
Highlights

The Consistent Vehicle Routing Problem with

Stochastic Customers and Demands

Aldair Alvarez, Jean-François Cordeau, Raf Jans

� We introduce the consistent vehicle routing problem with stochastic customers and demands.

� A sample average approximation (SAA) approach is presented for the problem.

� We introduce a branch-and-cut and a Benders decomposition method to solve the sample prob-

lems in our SAA algorithm.



The Consistent Vehicle Routing Problem with
Stochastic Customers and Demands

Aldair Alvarez, Jean-François Cordeau, Raf Jans
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Abstract

This paper introduces the consistent vehicle routing problem with stochastic customers and demands.

We consider driver consistency as customer-driver assignments that remain fixed when the realizations

of the random variables are observed. We study the problem in a two-stage scenario-based stochastic

programming framework. In the first stage, customers are assigned to drivers, while in the second

stage, customers are selected and delivery routes are designed for each of the scenarios. We assume

that the realization of the random variables becomes known before the vehicles depart from the depot.

The routes are then optimized according to the observed customers and their demands. The first-stage

driver-customer assignments can violate the consistency requirement, which is modeled as a desired

maximum number of drivers assigned to each customer. This is modeled as a soft constraint with a

penalty in the objective function. It is hence possible to assign multiple drivers to a specific customer in

the first stage. In the second stage, a customer can only be visited by one of the preassigned drivers. Our

problem, therefore, consists in finding assignments that minimize the consistency violation penalties

and the expected routing costs and the penalties for unserved customers when the uncertain parameters

are revealed. We present a mathematical formulation and a sample average approximation (SAA)

approach for the problem. We introduce a branch-and-cut and a Benders decomposition method to

solve the sample problems in our SAA algorithm. Computational experiments show that SAA allows

finding good-quality solutions for instances with large sets of scenarios. We also analyze the cost-

consistency trade-offs and the impact of the uncertainty on the problem. In particular, we observe

that consistency can be promoted through a flexible approach that does not compromise excessively

on other operational metrics. Furthermore, we analyze the impact of not considering the problem

uncertainties during the planning stage.

Keywords: consistent vehicle routing problem, sample average approximation, Benders

decomposition, customer uncertainty

1. Introduction

In this paper, we study the consistent vehicle routing problem (ConVRP) with stochastic customers

and demands. We study the problem in a two-stage stochastic programming setting where, in the
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first stage, a decision-maker assigns drivers to potential customers before the actual requests and the

corresponding demands are known. After the realization of the random variables, the decision-maker

selects which customers to visit and designs delivery routes respecting both selected driver-customer

assignments and the vehicle capacities. Our problem setting assumes that some customers may be left

unserved. In such a case, a penalty is incurred. Moreover, we assume that the outcome of the uncertain

information is known before the vehicles depart from the depot. As a result, the routes can be optimized

based on the observed and selected customers and their demands. As pointed out by Ledvina et al.

(2022), current information technologies allow collecting this type of information before the departure

of the vehicles. The first-stage driver-customer assignments can violate the consistency requirement,

which is modeled as a desired maximum number of drivers assigned to each customer. This is modeled

as a soft constraint with a penalty in the objective function. It is hence possible to assign multiple

drivers to a specific customer in the first stage. In the second stage, in each scenario a customer can only

be visited by one of the preassigned drivers. In our problem, therefore, consistency is imposed in the

form of assignments that minimize the consistency violation penalties and the expected routing costs

and the penalties for unserved customers when the uncertain parameters are revealed. Uncertainties

are considered using scenario-based stochastic programming (SP), in which each scenario represents

the realization of both a set of customer requests as well as their associated demands. Note that in our

setting the routing decisions are in the second stage, which complicates the problem since one must

solve a variant of the vehicle routing problem for each scenario.

This problem setting may appear in contexts in which the decision-maker does not know if and when

in the planning horizon the customers will demand service. However, because of previous requests, the

location of the customers is known in advance and it is also possible to infer their demand distribution.

This may be the case for couriers and pickup and delivery providers (Sungur et al., 2010; Ledvina et al.,

2022) as well as home service providers (Song et al., 2020). These types of companies usually have

databases from past requests and serve customers with distinct, irregular demand patterns. Therefore,

the historical data can be used as a proxy of potential realizations of the uncertainty faced by the

company (for instance, in the form of scenarios). Furthermore, companies might also be interested in

routing plans in which service consistency is as important as efficiency.

Our problem setting includes two important features for decision-making in vehicle routing: con-

sistency (Groër et al., 2009) and data uncertainty (Gendreau et al., 2016). In this context, consistency

is defined as the degree to which certain solution components remain relatively stable over time. This

feature is particularly relevant in today’s competitive business environment as companies seek to offer

personalized services. For instance, carriers can try to promote consistency to each customer in the

form of visits by a limited number of different drivers. This facilitates the customization of the ser-

vice, potentially increasing customer satisfaction levels as well as the company’s revenue. From the

standpoint of the drivers, visiting a relatively stable group of customers on a regular basis has the

potential to improve the efficiency of the delivery operations as drivers become familiar with a region,

the conditions of a smaller road network and a limited set of customers.

The second feature is data uncertainty. In many cases, critical input data is not known with cer-

tainty during the planning stage. This brings uncertainty and challenges the decision-making process.
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Moreover, using point forecasts in the planning stage often leads to poor performance in the execu-

tion stage, which further highlights the importance of taking uncertainty into account for operations

planning, particularly in the context of the vehicle routing problem (VRP).

In this study, we consider the ConVRP with stochastic customers and demands in a two-stage

decision process. In the first stage of the problem, the assignments of drivers to customers must

be determined. In the second stage, customers are selected, and routes are designed based on the

realization of the random variables. Penalties for not serving observed customers are incurred in this

stage, in addition to routing costs. The first-stage assignments remain fixed in the second stage over

all the scenarios to ensure driver consistency for the planned visits. These assignments are guided by

a predefined parameter indicating the targeted maximum number of different drivers assigned to each

customer. However, violations of this target are allowed and penalized in the objective function. This

flexibility is permitted to represent the real-world practice in which, in some applications, violations

may be acceptable according to the decision-maker’s preference. Hence, the objective is to define

consistent assignments in the first stage that minimize the violations of the consistency target and the

expected total transportation cost as well as the sum of penalties for unserved customers in the second

stage.

1.1. Literature Review and Our Contributions

The problem that we study relates directly to the deterministic ConVRP, introduced by Groër

et al. (2009) in the context of a multiday VRP. In the deterministic ConVRP, two forms of consistency

are usually considered: driver consistency (Braekers and Kovacs, 2016), in which customers have to be

visited by the same driver each day they require service, and arrival time consistency (Kovacs et al.,

2014a), in which the different visits to each of the customers should happen at approximately the

same time. Extensions of this problem include considering consistency as an objective instead of a

constraint (Smilowitz et al., 2013), allowing a limited number of drivers to visit each customer (instead

of a single one) in the driver consistency context (Kovacs et al., 2015), and other forms of consistency

(Yao et al., 2021; Rodŕıguez-Mart́ın and Yaman, 2022).

