and every discrete time step between t and t. With
this information, we can prune a partial path P if r(P)+ r(i, t(P)) � r(P$).

For further details regarding this strategy, the reader is referred to Lozano
et al. (2015). Note that in this section we describe the bounding scheme using
only the time consumption t(P). In preliminary experiments, we considered
computing additional bounds with respect to the walking distance w(P).
However, this did not lead to a major improvement in performance.

3.3.3. Rollback pruning
The choice between a depth-first search (DFS) and a breadth-first search

(BFS) strategy has been widely studied in the literature as it a↵ects the
performance of every labeling setting/correcting algorithm. Although it is
possible to a↵ect the behavior of the pulse algorithm to make a BFS ex-
ploration through the usage of pulse queues as presented in Cabrera et al.
(2020), in this article we consider a version of the pulse algorithm that follows
a pure DFS strategy.

In some cases this behaviour could lead to exploring vast unpromising
regions of the search space, before backtracking to correct poor decisions
made earlier. To overcome this problem, the rollback pruning strategy re-
evaluates the last choice made. More specifically, consider a partial path
P0,i from 0 to i that is extended to node l and then reaches node j. Once
the partial path P0,j = P0,i [l [j reaches node j, we check if visiting node
j before node l is a better alternative. If so, we can stop the pulse from
propagating. In practice, we check if r(P#

0,j)  r(P0,j) and t(P#
0,j)  t(P0,j)

to prune path P0,j, where path P
corresponds to the path that skips node l.

3.3.4. Path completion
One of the main drawbacks of the PA, as it was presented by Lozano

et al. (2015), is that the best path P
$ is only updated when the end node

0 is reached. Thus, the main purpose of the path completion strategy is to
update the best path (primal bound) at intermediate nodes in the network.

To do so, we take advantage of the information computed in the bounding
procedure presented in Section 3.3.2. Formally, let us consider a partial path
P0,i arriving to node i. The path completion strategy adds the minimum
reduced cost path P

rt
i,0

given a time consumption t(P0,i) to the partial path

14

P0,i, that is, P0,0 = P0,i [P
rt
i,0
. If the completed path is feasible and the re-

duced cost is lower than the current primal bound, we update the incumbent
solution accordingly. Furthermore, we can stop the incoming partial path
P0,i from propagating, because (by construction) we know that the complete
path is already the minimum reduced cost path stemming from this partial
path given the current time consumption. This procedure is used in Line 4
of Algorithm 2 and is adapted from the path completion strategy proposed
by Cabrera et al. (2020) for the constrained shortest path problem.

3.3.5. Subtour fixing
Consider a partial path P0,j from 0 to j in which j is used as a parking

spot. Moreover, consider a walking subtour visiting three or more customers
S =

%
i1, i2, ..., i|S|

&
and stemming from node j. The number of possible

walking subtours visiting all the customers in S and using j as a parking spot
can be calculated as |S|!. Thus, during the recursive search, the algorithm
can visit j to retrieve the vehicle following several di↵erent sequences in which
all the customers in S are visited. The total reduced cost associated to each
of these sequences is equal (i.e.,

#
i! S �⇡i), while the total time may di↵er.

Note that a slower walking subtour may result in the impossibility of visiting
other customers using the partial path P0,j.

Once again, as the algorithm follows a pure DFS strategy, is possible that
many partial paths will be explored before backtracking and correcting the
sequence followed for visiting the customers in S. For this reason, every time
a partial path completes a walking subtour we check if it is possible to stop
that path from propagating. In practice, we follow two steps. First, we check
if it is the first time (since the BPC algorithm started) that the customers in S
are visited by a walking subtour. If so, we solve a traveling salesman problem
minimizing the total walking time and store the value t$(S) in memory. If
not, we retrieve the value stored previously. Second, we compare the current
time of the subtour t(S) with the best time t$(S). If t(S) > t$(S) we can
stop the pulse from propagating and thus avoid exploring paths that use an
ine�cient walking subtour.

3.4. Valid inequalities

The optimal solution of the RSCP can be fractional. In that case before
applying branching decisions we first try to improve (lift) the lower bound.
To do so, we draw upon valid inequalities (cuts). Particularly, we include
the subset row inequalities proposed by Jepsen et al. (2008) for subsets of

15

three customers. These inequalities have been used in di↵erent applications
as the multi-depot vehicle routing problem (Contardo & Martinelli, 2014),
the vehicle routing problem with time windows (Costa et al., 2019), and the
two-echelon capacitated vehicle routing problem (Marques et al., 2020). The
subset row inequalities with |S| = 3 are defined as

!

r!R

+

1/2
!

i!S

air

,

xr  1, 8S ✓ C. (11)

Each of these inequalities has an associated dual variable �S  0. These
inequalities ensure that for a given subset S ✓ C the number of routes serving
two or more customers is less or equal to 1.

To separate these inequalities we enumerate all customer triplets and
check if the inequality is violated in the current optimal solution. It has been
observed by multiple researchers that even if subset row inequalities tend to
have a positive impact on the quality of the lower bound, they significantly
increase the complexity of solving the pricing problem. Thus, in line with
Jepsen et al. (2008), we allow our BPC algorithm to add up to ' at each
iteration with a minimum violation of ". Inequalities with a greater violation
are given priority. In our BPC, we set ' to 1 and " to 0.1.

Note that adding these inequalities modifies the definition of the reduced
cost of a route. More specifically, if we denote S as the subset of triplets of
customers for which the subset row inequality has been generated and added
to the master problem, then the reduced cost of a route is defined as

rr = cr �
!

i!C

air⇡i � � � ⇢�
!

S! S

�S

+
1

2

!

i!S

air

,

. (12)

Adding a subset row inequality implies that a penalty of �S must be
paid if two or more customers of the corresponding triplet are served by the
route. To account for this term using the PA, we add a new resource for each
subset in S that stores the number of times that a customer in the subset
has been visited. If, while extending a pulse this value reaches a value of
2 we subtract the �S from the cumulative reduced cost. The reader should
note that all the pruning strategies outlined in Section 3.3 can still be used
without any changes. This is an advantage compared to algorithms that rely

16

on assessing dominance between two partial paths (labels) in which extending
the dominance criteria is required.

In addition, to strengthen the linear relaxation of the SC formulation, we
lifted constraint (6) using the value of the objective function of the minimum
spanning tree on the graph G, as follows:

" #
i!C si +MST (G)

�

$


!

p!P

xp. (13)

Constraint (13) ensures that the number of routes in the solution of the
RSCP is at least the minimum number of routes needed to serve all the
customers. Lifting this constraint does not have any impact on the pricing
problem structure.

3.5. Branching rules

Adding the inequalities outlined in Section 3.4 does not guarantee that
the optimal solution of the RSCP will be integral. In the case in which the
optimal solution of the RSCP is still fractional, we resort to branching on
the arc flow variables. To do so, we define amijr as the number of times an arc
(i, j)m 2 A appears in route r. Then, for each arc (i, j)m 2 A it is possible
to compute the number of times it appears in a solution as

bmij =
!

r! R

amijr. (14)

We select for branching the arc for which the value of bmij is closest to 0.5.
In the case of a tie, we prioritize driving arcs.

Branching on an arc implies creating two child nodes for the branch-and-
price tree: one child in which the arc is forbidden (the value is set to zero) and
one child in which the arc is fixed (the value is set to one). These conditions
are enforced locally in the pricing problem by modifying the graph G

#. If an
arc must be forbidden, the arc is simply removed from graph G

#. However,
fixing an arc is not as straightforward as it depends on the transportation
mode. If the arc (i, j) is a driving arc, we remove all the driving arcs starting
from node i and ending at any node di↵erent than j. Moreover, we remove
all the driving arcs ending at node j that start at any node di↵erent than i.
In addition, we remove the walking arcs (i, j)w and (j, i)w. If the arc (i, j) is
a walking arc, we remove all the walking arcs starting from node i and ending

17

at any node di↵erent than j. We also remove all the walking arcs ending at
node j that start at any node di↵erent than i. In addition, we remove the
driving arcs (i, j)d and (j, i)d.

4. Acceleration strategies

We now describe several ideas that we use to speed up our BPC algorithm.

4.1. Dual stabilization

Usually, CG-based algorithms su↵er from slow convergence, a phenomenon
called the tailing-o↵ e↵ect (Desaulniers et al., 2006). An important technique
for alleviating this issue is to implement a dual stabilization method. In this
work, we implemented the ↵-schedule procedure presented by Pessoa et al.
(2013). This procedure aims to correct the values of the dual variables used
to solve the pricing problem based on previous dual solutions. Algorithm 4
shows the pseudocode of the procedure. Line 1 initializes the value of l. Line
2 initializes the value of the dual variables. Line 3 updates the smoothing
factor. Line 4 computes the value of the dual variables that will be used
for solving the pricing problem. Line 5 updates the value of l. Line 6 calls
the pricing problem solved with the procedure described in Section 3.2. If
mispricing occurs the algorithm returns to line 3. Otherwise, the number of
iterations is updated, and the master problem is solved once again.

Algorithm 4 ↵-scheduling function
Require: ↵, smoothing factor.

1: l 1
2: ⇡0

 ⇡in

3: ↵ [1� l(1� ↵)]+

4: ⇡sep = ↵⇡0 + (1� ↵)⇡out

5: l k + 1
6: Call the pricing problem with ⇡sep

7: if Mis-pricing occurs then
8: Go to step 3
9: else

10: t t+ 1
11: Solve the master problem
12: Go to step 1
13: end if

18

4.2. Heuristic pulse algorithm

The pricing problem does not have to be solved to optimality at every
iteration of the CG. Thus, it is a common practice to design heuristics to
quickly find promising solutions in the first iterations of the CG (Desaulniers
et al., 2006). In our case, we can easily truncate the PA to solve the pricing
problem heuristically by imposing a stopping criterion. More specifically, we
can heuristically stop the PA from propagating more pulses if the number of
paths found with negative reduced cost reaches ⌥. Moreover, we can impose
a time limit ⇤. Then, if the CPU time for solving the pricing problem reaches
⇤ and the PA has already found a promising path, we stop the PA.

Furthermore, note that by allowing the PA to find paths with a park-
and-loop structure, the complexity of solving the pricing problem increases
heavily. However, it is possible that in some iterations of the CG, paths
without subtours may have a negative reduced cost. Accordingly, we adopt
a leveled pricing strategy in which we first run the PA without considering
the walking arcs. Only if the algorithm was not able to find promising paths
do we proceed to run the PA by allowing walking subtours.