These studies, however, assume that all the information is known with certainty beforehand and,

therefore, carry out the assignment of customers to drivers as well as the routing of the daily visits

simultaneously. Kovacs et al. (2014a) provide a review of studies considering consistency in vehicle

routing problems, primarily in the deterministic setting. Other papers have considered consistency in

deterministic supply chain optimization problems such as the inventory routing problem (Diabat et al.,

2021; Coelho et al., 2012) as well as the production routing problem (Alvarez et al., 2022).

Studies on the ConVRP under uncertainty have mainly focused on using scenario-based SP. In

this approach, a set of scenarios is used to describe the potential realizations of the random variables

according to their corresponding probability distribution. For instance, Sungur et al. (2010) address

a case with stochastic customers and service time uncertainty. In this work, consistency is favored by

generating a master routing plan that minimizes, among other objectives, the adjustment cost of the

daily routing plan for the observed customer requests. The authors use a set of scenarios to represent

the uncertainty of the customers’ presence, including the vehicle routing as a second-stage decision.
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The problem addressed in this study considers time windows, uncapacitated vehicles and constraints

on the maximum duration of the routes.

Spliet and Dekker (2016) study a ConVRP with uncertain demands. In their problem, drivers

are assigned to customers before demand is known so that the expected routing cost over all the

demand scenarios is minimized. Consistency is modeled by setting constraints imposing that each

driver visits a minimum fraction of their assigned customers in each scenario. In their study, however,

the authors do not penalize potential inconsistencies and their computational experiments focus mostly

on cases with only three scenarios. Song et al. (2020) also employ scenario-based SP for a case with

customer uncertainty. In their problem, the first stage assigns known (regular) customers to drivers

while the second stage selects new (observed) customers and assigns them to the planned routes of

each scenario, such that the expected total profit over all the scenarios is maximized. This approach

ensures consistency for regular customers only. The authors introduce their study in the context of

the team-orienteering problem and, as such, they consider time windows, uncapacitated vehicles, and

maximum route duration constraints. In both of these works, routing is a second-stage decision.

Finally, Ledvina et al. (2022) address a case with uncertain demands incorporating consistency

using concepts from manufacturing process flexibility (Jordan and Graves, 1995). In particular, they

study the effect of overlapping routing strategies in the form of (partially) redundant customer-driver

assignments. First, customers are assigned to the so-called primary route of a driver and then, when

the actual demands are observed, the surplus vehicle capacity (if any) is used to visit customers on

the extended route assigned to the driver. Consistency is thus promoted by defining primary driver-

customer assignments but permitting the visit to customers outside the primary set of the driver.

Our research differs from the previous works in both problem setting and solution methods. First,

we employ a flexible approach in which the number of different drivers assigned to each customer is an

adjustable parameter while favoring consistency by penalizing the violation of a consistency target. In

addition, we use scenario-based SP with large sets of scenarios which allows for finding stable customer-

driver assignments by explicitly taking into account routing decisions under potential realizations of

the uncertain variables.

There is also a close relationship between our work and the stochastic VRP. In this area, most of

the literature considers routing as a first-stage decision and assumes that the presence of customers or

their demand is known only upon arrival at their location, applying a specified recourse policy when

failure occurs (Gendreau et al., 2016). This type of approach is largely used for the case with stochastic

demand and guarantees consistency as the customer-driver assignments are maintained. However, in

certain industries, the outcome of the uncertain parameters may be known before the vehicles start

their routes, in particular with current information technologies. This assumption has been used in the

literature of the VRP with stochastic customers (Bertsimas, 1992; Sungur et al., 2010). In this case,

a full reoptimization of the routes can be applied daily. However, this approach really complicates

the problem and would potentially fail to provide consistency in the solutions. This drawback can be

addressed, for instance, by selecting a priori customer-driver assignments, which is our approach. This

has been explored in the context of the ConVRP only by Spliet and Dekker (2016).

Our contributions in this paper include the following. First, we introduce and study the ConVRP
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with stochastic customers and demands with generalized consistency requirements. Our approach

allows controlling the level of the targeted consistency by setting a parameter indicating the maximum

desired deviation from a perfectly consistent solution. The importance of abiding by this target is

also flexible and controlled in the objective function. Second, we show that imposing consistency with

a flexible approach in the form of soft constraints allows finding solutions with adequate consistency

metrics without compromising excessively on other operational performance metrics. Third, we show

the value of the stochastic solutions with respect to two expected value approaches. In particular, the

results reveal that the value of the stochastic solutions changes when the probability of occurrence of

the customers increases. Finally, we develop several methods for solving the problem (and the sample

problems) and compare their performance under different configurations and enhancements.

1.2. Paper Organization

The remainder of the paper is organized as follows. Section 2 describes the problem and introduces

a mathematical formulation for it. Section 3 presents our solution approaches. In particular we de-

scribe a sample average approximation method as well the branch-and-cut and Benders decomposition

algorithms used as components within the SAA. Section 4 presents the computational experiments to

assess the value of taking consistency and uncertainty into account in our context and, finally, Section 5

concludes the paper.

2. Problem Definition

We formulate the ConVRP with stochastic customers and demands as a two-stage SP problem.

For this purpose, we introduce the following notation. Consider a set of potential customers C, a fleet

of homogeneous vehicles of capacity Q, denoted by set K. The vehicles are based at a depot, denoted

by node 0, and all their routes depart from and return to this depot. We assume that each vehicle

is associated with a single driver and therefore we will use these terms interchangeably. The node

set N = {0} ∪ C represents all the possible locations. Let Ω be the finite set of all the scenarios.

Scenarios embed the joint realization of the two uncertain variables. First, the customer presence

random variable defines whether or not a customer exists in the scenario. Then, an independent

random variable represents the demand of the present customers.

The probability of occurrence of each scenario ω ∈ Ω is given by ρω, with ρω > 0 and
∑

ω∈Ω ρω = 1.

In each scenario ω ∈ Ω, Cω denotes the set of customers that have a strictly positive demand in the

scenario, with Nω = {0} ∪ Cω. For each customer i ∈ Cω, diω denotes its demand and bi the penalty

for not serving it. This penalty can be seen as an outsourcing cost or a compensation paid to the

customer when its demand is not met. Notice that not serving a customer can also be interpreted as a

customer that will be served on another day. In that sense, the cost associated to skipping customers

could also be regarded as the penalty for customers who does not receive their order on time. In

practice, the possibility of leaving some customers unserved brings added flexibility to the system,

which is a desirable feature when managing complex supply chain systems, in particular in uncertain

environments.
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The problem is defined on a complete undirected graph G = {N , E}, where E = {(i, j) : i, j ∈ N , i <
j} is the set of edges. There is also a set of edges Eω = {(i, j) : i, j ∈ Nω, i < j} for each scenario ω.