4.3. Initialization

It is well known that the performance of a CG algorithm is a↵ected by the
initial set of columns. Usually, including a high-quality set of initial columns
can help the algorithm perform a better estimation of the dual variables
associated with the RSCP constraints. Although one could initialize the pool
of columns using |C| routes visiting one customer, in our implementation we
use the output of the sampling phase of the MSH matheuristic proposed by
Cabrera et al. (2022). For the sake of completeness we briefly describe the
procedure here.

Algorithm 1 presents the main logic of the sampling phase of MSH. Line
1 initializes the set of initial routes R. Line 2 initializes the iteration number.
From lines 4 to 13, the algorithm populates R using a set of TSP heuristics
H and the splitting procedure splith·, ·i. Line 4 randomly selects a TSP
heuristic h from H. Line 5 generates a giant route ⌧ t visiting all customers
using h. Line 6 generates a solution, denoted as st. Line 7 joins the routes
in solution st to set R. Lines 8-12 update the incumbent solution. Line 15
returns the set of initial routes that will be used by our BPC.

19

Algorithm 5 MSH samplingfunction
Require: G, graph; H, heuristic set; T , iteration limit; Q, time limit.
Ensure: initial solution R

1: R ;

2: t 1
3: while t < T ^ samplingT ime < Q do
4: h H

5: ⌧ t h(G)
6: st splithG, ⌧ ti
7: R R [st

8: if t = 1 then
9: s$

 st

10: else if f(st) < f(s$) then
11: s$

 st

12: end if
13: t t+ 1
14: end while
15: return R

The key algorithmic component of the sampling phase of MSH is the
splith·, ·i procedure used to extract a solution st from the giant TSP-like tour
in Line 6. The split procedure follows two steps. In the first step, it constructs
a directed acyclic graph defined by a set of nodes N = (v0, v1, ..., vi, ..., vn)
and the set of arcs A. Node v0 is a dummy node, while nodes numbered
1 to n represent the customer in the i-th position of the giant tour ⌧ t.
Each arc (i, j) 2 A represents a feasible route r(vi+1, vj) visiting customers
(vi+1, ..., vj). To evaluate if an arc should be added to G (line 12) it solves a
subproblem that can be seen as a multi-resource version of the single truck
and trailer routing problem with satellite depots (STTRPSD) proposed in
Villegas et al. (2010). The solution to this subproblem yields a route with
one or more walking subtours. In the second step, the split procedure finds
the shortest path from v0 to vn in G. The set of arcs (i.e., routes) along the
shortest path corresponds to a feasible solution st.

In our BPC algorithm we use the default parameters of the MSH. Namely,
the number of iterations is set to 2,500, and the time limit is set to 60 seconds.
For further detail regarding the MSH, the reader is referred to Cabrera et al.
(2022).

20

5. Computational experiments

In this section, we present the computational experiments that we per-
formed on a set of standard instances from the literature. Our goal is to
analyze the performance of the proposed BPC algorithm and its main com-
ponents. In addition, we describe a web application that can be used to check
the quality of the solutions found by any researcher working on the PLRP
or related variants. The BPC algorithm was implemented in Java using the
jORLib2 library and compiled using Java 1.8.0 331. The experiments were
performed on an Intel core i7 @2.30 GHz Quad-Core processor with 12GB
of RAM. We used CPLEX 20.1 to solve the SC formulation and the RSCP.
Due to the randomness induced by the initialization procedure described in
Section 4.3, for every experiment, we ran five replicates. On each replicate
we used a di↵erent value from the set {1, 2, 3, 4, 5} to seed Java’s pseudo-
random number generator. This way we ensure consistency across the initial
solutions used by each algorithm and validate the consistency of the proposed
BPC. We also set a time limit of 2 hours for every run.

5.1. Test instances

To assess the e�ciency and e↵ectiveness of the BPC algorithm, we use
the set of instances proposed by Coindreau et al. (2019) for the VRPTR
without carpooling. Each instance considers a number of customers n in the
set {20, 30, 40, 50} located inside a square grid of 10 km by 10 km. The depot
is located at the center of the grid. The distance between nodes (customers
and depot) is the Euclidean distance. In addition, to compute driving and
walking times they consider a driving speed of 30 km/h and a walking speed
of 4 km/h. The customer service times range from 20 to 35 minutes. The
maximum daily walking distance for each worker is 5 km and the day duration
is 7 hours (i.e., 420 minutes). It is worth recalling that any customer location
can be used as a parking spot. For each instance, Coindreau et al. (2019) fixed
the number of available vehicles as the number of routes in the corresponding
VRP solution. The fixed cost is set to 0$ and the variable cost is set to
1$/km. The objective is to minimize the total cost. An instance is referred
to as “n A i ”, where n stands for the number of customers, A represents the
size of the used time window (i.e., all day), and i denotes the instance unique
identifier. A total of 10 instances are considered for each instance size (i.e.,

2The latest version of jORLib can be downloaded at: http://coin-or.github.io/jorlib/.

21

number of customers). After fine tuning, we set the bound step size in the PA
(�) to 15. The bounding time limits [t, t] are set to [120, 420]. In addition,
the maximum number of paths ⌥ is set to 10 and the time limit ⇤ to 15
seconds. Finally, the parameter ↵ used to stabilize the values of the dual
variables is set to 0.8.

5.2. Assessing the BPC performance
In this section, we analyze the performance of the proposed BPC and

compare it to that of the state-of-the-art algorithms for the PLRP, namely,
the VNS introduced by Coindreau et al. (2019), the MSH designed by Cabr-
era et al. (2022), and the SLNS developed by Le Colleter et al. (2023).

Table 1 compares the performance of the proposed branch-price-and-cut
algorithm in the best performing replicate against the benchmark algorithms
in terms of solution quality. Each row corresponds to an instance size.
Columns 2, 5, 8, and 11 show the number of best-known solutions (BKSs)
found by each algorithm. Columns 3, 6, 9, and 12 report the average gap
with the best-known solution. Columns 4, 7, 10, and 13 show the maximum
gap with the best-known solution.

Table 1: Solution quality on the Coindreau et al. (2019) instances.

|C|
VNS MSH SLNS BPC

BKSs Avg. � Max. � BKSs Avg. � Max. � BKSs Avg. � Max. � BKSs Avg. � Max. �
20 1/10 4.09% 8.87% 10/10 0.00% 0.00% 10/10 0.00% 0.00% 10/10 0.00% 0.00%
30 0/10 3.13% 5.89% 7/10 0.01% 0.04% 8/10 0.00% 0.04% 10/10 0.00% 0.00%
40 3/10 1.23% 5.31% 6/10 0.15% 0.69% 7/10 0.22% 1.39% 10/10 0.00% 0.00%
50 2/10 2.12% 6.11% 2/10 0.91% 2.60% 4/10 0.14% 0.54% 10/10 0.00% 0.00%

Total/Avg. 6/40 2.64% 6.54% 25/40 0.27% 0.83% 29/40 0.09% 0.49% 40/40 0.00% 0.00%

As the results show, BPC matched all previous best-known solutions and
unveiled 11 new best-known solutions in all the replicates. On the subset
of instances with 20 customers, both MSH and SLNS matched all the best-
known solutions. However, as the number of customers increases, the quality
of the solutions found decreases.

Table 2 compares the performance of BPC in the best performing repli-
cate against the benchmark algorithms in terms of the optimality gap. To
compute the optimality gap we used the lower bound found by our BPC.
Similar to Table 1 the results are grouped by instance size. Columns 2, 5,
8, and 11 show the number of optimal solutions found by each algorithm.
Columns 3, 6, 9, and 12 contain the average optimality gap. Columns 4, 7,
10, and 13 show the maximum optimality gap.

22

Table 2: Assessing optimality on the Coindreau et al. (2019) instances.

|C|
VNS MSH SLNS BPC

#Opt. Avg. � Max. � #Opt. Avg. � Max. � #Opt. Avg. � Max. � #Opt. Avg. � Max. �
20 1/10 4.09% 8.87% 10/10 0.00% 0.00% 10/10 0.00% 0.00% 10/10 0.00% 0.00%
30 0/10 3.13% 5.89% 7/10 0.01% 0.04% 8/10 0.00% 0.04% 10/10 0.00% 0.00%
40 3/10 1.23% 5.31% 6/10 0.15% 0.69% 7/10 0.22% 1.39% 10/10 0.00% 0.00%
50 2/10 2.22% 6.11% 2/10 1.00% 2.60% 4/10 0.23% 0.93% 9/10 0.09% 0.91%

Total/Avg. 6/40 2.67% 6.54% 25/40 0.29% 0.83% 29/40 0.11% 0.59% 39/40 0.02% 0.23%

Note that BPC is the first to prove optimality for 39 (out of 40) in-
stances. Moreover, the average optimality gap of the solutions found by
BPC is 0.02%. Additionally, the maximum optimality gap on the unsolved
instances is 0.91%. With regard to the metaheuristics, SLNS has the best
performance finding solutions with an average optimality gap of 0.11%.

Finally, Table 3 compares the performance of each algorithm in terms of
computational e�ciency. Each row corresponds to an instance size. Columns
2, 3, 4, and 5 show the average runtime in seconds reported by each algorithm.
Columns 6 and 7 show the minimum and maximum CPU time employed by
the BPC.

Table 3: Computational times on the Coindreau et al. (2019) instances.

|C|
VNS MSH SLNS BPC

Avg. CPU (s) Avg. CPU (s) Avg. CPU (s) Avg. CPU (s) Min. CPU (s) Max. CPU (s)
20 71.0 13.4 15.0 28.1 22.1 40.1
30 381.0 35.9 30.0 75.9 51.3 127.7
40 1993.0 56.1 60.0 288.7 100.2 1340.8
50 6779.0 110.5 120.0 1877.4 276.6 7200.0

Average 2306.0 54.0 56.3 567.5 112.5 2177.1

While a perfect head-to-head comparison is hard to make because of dif-
ferences in the programming languages and testing environment, the results
suggest that in the subset of instances with 20 and 30 customers, BPC is
close to match the performance of the state-of-the-art matheuristics. On
average BPC uses less than 10 minutes.

5.3. Assessing the impact of the initialization step and the pruning strategies

As our proposed method uses a metaheuristic to initialize the set of
columns, it is only logical to assess the performance of our BPC without
this component. With this in mind, we ran our BPC while only using one
iteration of MSH. This version of the algorithm is labeled as BPC-W. More-
over, to measure the impact of the problem-specific algorithmic components

23

that we designed, we ran our BPC with a version of the PA that does not
include the path completion and the subtour fixing strategies. This version
of our BPC is labeled as BPC-O.