Moreover, a travel cost cij is incurred for traversing edge (i, j) ∈ E . It is assumed that the travel costs

satisfy the triangle inequality.

In order to consider consistency, let D > 0 be a parameter indicating the consistency target of

the decision-maker. The value of D indicates the maximum number of different drivers that should

be assigned to each customer in the first stage. This target may be larger than one and accounts for

the decision-maker’s tolerance with respect to a perfectly consistent solution. This type of approach

follows the literature on the ConVRP with generalized requirements (Kovacs et al., 2015; Wang et al.,

2022). In our problem, we allow violations of the consistency target D, penalizing with the unit cost oi

the assignments exceeding the target for every customer i ∈ C. This flexible approach also aims at

representing real-world situations in which some level of violation of the consistency target may be

acceptable according to the preferences of the decision-maker.

Note that in our problem, the set C can be seen as a representation of all the observed customers in

the company’s database. Likewise, the set of scenarios Ω can be seen as historical data of the company.

As such, we consider the observations of past days (scenarios) as realizations of the uncertainty in the

problem. This approach was also used by Sungur et al. (2010) in the context of a courier delivery

problem under customer uncertainty.

In the problem, there are two decision stages. The first one is tactical and consists of assigning

customers to drivers for long-term planning. Then, in the second stage, potential operational decisions

are considered by planning vehicle routes respecting the selected assignments. The objective is to

minimize the penalties for violating the consistency target in the first-stage assignments plus the

expected second-stage routing costs and total penalties for not serving potential customers.

2.1. A Two-Stage Stochastic Programming Model

To model the problem as a two-stage SP model, consider the following decision variables:

yik: a binary variable equal to one if and only if customer i is assigned to vehicle k;

sk: a binary variable equal to one if and only if at least one customer is assigned to vehicle k;

zikω: a binary variable equal to one if and only if customer i is visited by vehicle k in scenario ω;

xijkω: an integer variable indicating the number of times vehicle k traverses edge (i, j) under

scenario ω;

λi: a continuous variable measuring the violation level of the driver consistency target D for

customer i.

Under the assumption that Ω represents all the possible scenarios, the problem can be formulated

as follows:

min
∑
i∈C

oiλi +
∑
ω∈Ω

ρω

( ∑
(i,j)∈Eω

∑
k∈K

cijxijkω +
∑
i∈Cω

bi(1−
∑
k∈K

zikω)

)
(1)

s.t.
∑
k∈K

yik ≤ D + λi i ∈ C, (2)
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∑
k∈K

zikω ≤ 1 ω ∈ Ω, i ∈ Cω, (3)∑
(j,i)∈Eω

xjikω +
∑

(i,j)∈Eω

xijkω = 2zikω ω ∈ Ω, i ∈ Cω, k ∈ K, (4)

∑
j∈Cω

x0jkω ≤ 2 ω ∈ Ω, k ∈ K, (5)

zikω ≤ yik ω ∈ Ω, i ∈ Cω, k ∈ K, (6)∑
i∈Cω

diωzikω ≤ Q ω ∈ Ω, k ∈ K, (7)

∑
i∈B

∑
j∈B :
i<j

xijkω ≤
∑

i∈B\{`}

zikω ω ∈ Ω, ∀B ⊆ Cω : |B| ≥ 2, k ∈ K, ` ∈ B, (8)

∑
i∈C

yik ≤ |C|sk k ∈ K, (9)

λi ≥ 0 i ∈ C, (10)

yik ∈ {0, 1} i ∈ C, k ∈ K, (11)

sk ∈ {0, 1} k ∈ K, (12)

zikω ∈ {0, 1} ω ∈ Ω, i ∈ Cω, k ∈ K, (13)

xijkω ∈ {0, 1, 2} ω ∈ Ω, (i, j) ∈ Eω : i = 0, k ∈ K, (14)

xijkω ∈ {0, 1} ω ∈ Ω, (i, j) ∈ Eω : i > 0, k ∈ K. (15)

The objective function (1) minimizes the sum of the first-stage consistency violation penalties plus

the expected second-stage cost, given by the sum of the routing costs and penalties for not serving

potential customers over all the scenarios. Constraints (2) capture the violations of the consistency

target if the customers are assigned to more than D drivers in the first stage. Constraints (3) enforce the

customers are visited by at most one vehicle every time they appear in the scenarios. Constraints (4) are

the degree constraints, which guarantee the flow conservation of the vehicles assigned to the customers.

Constraints (5) enforce that in each scenario and for every vehicle, there are at most two customer

nodes adjacent to the depot. These constraints ensure that each vehicle is used at most in one route

in each scenario.

Constraints (6) link the first-stage assignments to the second-stage routing variables, ensuring

visits to the customers can only be carried out by the preassigned drivers. Constraints (7) guarantee

the vehicle capacity satisfaction while constraints (8) are the subtour elimination constraints (SECs).

Constraints (9) activate the aggregated assignment variables s when at least one customer is assigned

to the vehicles. Finally, the domain of the decision variables is defined by constraints (10)-(15). Note

that variables sk are not necessary to represent the problem. However, they are useful to enhance

the performance of the branch-and-cut method used to solve the problem, as will be explained in

Section 3.2.1.
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3. Solution Methodology

It is well know that two-stage stochastic programs, in particular with integer variables in both

stages, can be very difficult to solve. This difficulty tends to grow significantly with the size of the

scenario set Ω. We resort, therefore, to the sample average approximation (SAA) method (Kleywegt

et al., 2002) to solve our problem. In this section, we first provide an overview of our SAA and then

introduce the methods we use to solve the different sample problems that appear in each iteration of

the SAA method.

3.1. Sample Average Approximation

In the SAA method, one solves a series of sample problems resulting from replacing the large set Ω

with a small sample of scenarios N , such that |N | � |Ω|. This step is replicated M times to obtain as

many candidate first-stage solutions. Each of these solutions is evaluated using a large set of scenarios,

providing a feasible solution for the complete problem in each iteration, from which we keep the best

one as the incumbent solution. Normally, when the full set Ω is not known or is too large to be

enumerated, the evaluation is done on a large subset Ω′′ ⊆ Ω. However, since in our problem setting

we assume that we know the complete set of scenarios, we evaluate solutions over the set Ω in our SAA

approach. In addition to upper bounds, SAA provides a statistical estimate for the lower bound on

the optimal value of the complete problem and, therefore, an estimate of the optimality gap of the

incumbent solution. The SAA method can be described as follows:

1. Choose a sample size |N | and the number of replications M of the method.

2. For m = 1, . . . ,M :

(a) Generate a scenario set Ωm ⊂ Ω by randomly selecting |N | scenarios from Ω. Solve the

resulting sample problem, obtaining the corresponding objective value and solution, denoted

respectively by νΩm and Zm (consisting of the solution vectors ȳ, s̄, z̄, x̄, λ̄).