Table 4 compares the performance of the branch-price-and-cut algorithms
described above in terms of solution quality. Each row corresponds to a
combination between a version of our BPC algorithm and an instance size.
Recall that each algorithm was tested on every instance across five replicates
in which the initial solution is modified. Column 3 shows the average num-
ber of best-known solutions found by each algorithm. Column 4 shows the
average number of optimal solutions found by each algorithm. Columns 5,
6, and 7 present the average, minimum, and maximum computational time
in seconds used by each algorithm. Finally, columns 8, 9, and 10 show the
average, minimum, and maximum number of columns.

Table 4: Solution quality of the BPC variants with ! = 5 km.

Algorithm |C| Avg. #BKS Avg. # Optimal
CPU time (s) # Columns

Avg. Min Max Avg. Min Max

BPC

20 10/10 10/10 28.11 22.12 40.13 219.30 85 461
30 10/10 10/10 75.90 51.29 127.67 393.74 92 693
40 10/10 10/10 288.72 100.17 1340.78 1647.88 387 6050
50 10/10 8.8/10 1877.42 276.60 7200.00 1864.00 779 5426

BPC-O

20 10/10 10/10 27.19 21.32 39.61 221.54 85 461
30 10/10 10/10 74.07 50.60 138.73 392.72 92 664
40 10/10 10/10 317.17 96.14 1755.69 1562.46 486 6824
50 9/10 8.2/10 2026.22 279.66 7200.00 1807.70 646 3934

BPC-W

20 10/10 10/10 14.43 4.15 41.62 2246.14 555 5155
30 10/10 10/10 118.84 28.60 342.65 12998.62 1586 35468
40 10/10 10/10 1018.09 242.95 4219.65 5871.14 1874 39067
50 8.8/10 8.4/10 2346.02 354.07 7200.00 10070.38 2312 53989

Note that BPC is the only algorithm that finds the best-known solution
for every instance in all the replicates. Moreover, it is the algorithm that
on average provides the highest number of optimal solutions. Nevertheless,
note that BPC-W is capable of finding high quality solutions and of proving
optimality of at least 38 out of 40 instances. This shows that the BPC
solution quality is not exclusively due to the initialization procedure. In
addition, note that BPC-O is not capable of finding one of the best-known
solutions before reaching the running time limit, thus showing the importance
of including problem-specific pruning strategies inside the PA.

With respect to the computational times, BPC is on average faster than
its counterparts, especially on the subset of instances with 40 and 50 cus-
tomers, where both the initialization procedure and the additional pruning

24

strategies improve the algorithm’s performance. However, in the subset of
instances with 20 customers, it seems that the overhead incurred by the ini-
tialization procedure does not pay o↵, as BPC-W is faster than BPC and
delivers solutions of equivalent quality.

5.4. Analyzing the pricing problem algorithm

Most modern BPC algorithms for vehicle routing solve the pricing prob-
lem using labeling algorithms that rely on the NG-path relaxation proposed
by (Baldacci et al., 2011). This relaxation consists in defining a neighbor-
hood Ni for every customer i 2 C that includes the X closest customers to i
and the customer itself. An NG-path can include cycles starting and ending
at customer j if and only if there exists a customer i in the cycle such that
j 2 Ni. Thus, such a cycle is forbidden if and only if j 2 Ni for every cus-
tomer i it contains. The higher the value of X, the tighter the relaxation will
be. Due to its success in column generation based algorithms, we believe it is
interesting to compare the performance of our adaptation of the PA against
a classical single-directional labeling algorithm implementing the NG-path
relaxation.

With this objective, we solve the RSCP without applying any cuts or
branching decisions. In the reminder of this section, the version of the algo-
rithm using the PA to solve the pricing problem is labeled CG-PA and that
using the labeling algorithm is labeled CG-NG-X. For these experiments we
solve the instances with 20 and 30 customers under two settings. First, the
case in which walking is not allowed, namely ⇣ = 0 km. Second, the case
in which walking is allowed, namely ⇣ = 5 km. We consider these two set-
tings to isolate the impact of including park-and-loop routes on both pricing
algorithms.

Table 5 compares the performance of each column generation algorithm
while solving the RSCP when walking is not allowed. Each row in the table
corresponds to a pricing algorithm and a number of customers. Columns 3,
4, and 5 show the average, minimum, and maximum lower bound produced
by each approach. Columns 6, 7, and 8, present the average, minimum, and
maximum computational time in seconds. Finally, columns 9, 10, and 11
show the average, minimum, and maximum number of columns found by the
corresponding pricing algorithm.

As the results show, CG-PA provides on average a better (higher) lower
bound than the CG algorithms that use the NG-path relaxation. However,
in this subset of instances the CG algorithms using the NG-path relaxation

25

Table 5: Performance of the CG algorithms solving the RSCP root node with! = 0.

CG algorithm |C|
Lower bound CPU time (s) # Columns

Avg. Min Max Avg. Min Max Avg. Min Max

CG-PA
20 41.85 33.64 46.01 21.53 17.61 24.66 321.00 117 827
30 52.35 47.91 55.84 43.49 37.20 49.84 538.06 167 1046

CG-NG-10
20 41.84 33.64 46.01 11.38 10.37 13.30 548.30 125 2592
30 52.22 47.78 55.84 21.72 18.58 26.35 769.04 215 1762

CG-NG-7
20 41.75 33.43 46.01 11.53 10.34 15.38 758.88 171 3565
30 52.11 47.49 55.54 21.90 18.88 26.08 938.98 209 2364

solve the RSCP faster. With respect to the number of columns, CG-PA
requires on average a lower number of columns. These results are expected,
as both CG-NG-10 and CG-NG-7 are solving a relaxation of the pricing
problem. Moreover, without the presence of walking subtours, the subtour
fixing strategy used by the PA does not have an impact on the algorithm’s
performance.