(b) Use the solution Zm to try to obtain a feasible solution for the complete problem, containing

all the scenarios Ω. For this, fix the first stage solution ȳ and solve the resulting |Ω|
scenario subproblems independently. If all the scenario problems are feasible, then their

joint solutions are a feasible solution for the complete problem. The objective value νΩ(Zm)

of this feasible solution can be calculated as

νΩ(Zm) =
∑
i∈C

oiλ̄i +
∑
ω∈Ω

ρω

( ∑
(i,j)∈Eω

∑
k∈K

cij x̃ijkω +
∑
i∈Cω

bi(1−
∑
k∈K

z̃ikω)

)

where x̃ijkω and z̃ikω are the optimal values of the routing and visit variables, respectively,

when fixing the values of λi according to the solution Zm. In the general method, if one

of the scenario problems is infeasible, νΩ(Zm) is set to ∞. However, in our setting the

subproblems are always feasible.
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3. Get the best feasible solution as Z∗ = Zm
′
, with m′ = arg minm∈{1,...,M}{νΩ(Zm)}, whose objec-

tive value is νΩ(Z∗) and whose variance is

σ2
νΩ(Z∗) =

1

|Ω|(|Ω| − 1)

∑
ω∈Ω

(Gω(Z∗)− νΩ(Z∗))2,

where Gω(Z∗) is the total objective value obtained by solving the subproblem of scenario ω with

the first stage variables fixed at Z∗.

4. Calculate the average of the objective values of the sample problems

ν̄Ω =
1

M

M∑
m=1

νΩm ,

which is a statistical lower bound on the optimal value of the complete problem, in addition to

its variance

σ2
ν̄Ω

=
1

M(M − 1)

M∑
m=1

(νΩm − ν̄Ω)2.

These statistics are computed over all the feasible sample problems. Note that it is not always

possible to solve to optimality the sample problems within an SAA algorithm. In such a case,

we can compute the statistical lower bound ν̄Ω and its variance σ2
ν̄Ω

using a lower bound on the

optimal value of the sample problems. We have employed this strategy in our implementation.

5. Compute the SAA gap

νΩ(Z∗)− ν̄Ω

and its variance

σ2
νΩ(Z∗) + σ2

ν̄Ω
.

In general, the performance of SAA depends on the parameter choices (sample problem size |N |
and number of replications M) and the method used to solve the sample problems. On the one

hand, smaller |N | values result in problems that may be solved more easily while larger samples may

lead to first-stage decisions resulting in potentially better solutions when evaluated on the large set

of scenarios Ω. On the other hand, ideally, one uses effective exact methods in each replication to

optimally solve the sample problem. However, even sample problems with small scenario sets may

be hard to solve, and one can resort to early stopping criteria for exact methods or using heuristic

algorithms. In the following, we describe two different exact methods proposed to solve the sample

problems within our SAA.

3.2. Solving the Sample Problems

In this section we describe a branch-and-cut (BC) and a Benders decomposition (BD) method to

solve the resulting sample problems appearing in each replication of the SAA. Both methods can also

be used as a stand-alone method to solve the complete problem, i.e., considering the set of scenarios Ω.

These methods are based on the formulation (1)-(15), and their details are presented in the following.
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3.2.1. Branch-and-Cut Method

Our BC method is based on the dynamic addition of the SECs (8) to the model. These constraints

are therefore initially dropped from the formulation and an exact routine separates them. Specifically,

in our BC method we employ an exact separation algorithm based on the solution of minimum s −
t cut problems over the support graph of the branch-and-bound solutions. Consider the following

notation. At any node of the tree, let x̄ and z̄ denote the solution of the vehicle flow and visit

variables, respectively. We build an undirected support graph for each scenario ω and vehicle k, by

creating a node ni for each node i ∈ Nω in the original graph with z̄ikω > 0. The weight of each

edge (ni, nj) such that i < j is set to x̄ijkω.

We solve a minimum s− t cut problem for each customer node ni in the constructed graph, setting

the node n0 (corresponding to the depot in the original graph) as the source node s, and ni as the

sink node t. A violated SEC is identified if the capacity of the minimum cut is less than 2z̄ikω. This

type of separation was originally proposed by Padberg and Rinaldi (1990) and has been successfully

applied in the literature (e.g., Adulyasak et al., 2014; Diabat et al., 2021; Alvarez et al., 2022). In our

implementation, using the node partition B containing the sink (customer) node, we check the SEC for

every scenario ω ∈ Ω and vehicle k ∈ K, adding it if a violation is observed. Note that Equation (8) is

defined for any node ` in ∈ B, which we choose as ` = arg maxi∈B{z̄ikω}. We solve the minimum cut

problems with the algorithm available in the Concorde solver (Applegate et al., 2018). We separate

the SECs at the root node of the tree to improve the linear relaxation of the model, and every time

an integer solution is found.

In order to further enhance the performance of our BC algorithm, we incorporated some additional

features. First, we included two sets of symmetry-breaking constraints (SBCs). The presence of

symmetries can slow down the performance of the BC method since many redundant solutions may

exist. For instance, we may alter the customer-driver assignments of a solution by only permuting

the values of the vehicle index without changing the objective value. It is therefore essential to tackle

symmetries in this type of formulation. The first set of SBCs, (16), imposes that, for the first scenario,

vehicle k can only be used if vehicle k−1 is also used. These constraints are defined on a single scenario

only (it could be any scenario) given that if we impose them for more than one scenario we might cut

off the optimal solution. This could happen as these SBCs require the usage of vehicles of lower indices

which, for some scenarios, might need to remain idle for consistency purposes. Next, constraint (17)

orders the vehicles according to their aggregated assignment, indicating that vehicle k can be assigned

to customers only if a vehicle with a smaller index was assigned as well. These two sets of constraints

can be written as: ∑
j∈Cω

x0jkω ≤
∑
j∈Cω

x0j,k−1,ω ω = 1, k ∈ K : k > 1, (16)

sk ≤ sk−1 k ∈ K : k > 1. (17)

We also impose constraints (18) which are trivial valid inequalities (VIs) that force every customer

10



to be assigned to at least one driver:∑
k∈K

yik ≥ 1 i ∈ C. (18)

These VIs are valid since we have D > 0. We also use a primal heuristic to further enhance

the BC method. In particular, given an integer solution (with respect to all the integer variables of

the model), we can use the values of the y variable (ȳ) to try to generate a feasible solution for the

complete problem. For this purpose, we solve each scenario subproblem individually for the assignment

given by ȳ. If the cost of the resulting scenario solutions plus the first-stage cost of the current integer

solution (
∑

i∈C oiλ̄i) is better than the incumbent cost, we have found a new best solution which

becomes the incumbent in the BC tree. The heuristic is invoked every time an integer solution is found

in the tree. Notice that this procedure can be executed regardless of whether the integer solution is

feasible or not with respect to the SECs.