Table 6 compares the performance of each column generation algorithm
while solving the RSCP when walking is allowed. Similarly, each row in
the table corresponds to a pricing algorithm and a number of customers.
Columns 3, 4, and 5 show the average, minimum, and maximum lower bound
delivered by each approach. Columns 6, 7, and 8, present the average, mini-
mum, and maximum computational time in seconds. Finally, columns 9, 10,
and 11 show the average, minimum, and maximum number of columns found
by the corresponding pricing algorithm.

Table 6: Performance of the pricing algorithms solving the root node with! = 5 km.

CG algorithm |C|
Lower bound CPU time (s) # Columns

Avg. Min Max Avg. Min Max Avg. Min Max

CG-PA
20 36.64 29.61 42.28 25.79 21.10 30.95 194.06 90 503
30 45.16 40.64 49.59 61.02 50.78 78.54 349.54 84 672

CG-NG-10
20 36.62 29.61 42.28 35.94 21.36 69.54 287.70 95 666
30 45.08 40.21 49.59 370.70 127.06 918.51 475.64 72 1036

CG-NG-7
20 36.51 28.90 42.28 32.81 19.23 63.07 349.28 89 641
30 44.89 40.00 49.59 273.68 94.67 749.04 591.86 78 1195

Note that the CG algorithms using the NG-paths relaxation provide lower
bounds of lower quality in comparison with the bounds found by CG-PA.
This can have a large impact on the solution algorithm as branch-and-bound
nodes can be pruned early. Moreover, the computational time required to
solve the RSCP is significantly larger for the NG-paths based algorithms.

26

Indeed, considering the subset of instances with 30 customers, on average
CG-PA takes 61.02 seconds to solve the RSCP while CG-NG-10 and CG-NG-
7 take 370.70 and 270.68 seconds, respectively. A possible explanation for
this behaviour is the soft dominance induced by the presence of the walking
subtours, which a↵ects the performance of the labeling algorithm. Finally,
with respect to the number of columns CG-PA generates on average a smaller
number of columns.

5.5. Assessing the importance of introducing park-and-loop routes

Introducing park-and-loop routes helps decreasing the driven distance.
To assess their potential impact, we compare the objective function of the
best-known solutions while varying the maximum walking distance. Namely,
we consider the vehicle routing configuration (i.e., ⇣ = 0) and the park-and-
loop configuration with ⇣ equal to 5 or 10 kilometers.

Table 7 compares the average driven distance of each configuration. Each
row corresponds to an instance size. Column 2 shows the average driven dis-
tance without allowing walking subtours. Column 3 and 5 show the average
driven distance while imposing a limit of 5 or 10 kilometers on the total walk-
ing distance respectively. Finally, Column 4 and 6 show the average savings
gained by introducing walking subtours.

Table 7: Average driven distance while varying the maximum walking distance.

Customers
VRP PLRP (⇣ = 5) PLRP (⇣ = 10)

Avg. km Avg. km % � vs VRP Avg. km % � vs VRP
20 42.08 36.71 -12.8% 32.63 -22.5%
30 53.35 45.32 -15.0% 38.04 -28.7%
40 60.82 56.84 -6.5% 54.97 -9.6%
50 69.38 61.80 -10.9% 60.43 -12.9%

Average 56.41 50.17 -11.3% 46.52 -18.4%

As the results show, introducing walking subtours decreases the driven
distance by 11.3% and 18.4% on average. As expected, increasing the walking
distance limit allows for larger walking subtours and, in turn, for greater
savings. Figure 3 shows the best-known solutions for instance 30 A 1. When
walking subtours are not allowed, the total driven distance is 48.81 km. If
walking subtours are allowed, the driven distances are 40.73 km and 32.93
km while setting ⇣ to 5 and 10 kilometers, respectively. As stated before,
major savings can be achieved by introducing park-and-loop routes. As this

27

figure shows, increasing the maximum walking distance has an impact on the
size and length of the walking subtours present in each route.

We have developed a website available at https://chairelogistique.
hec.ca/en/scientific-data/ where researchers can download the instances,
access instance-by-instance results, and upload their own solutions in order
to encourage future research on this problem and make comparison with our
results easier.

(a) VRP conÞguration (b) PLRP with ! = 5 km

(c) PLRP with ! = 10 km

Figure 3: Solutions for instance30 A 1.

6. Concluding remarks

In this paper, we presented a branch-price-and-cut algorithm for solving
the PLRP. To do so, we formulated the PLRP as a set covering problem
that considers a large set of paths. To solve this model, we use a column

28

https://chairelogistique.hec.ca/en/scientific-data/
https://chairelogistique.hec.ca/en/scientific-data/

generation approach that unveils promising paths that favor the objective
of minimizing the total cost. The master problem selects paths to serve all
customers, while the pricing problem generates feasible paths. We leveraged
a tailored and improved version of the pulse algorithm to solve an elementary
resource constrained shortest path with park-and-loop, that includes addi-
tional pruning strategies and allows for considering the subset row inequali-
ties. Using this new version of the pulse algorithm improves the performance
of the branch-price-and-cut algorithm.