3.2.2. Benders Decomposition Method

The second algorithm we use to solve the sample problems is based on the Benders decomposition

method (Benders, 1962). In a BD algorithm, the structure of the original problem is exploited to

partition it into a master problem (MP) and a series of subproblems, which typically are easier to solve

than the original problem. When applied to SP problems, the method is commonly referred to as the

L-shaped method (Laporte and Louveaux, 1993; Rahmaniani et al., 2017). The application of a BD

algorithm for our problem derives from the fact that when we fix the first-stage solution, it is possible

to separate the |Ω| subproblems and solve them independently.

In our implementation, the MP is derived from the relaxation of the complicating constraints (3)-

(8), related to the VRP part of the problem. The MP is, therefore, an assignment problem, defined as

follows:

min
∑
i∈C

oiλi +
∑
ω∈Ω

ρωθω (19)

s.t. (2), (9)− (12),

θω ≥ 0 ω ∈ Ω, (20)

Optimality cuts,

where θω is an auxiliary variable that captures the second-stage objective value under scenario ω.

The optimality cuts impose the bounds derived in the subproblems to ensure that variables θ do not

underestimate the second-stage costs. These cuts are generated by solving the subproblems, which

correspond to prize-collecting VRPs with preassigned drivers. In particular, for a MP solution ȳ, we

have the following subproblem for each scenario ω ∈ Ω:

θω(ȳ) = min
∑

(i,j)∈Eω

∑
k∈K

cijxijk +
∑
i∈Cω

bi(1−
∑
k∈K

zik) (21)

s.t.
∑
k∈K

zik ≤ 1 i ∈ Cω, (22)
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∑
(j,i)∈Eω

xjik +
∑

(i,j)∈Eω

xijk = 2zik i ∈ Cω, k ∈ K, (23)

∑
j∈Cω

x0jk ≤ 2 k ∈ K, (24)

zik ≤ ȳik i ∈ Cω, k ∈ K. (25)∑
i∈Cω

diωzik ≤ Q k ∈ K, (26)

∑
i∈B

∑
j∈B :
i<j

xijk ≤
∑

i∈B\{`}

zik ∀B ⊆ Cω : |B| ≥ 2, k ∈ K, ` ∈ B, (27)

zik ∈ {0, 1} i ∈ Cω, k ∈ K, (28)

xijk ∈ {0, 1, 2} (i, j) ∈ Eω : i = 0, k ∈ K, (29)

xijk ∈ {0, 1} (i, j) ∈ Eω : i > 0, k ∈ K, (30)

where all the variables and constraints maintain the same interpretation as in Section 2.1 but dropping

the scenario index ω.

Note that the subproblems are VRPs and not traveling salesman problems (TSPs) since, in the MP,

each customer can be assigned to more than one driver as per constraints (2). However, these sub-

problems are typically constrained to a significant degree by the linking constraints (25) and we can,

in general, solve them efficiently via the BC algorithm.

Our BD algorithm was implemented in a branch-and-check fashion in which the MP is solved only

once and the Benders cuts are generated on the fly. For this purpose, we solve the MP using a BC

algorithm in which every time a feasible solution (ȳ∗, θ̄∗) is found, we solve the scenario subproblems

to verify the feasibility of the solution. Specifically, given the current candidate MP solution and

the subproblem optimal objective function values θω(ȳ∗) (if any), if we have θ̄∗ω < θω(ȳ∗) then θ̄∗ω
underestimates the second-stage cost for scenario ω. In this case, we add the following optimality cut

(Laporte and Louveaux, 1993):

θω ≥ θω(ȳ∗)− θω(ȳ∗)

(∑
i∈C

∑
k∈K :
ȳ∗ik=1

(1− yik) +
∑
i∈C

∑
k∈K :
ȳ∗ik=0

yik

)
, (31)

which ensures that the θ variable will assume the value θω(ȳ∗) when the MP solution is ȳ∗. These cuts

are verified for every scenario subproblem ω.

It is well-known that these cuts can be weak, which does not favor the performance of the BD

method. We have, therefore, tried to enhance the BD efficiency by using initial cuts to strengthen the

initial MP. For this purpose we have added bounds of the form

θω ≥
∑
i∈Cω

min

{
bi, min

j∈Nω :
j<i

{cji}, min
j∈Nω :
i<j

{cij}
}
, (32)

which impose a lower bound on the cost of each subproblem. This lower bound corresponds to the

sum of the minimum between the minimum travel cost to reach each customer and the skipping cost.

We also use the SBCs and VIs of the BC method to enhance the BD method.
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Finally, in our implementation, we always evaluate θω(ȳ∗) for all the subproblems, even if a violated

optimality cut (31) is found early in this process. This allows us to always find feasible solutions to the

original problem by combining the subproblem solutions with the corresponding first-stage solution.

4. Computational Experiments

This section aims at demonstrating the value of considering uncertainty in the context of the

ConVRP. We also aim to further demonstrate the value of consistency for logistics and transportation,

in particular when uncertainty is involved. We first discuss the instances in Section 4.1. Next, we assess

the performance of the solution methods, whose results and comparison are presented in Section 4.2.

Then, in Sections 4.3 and 4.4, we focus on analyzing the impact of taking the consistency requirements

and uncertainty into account and the trade-offs arising from their inclusion.

All the algorithms were coded in C++, using CPLEX 22.1 as MIP and LP solver. We set the

relative MIP optimality gap tolerance to 10−5 and the rest of the parameters of the solver were kept

at their default values. The experiments were executed on 2.4 GHz processors, using a single thread

and a RAM limit of 32GB.

4.1. Problem Instances

Four main sets of instances have been used in the ConVRP literature. Since these datasets have been

introduced for the deterministic case, they present planning horizons of three to five days. Moreover,

all the customers have a fixed service frequency, i.e., each customer appears on each of the days with

a given probability. The first two sets were proposed by Groër et al. (2009) and contain small and

large instances. Set A contains 10 instances, five of them with 10 customers and the remaining five

with 12 customers. Data set B, in turn, contains 12 instances with 50 to 199 customers. In these two

sets the visit frequency is 70%. Set C was introduced by Kovacs et al. (2014b) and extends set B by

considering visit frequencies of 50% and 90%. Finally, data set D was presented by Goeke et al. (2019)

and builds on set C to consider medium-sized instances. As such, this set has six instances with 20

and 30 customers (more instances are derived by the combination with other parameters concerning

the deterministic ConVRP).

For our experiments, we construct instances from those of sets A, B and D since they include small-,

medium- and large-size instances regarding the number of customers. We considered the 12 instances

of set A, the seven instances of set B with up to 100 customers, and all the six instances of set D. From

each of these 23 instances, we can then generate instances by defining a set of scenarios Ω indicating

the observed customers and their demands.

The uncertain parameters were assumed to be independent random variables and we applied a

Monte Carlo simulation to generate the scenarios. For the case of stochastic customers, each customer

has a probability of occurrence αi. When considering stochastic demands, we used a discrete uniform

distribution in the interval [d̄i(1 − ε), d̄i(1 + ε)], ∀i ∈ Cω, where ε ∈ [0, 1] is the demand uncertainty

level which we assumed to be 0.50. In this context, d̄i was taken from the values of the deterministic

instances. Specifically, for set A we have d̄i = 2 ∀i ∈ Cω, while for sets B and D we set d̄i as

the maximum observed demand for each customer in the deterministic instance. When we generate
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scenarios considering both customer presence and demand as random variables, we first draw the

realization of the customer presence and then, for those customers that are present, we draw their

demand using the discrete uniform distribution described above. The probability of occurrence of each

scenario is set as ρω = 1/|Ω|, ∀ω ∈ Ω.

In our experiments, unless stated otherwise, we generated instances by combining values of |Ω| ∈
{100, 500} and αi ∈ {0.2, 0.5, 0.8} ∀i ∈ C. This combination results in 138 instances with up to 100 cus-

tomers and up to 500 scenarios. For each instance, the number of vehicles was set to max{d2dmax
Ω /Qe−

1, D + 1}, with dmax
Ω = maxω∈Ω{

∑
i∈Cω diω}. The first term comes from Chitsaz et al. (2019) and en-

sures that the instance is feasible with respect to the largest demand scenario. The second term ensures

we have enough vehicles regarding the consistency target. The values of the penalty terms were set

to bi = 3(2c0i) and oi = 0.1(2c0i) ∀i ∈ C, while the value of D (targeted maximum number of different

drivers) was set to 1.

4.2. Comparison of Solution Approaches

In this section, we aim to compare the performance of the BC and BD, as standalone methods,

and the SAA algorithm using the BC and BD to solve the sample problems (SAA-BC and SAA-BD,

respectively). The idea is to choose the method we will use for the (upcoming) sections regarding the

analysis of the value of considering consistency and uncertainty.

For the SAA approaches, we present the results of the parameter combination (number of samplesM

and their size |N |) that resulted in the best performance. Specifically, for SAA-BC we used the

combination M = 20 and |N | = 5 and for SAA-BD we used M = 20 and |N | = 15. A time limit

of 30 minutes was set for each sample problem, resulting in a maximum time of 10 hours. This time

does not include the evaluation time, which is usually under 15 minutes in total. For the BC and BD

as standalone methods, we set a time limit of 10 hours. Detailed analyses on the parameter choice for

the different methods are presented in Appendix A and Appendix B.

In Table 1, separated by probability of occurrence, we present the following statistics about the

different methods: (i) The number of optimal solutions found by the method (for the BC and the BD

this status is proven during the execution while for the SAA methods this is evaluated with respect to

the best lower bound of the BC and the BD); (ii) The average total cost of the solutions found by the

method; (iii) The average relative difference (‘Gap to best’) of the objective value of the solutions of

each method with respect to the best solution found by all the methods simultaneously. The relative

differences are computed as 100 × (z − z∗)/z∗, where z is the objective value of the solution of the

method and z∗ is the objective value of the best solution; (iv) The average total CPU time of the

method, including the evaluation time for the SAA methods, in seconds; (v) The average time to find

the best solution by the method, in seconds. Additionally, we present the number of instances in

each probability of occurrence group (‘No. of instances’). We have also included a column (‘Total’)

indicating the average over all the instances except for the counters for which we display sums.

At first glance, we can notice the difficulty in proving the optimality of the solutions when the

probability of occurrence increases. This observation is a result of denser scenarios regarding the

number of customers. We can observe, nevertheless, that both SAA methods can find optimal solutions
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Table 1: Performance comparison of the methods

Prob. of occurrence
Total

Statistic Method 20% 50% 80%

No. of instances 46 46 46 138

No. of optimal* BC 31 16 0 47

BD 30 16 0 46

SAA-BC 30 11 0 41

SAA-BD 30 14 0 44

Total cost BC 184.56 1,310.10 2,833.00 1,442.55

BD 171.32 395.91 588.29 385.17

SAA-BC 154.88 257.83 346.32 253.01

SAA-BD 164.08 354.17 501.29 339.84

Gap to best (%) BC 8.50 160.44 300.63 156.52

BD 6.43 24.78 36.23 22.48

SAA-BC 2.24 0.21 0.11 0.85

SAA-BD 4.74 16.14 21.19 14.02

Total time (s) BC 12,037 23,952 35,838 23,942.39

BD 31,352 32,130 32,823 32,101.51

SAA-BC 7,905 14,385 23,499 15,262.93

SAA-BD 33,502 36,072 36,090 35,221.36

Time to best (s) BC 4,098 6,550 7,406 6,017.92

BD 3,145 5,224 6,940 5,103.41

SAA-BC 5,049 7,383 9,003 7,145.02

SAA-BD 6,731 7,923 9,500 8,051.56

in most cases when the BC proves their optimality. It is valuable to mention that all the methods

found feasible solutions for all the instances. From the values of ‘Total cost’ and ‘Gap to best’ we can

also see that, on average, SAA-BC finds the best quality solutions, clearly outperforming the other

methods for all the probabilities of occurrence.

Regarding the CPU time required by the methods, it is possible to see that it increases with the

probability of occurrence. SAA-BC presents the lowest average time for all the cases since it is able

to solve more (small) samples to optimality, finishing early for several instances. A further analysis of

the results also revealed that the lower bounds of the BC and BD are rather weak even for small-sized

instances. This is a result of the well-known relatively weak LP relaxation of standard vehicle flow

formulations for VRPs. Furthermore, the ‘Time to best’ values reveal that all the methods find their

best solutions relatively early in the search process, regardless of the probability of occurrence in the

scenarios.

Table 2 displays, for every method, the average relative difference of the solutions’ objective value

to the best solutions (‘Gap to best’) separated according to the number of scenarios |Ω| for every
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dataset. We also show the number of instances in each group and, in the last row, the average over

all instances. In this table it is possible to observe that SAA-BC consistently provides good quality

solutions when compared to the other methods, regardless of the test set and the number of scenarios

of the instances. As expected, set B is the most challenging one for all the methods as its instances

are the largest in terms of the number of customers.