We compared our branch-price-and-cut algorithm with the state-of-the-
art algorithms for solving a related problem called the vehicle routing problem
with transportable resources without carpooling. The proposed algorithm
was capable of finding all the previously best-known solutions. Moreover, it
found 11 previously unknown optimal solutions. In addition, our method is
the first capable of solving 39 instances to optimality out of the 40 instances
that composed the testbed. Our experiments also show the advantages of
providing a high quality pool of columns as a warm start as it significantly
decreases the computational e↵ort required by the algorithm.

We also showed the benefits of introducing a park-and-loop structure in
the routing plan, as it allows decreasing the total driven distance. To encour-
age future research on the PLRP, we developed an online tool that allows
the members of the community to visualize the best-known solutions and
upload their own solutions for checking and plotting. Future research should
focus on extending the branch-price-and-cut algorithm to solve the PLRP
with time windows. Moreover, improving the performance of the pricing
problem by implementing bidirectional search strategies and other problem-
specific pruning strategies seems promising to decrease the computational
time needed by each CG iteration.

Acknowledgements
This research was partially funded by the Canada First Research Excellence
Fund through IVADO and the Discovery grants. This research was also co-
funded by HEC Montréal through the Chair in Logistics and Transportation
and the Research Professorship on Clean Transportation Analytics.

29

References

Arslan, O., Jabali, O., & Laporte, G. (2018). Exact solution of the evasive
flow capturing problem. Operations Research, 66 , 1625–1640.

Baldacci, R., Mingozzi, A., & Roberti, R. (2011). New route relaxation and
pricing strategies for the vehicle routing problem. Operations Research,
59 , 1269–1283.

Belenguer, J., Benavent, E., Martinez, A., Prins, C., Prodhon, C., & Villegas,
J. (2016). A branch-and-cut algorithm for the single truck and trailer
routing problem with satellite depots. Transportation Science, 50 , 735–
749.

Cabrera, N., Cordeau, J.-F., & Mendoza, J. E. (2022). The doubly open
park-and-loop routing problem. Computers & Operations Research, 143 ,
105761.

Cabrera, N., Medaglia, A. L., Lozano, L., & Duque, D. (2020). An exact
bidirectional pulse algorithm for the constrained shortest path. Networks ,
76 , 128–146.

Chao, I.-M. (2002). A tabu search method for the truck and trailer routing
problem. Computers and Operations Research, 29 , 33–51.

Coindreau, M., Gallay, O., & Zu↵erey, N. (2019). Vehicle routing with trans-
portable resources: Using carpooling and walking for on-site services. Eu-
ropean Journal of Operational Research, 279 , 996–1010.

Contardo, C., & Martinelli, R. (2014). A new exact algorithm for the multi-
depot vehicle routing problem under capacity and route length constraints.
Discrete Optimization, 12 , 129–146.

Costa, L., Contardo, C., & Desaulniers, G. (2019). Exact branch-price-and-
cut algorithms for vehicle routing. Transportation Science, 53 , 946–985.

Derigs, U., Pullmann, M., & Vogel, U. (2013). Truck and trailer routing -
problems, heuristics and computational experience. Computers and Oper-
ations Research, 40 , 536–546.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2006). Column Genera-
tion volume 5. Springer, New York.

30

Jepsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-
row inequalities applied to the vehicle-routing problem with time windows.
Operations Research, 56 , 497–511.

Le Colleter, T., Dumez, D., Lehuédé, F., & Péton, O. (2023). Small and large
neighborhood search for the park-and-loop routing problem with parking
selection. European Journal of Operational Research. Forthcoming.

Lin, S., Yu, V., & Chou, S. (2009). Solving the truck and trailer routing prob-
lem based on a simulated annealing heuristic. Computers and Operations
Research, 36 , 1683–1692.

Lozano, L., Duque, D., & Medaglia, A. L. (2015). An exact algorithm for the
elementary shortest path problem with resource constraints. Transporta-
tion Science, 50 , 348–357.

Lozano, L., & Smith, J. C. (2017). A backward sampling framework for in-
terdiction problems with fortification. INFORMS Journal on Computing ,
29 , 123–139.

Lübbecke, M. E., & Desrosiers, J. (2005). Selected Topics in Column Gen-
eration. Operations Research, 53 , 1007–1023.

Marques, G., Sadykov, R., Deschamps, J.-C., & Dupas, R. (2020). An im-
proved branch-cut-and-price algorithm for the two-echelon capacitated ve-
hicle routing problem. Computers & Operations Research, 114 , 104833.

Martinez-Sykora, A., McLeod, F., Lamas-Fernandez, C., Bektaş, T., Cher-
rett, T., & Allen, J. (2020). Optimised solutions to the last-mile delivery
problem in london using a combination of walking and driving. Annals of
Operations Research, 295 , 645–693.

Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2016). A multi-
space sampling heuristic for the green vehicle routing problem. Transporta-
tion Research Part C: Emerging Technologies , 70 , 113–128.

Parragh, S., & Cordeau, J. (2017). Branch-and-price and adaptive large
neighborhood search for the truck and trailer routing problem with time
windows. Computers and Operations Research, 83 , 28–44.

31

Pessoa, A., Sadykov, R., Uchoa, E., & Vanderbeck, F. (2013). In-out sep-
aration and column generation stabilization by dual price smoothing. In
V. Bonifaci, C. Demetrescu, & A. Marchetti-Spaccamela (Eds.), Exper-
imental Algorithms (pp. 354–365). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Pugliese, L. D. P., & Guerriero, F. (2013). A survey of resource constrained
shortest path problems: Exact solution approaches. Networks , 62 , 183–
200.