After this analysis, it is possible to conclude that SAA-BC consistently provides good quality

solutions and outperforms the other methods regarding the analyzed statistics. For instance, the

optimality gap of the solutions found by SAA-BC is less than 0.2% if we consider the 47 instances for

which BC proved their optimality. We have, therefore, selected SAA-BC as the main method for the

analyses presented in the rest of this study.

Table 2: Gap to best solution (%) for the different instance classes and number of scenarios

|Ω| Set
No. of Method

instances BC BD SAA-

BC

SAA-

BD

100 A 30 0.26 0.75 0.20 0.02

B 21 393.69 58.15 4.23 42.25

D 18 0.83 12.31 0.29 7.09

500 A 30 0.74 2.47 0.16 0.09

B 21 582.16 58.26 0.37 37.25

D 18 59.02 18.86 0.27 7.48

Total 138 156.52 22.48 0.85 14.02

In order to provide a base for comparison, we show in Table 3 a summary of the characteristics of

the solutions found by SAA-BC. In particular, the table presents, separated by the size of the scenario

set and the probability of occurrence, the following statistics: the average total cost, the average

transportation and skipping cost and the penalties for violating the consistency target as a percentage

of the total cost; the average number of clusters, the violation level of the consistency target, and

the percentage of skipped customers. The percentage of skipped customers is computed as the total

number of skipped customers (calculated over all scenarios) divided by total number of customers with

strictly positive demand (calculated over all scenarios) Note also that a cluster in our context is a

vehicle to which at least one customer was assigned.

The violation level of the consistency target is measured using the metric proposed by Diabat et al.

(2021) and extended in Alvarez et al. (2022) in the context of integrated inventory and production

routing problems. For this purpose, let ȳki be the solution for variables yki (whether driver k is assigned

to customer i). The driver consistency metric κ is as follows:

κD =

∑
i∈C

max

{∑
k∈K

ȳki −D, 0

}
|C|

× 100. (33)

The value of κD computes the average deviation from the driver consistency target D. If every
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customer i is assigned to at most D drivers, then the numerator is 0, and then κD is equal to 0

as well. This case indicates a solution not deviating from the consistency target. A nonzero value

indicates the average violation of the target per customer. Notice that κD considers a deviation from

the target only when the number of drivers assigned to the customers exceeds D. Note also that

in Equation (33) the average deviation is multiplied by 100 in order to increase its significance and

facilitate its interpretation, since otherwise κ may take relatively small fractional values.

In the table, we can observe how the cost of the solutions increases with the probability of occur-

rence. This is mostly due to the increase in transportation costs in the solutions, as more customers are

observed in the scenarios. The relative (and absolute) skipping costs and penalties also tend to increase

with the probability of occurrence. However, it is important to highlight that the fraction of skipped

customers remains relatively low (around 1% overall) as well as the observed violation levels (7.37 on

average). This observation implies that to find solutions with relatively low violations of the driver

consistency target it is not necessary to compromise the service level by skipping a significant number

of customers.

Table 3: Summary of the attributes of the solutions of SAA-BC

Prob. of No. of Total Travel Consistency Skipping No. of Violation Skipped

|Ω| occurrence instances cost cost (%) penalty (%) cost (%) clusters level customers (%)

100 20% 23 152.99 96.55 0.07 3.38 1.70 0.19 0.98

50% 23 257.70 92.08 1.93 5.99 3.04 5.82 1.33

80% 23 341.33 93.08 4.15 2.77 4.04 16.70 0.44

500 20% 23 156.77 95.95 0.24 3.81 1.74 0.36 1.14

50% 23 257.97 91.86 1.93 6.21 3.26 6.87 1.27

80% 23 351.31 92.32 3.28 4.41 4.30 14.27 0.72

Total 138 253.01 93.64 1.93 4.43 3.01 7.37 0.98

4.3. The Cost of Consistency

This section aims to assess the cost of consistency in our context. In the deterministic ConVRP

literature, it is well-known that, in general, consistency can be improved without sacrificing too much

on standard operational metrics such as the total travel cost (Smilowitz et al., 2013). We aim to verify if

this observation remains valid in the stochastic case. For our purposes, we compare the solutions of the

stochastic program (generated via SAA-BC) with solutions generated from two different approaches.

The first approach corresponds to a case in which we completely ignore the consistency requirements,

optimizing the (daily) scenarios separately. In the second case, we analyze the impact of a higher

value for the consistency target D. For each case, we provide statistics and analyses regarding the

corresponding comparison.

4.3.1. Decoupled Approach

In the first case, we are interested in knowing the impact of ignoring consistency in our stochas-

tic ConVRP. That implies not considering constraints (2) in the original formulation and its cost in the

objective function (1). We refer to this case as the decoupled approach, which results in a stochastic

17



program completely separable by scenario. As such, we can solve the scenario problems individually.

However, to avoid solutions with artificially high consistency violations (since we solve the scenario

problems without interdependencies), the drivers of the resulting routes can be reassigned while min-

imizing the consistency violations and preserving the structure of the routes. This can be done with

the reassignment formulation presented in Appendix C, which takes as input a set of routes for every

scenario. The result of the formulation is the same set of routes with (potentially) new drivers assigned

to each of them so that the consistency violation is minimized. After applying this procedure, we can

assess the consistency of the resulting solution and compare it with that of the original stochastic

program. Notice that the decoupled approach provides a best-case scenario for the second-stage costs.

An analysis in this regard is presented in Table 4 which displays, separated by the probability of oc-

currence, statistics for the stochastic program (‘SP’) and the decoupled approach. We present for each

group the average total cost of the solutions and the average of each of the objective function compo-

nents. Moreover, we also display the average number of clusters, violation level of the driver consistency

constraints, and percentage of skipped customers in the solutions. This analysis considers only those

instances for which we were able to compute the solution for the decoupled approach within 10 hours

and, furthermore, the reassignment formulation was solved to optimality within 30 minutes. The anal-

ysis thus considers the solutions of 88 instances in total, of which 34, 28 and 26 correspond to the case

with 20%, 50% and 80% of probability of occurrence, respectively.

In the table, it is possible to observe that the decoupled approach leads to solutions with higher

total costs. As expected, the cost difference comes mainly from the consistency penalties, even after

optimally reassigning the drivers. The observed violations of the consistency target are relatively high

in the decoupled approach when compared to the base case. In particular, for the case with 80% of

probability of occurrence, the violation level is more than four times higher than that of the stochastic

program.

We can also observe that the routing costs present a slight decrease when applying the decoupled

approach since its objective function only considers the trade-off between routing and skipping costs.