Reed, S., Campbell, A. M., & Thomas, B. W. (2022). Does parking matter?
the impact of search time for parking on last-mile delivery optimization.
arXiv:2107.06788 .

Restrepo, M. I., Lozano, L., & Medaglia, A. L. (2012). Constrained network-
based column generation for the multi-activity shift scheduling problem.
International Journal of Production Economics , 140 , 466–472.

Rothenbächer, A.-K., Drexl, M., & Irnich, S. (2018). Branch-and-price-and-
cut for the truck-and-trailer routing problem with time windows. Trans-
portation Science, 52 , 1174–1190.

Schrotenboer, A. H., Ursavas, E., & Vis, I. F. (2019). A branch-and-price-
and-cut algorithm for resource-constrained pickup and delivery problems.
Transportation Science, 53 , 1001–1022.

Semet, F. (1995). A two-phase algorithm for the partial accessibility con-
strained vehicle routing problem. Annals of Operations Research, 61 , 45–
65.

Sheuerer, S. (2006). A tabu search heuristic for the truck and trailer routing
problem. Computers and Operations Research, 33 , 894–909.

Villegas, J., Prins, C., Medaglia, A., & Velasco, N. (2010). Grasp/vnd and
multi-start evolutionary local search for the single truck and trailer rout-
ing problem with satellite depots. Engineering Applications of Artificial
Intelligence, 23 , 780–794.

Villegas, J., Prins, C., Medaglia, A., & Velasco, N. (2013). A matheuristic
for the truck and trailer routing problem. European Journal of Operational
Research, 230 , 231–244.

32

http://arxiv.org/abs/2107.06788

Villegas, J., Prins, C., Prodhon, C., Medaglia, A., & Velasco, N. (2011). A
grasp with evolutionary path relinking for the truck and trailer routing
problem. Computers and Operations Research, 38 , 1319–1334.

Appendix A. Detailed results for each instance

Table A.8 shows the performance of each algorithm on each instance of the
VRPTR without carpooling. Each row corresponds to an instance. Columns
2 to 5 show the objective function of the solution found by the VNS, MSH,
SLNS, and the BPC algorithm respectively. Column 6 shows the objective
function of the current best-known solution.

33

Table A.8: Detailed results on the Coindreau et al. (2019) instances.

Instance VNS MSH SLNS BPC BKS
20 A 1 32.4037 30.9482 30.9482 30.9482 30.9482
20 A 2 41.6349 41.5547 41.5547 41.5547 41.5547
20 A 3 39.4469 36.2344 36.2344 36.2344 36.2344
20 A 4 39.1459 36.0251 36.0251 36.0251 36.0251
20 A 5 35.2747 35.2747 35.2747 35.2747 35.2747
20 A 6 43.7627 42.2866 42.2866 42.2866 42.2866
20 A 7 40.1143 38.6881 38.6881 38.6881 38.6881
20 A 8 39.1395 36.8504 36.8504 36.8504 36.8504
20 A 9 29.9427 29.6105 29.6105 29.6105 29.6105
20 A 10 41.2404 39.6656 39.6656 39.6656 39.6656
30 A 1 41.2853 40.7372 40.7372 40.7372 40.7372
30 A 2 46.6485 45.6635 45.6465 45.6465 45.6465
30 A 3 50.9785 49.1828 49.1828 49.1828 49.1828
30 A 4 46.3310 43.7556 43.7556 43.7556 43.7556
30 A 5 48.3961 47.0619 47.0619 47.0619 47.0619
30 A 6 51.6505 49.5880 49.5880 49.5880 49.5880
30 A 7 45.5537 45.5537 45.5537 45.5340 45.5340
30 A 8 45.3691 43.6799 43.6799 43.6799 43.6799
30 A 9 41.8553 41.1629 41.1629 41.1609 41.1609
30 A 10 49.5241 46.8936 46.8936 46.8936 46.8936
40 A 1 59.1695 59.1695 59.1695 59.1695 59.1695
40 A 2 58.5186 58.5186 58.5186 58.1191 58.1191
40 A 3 63.1723 62.9222 62.9222 62.9222 62.9222
40 A 4 50.3730 50.3730 50.3730 50.3730 50.3730
40 A 5 52.7504 51.7278 51.7278 51.7278 51.7278
40 A 6 63.0658 61.2621 61.2621 61.2621 61.2621
40 A 7 57.7673 54.8824 55.6158 54.8554 54.8554
40 A 8 56.3737 56.3140 55.9774 55.9774 55.9774
40 A 9 56.4612 56.3871 56.3871 56.3013 56.3013
40 A 10 57.6954 57.6954 57.6954 57.6954 57.6954
50 A 1 60.5063 57.0235 57.0235 57.0235 57.0235
50 A 2 62.4825 62.1686 60.6031 60.5906 60.5906
50 A 3 65.8727 63.8855 63.6788 63.5529 63.5529
50 A 4 58.2333 57.9472 56.9391 56.6342 56.6342
50 A 5 64.1751 64.0909 64.0909 64.0909 64.0909
50 A 6 66.1254 65.0105 65.0105 64.8116 64.8116
50 A 7 63.6674 63.6674 63.6674 63.6350 63.6350
50 A 8 70.9057 69.7911 68.8367 68.6323 68.6323
50 A 9 58.2212 58.7191 58.2212 58.2212 58.2212
50 A 10 60.7796 61.2239 60.7796 60.7796 60.7796

34