All the customers are, therefore, always visited in the decoupled approach since skipping is never a

profitable option, which also results in more vehicles being used (i.e., more clusters) in the decoupled

approach. This observation also highlights the gains in flexibility brought by considering skipping as a

recourse in the stochastic ConVRP context. In practice, these skips can be seen as delivery outsourcing

or as a compensation paid to the customer and allow to maintain relatively low violation levels of the

consistency target. These results also show that promoting consistency with a flexible approach in

the form of soft constraints allows the finding of solutions with adequate consistency metrics without

compromising excessively on other performance metrics such as routing costs or penalties for skipping

customers.

4.3.2. Increasing the Consistency Target

In the second case, we investigate the effects of considering a higher consistency target value. For

this purpose, we have solved the instances with the SAA-BC method but considering D = 2 and D = 3.

The results obtained with this configuration are compared with respect to those obtained with D = 1.
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Table 4: Comparison of the stochastic program with a decoupled approach

Prob. of Total Travel Consistency Skipping No. of Violation Skipped

Approach occurrence cost cost penalty cost clusters level (κD) customers (%)

SP 20% 71.07 67.81 0.04 3.22 1.15 0.10 0.64

50% 83.07 79.48 0.59 3.00 1.68 5.72 1.19

80% 94.79 91.29 1.93 1.57 2.19 16.45 0.33

Decoupled 20% 89.05 67.15 21.90 0.00 1.76 19.86 0.00

50% 103.58 76.50 27.07 0.00 2.14 58.80 0.00

80% 116.32 87.37 28.95 0.00 2.27 76.32 0.00

Table 5 presents, for each value of D, the average total cost of the solutions as well as the average of

its individual components. Moreover, the table displays the average number of clusters as well as the

violation level (κD) and percentage of skipped customers of the solutions.

The results reveal that the added flexibility of considering a more relaxed consistency target leads to

solutions with lower costs. This cost reduction is achieved by further reducing the fraction of customers

that are skipped and the level of deviation from the consistency target. These solutions have on average

more clusters, i.e., more vehicles are used in them. When we set D > 1 the routing costs account for

almost the total cost of the solutions. This may be due to the reduction of the trade-off between the

consistency costs and the operational costs when the target is loose. In that case, the problem reduces

almost to the individual optimization of the scenario problems for which we aim at reducing their

routing and skipping costs.

In the solutions with D = 2, the average violation level with respect to a target of one driver per

customer (κ1) is 76.96, in contrast to the value of 7.37 observed when D = 1. Analogously, when

we set a target of D = 3 and evaluate the violation level with respect to a target of one driver per

customer we obtain a value of 146.89. These results further highlight that we can adequately promote

consistency with a flexible soft-constrained approach by accounting for the cost of such flexibility. No

experiments for larger values of D are included since for D = 3 the consistency constraints are almost

inactive.

Table 5: Results for different consistency targets

Consistency Total Travel Consistency Skipping No. of Violation Skipped

target D cost cost penalty cost clusters level (κD) customers (%)

1 253.01 229.07 8.04 15.90 3.01 7.37 0.98

2 232.94 231.07 1.42 0.45 4.42 0.49 0.07

3 222.58 222.40 0.00 0.18 5.23 0.00 0.04

4.4. The Value of the Stochastic Solutions

In this section, we evaluate the value of the stochastic solutions (VSS). This evaluation is performed

by comparing the solutions of the stochastic program with those obtained with an expected value (EV)

approach. In the EV problem, instead of the scenario-based SP formulation, we use a single scenario
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in which the random variables take the value of their corresponding expectation. We then evaluate the

expected cost of using the solution of the EV problem (EEV). For this purpose, we solve the scenario-

based SP problem with its first-stage decisions fixed to the values of the solution of the EV problem.

VSS is then computed as the difference between the optimal value of the EEV problem and the SP

model, i.e., VSS = EEV− SP.

VSS measures the potential advantages of using the SP approach with respect to a case in which

the uncertainty is ignored in the planning stage. Note that to evaluate the expected cost of using

the EV solution (EEV problem) we only need to solve |Ω| scenario subproblems (with preassigned

drivers) independently. We set a total time budget of 10 hours, with a time limit of one hour for each

individual problem (including the EV problem). We present the results of the instances for which all

the problems were solved to optimality to avoid reporting artificially high VSS.

In this context, we present in Table 6 some statistics regarding this analysis, separated by number of

scenarios |Ω| and probability of occurrence. In particular we computed the relative VSS with respect to

the objective value of the SP solutions, the relative change of the travel costs, the change in percentage

of skipped customers and the relative change of the number of clusters. The last three statistics are

computed for the EEV solution relative to the SP solution. Additionally, the third column shows the

number of instances considered for the statistics of each group. It is worth mentioning that in the

EEV solutions, the consistency requirement is always met. In the EV problem approach, since we

have a single scenario, there is no incentive to assign more than one driver to each customer given that

customers can be visited by at most one vehicle in every scenario.

The results show that significant cost increases can be incurred when ignoring the uncertainties in

our context. In particular, it is worth highlighting that the average VSS represents approximately 20%

of the objective value for 80% of probability of occurrence (for the instances with 100 scenarios). It is

possible to see that the average VSS increases with the density of the scenarios. These observations

justify the use of the SP model since otherwise significant cost increases would be incurred.

Furthermore, the relative changes of the travel cost reveal that the EEV solutions yield plans with

lower routing costs in the execution phase. This is achieved, however, by skipping a significantly larger

number of customers (compared to the SP solutions). This may be explained by the creation of fewer

and larger clusters, i.e., the assignment of fewer vehicles to the customers in the planning (first) stage

in the EV problem. By ignoring the uncertainties in the EEV problem in the form of a planning stage

with a single scenario with (relatively) small demands, the customers are grouped together in fewer,

larger clusters. This results in turn in the impossibility of visiting all the customers in the execution

stage due to capacity constraints. These results highlight the need to adequately consider uncertainty

when planning for operations with consistency requirements.

We also calculate a different value of the stochastic solutions by considering only the demand

uncertainty when defining the EV problem. We refer to this approach as VSS2 and the deterministic

problem solution is referred to as EEV2. In particular, in the EV problem we set the expected demand

value of each customer i ∈ C as its average demand over the scenarios in which the customer is

observed Ωi, i.e., di =
∑

ω∈Ωi
diw/|Ωi| (in the first approach the denominator is |Ω|). The expected

demand values in this approach tend to be larger since this approach ignores the uncertain nature of
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Table 6: Value of the stochastic solutions

Prob. of No. of % change Change in % % change

|Ω| occurrence instances %VSS/OF travel cost skipped customers no. of clusters

100 20% 18 0.87 -1.40 0.75 -9.26

50% 14 2.56 -2.07 1.35 -20.24

80% 15 20.66 -3.88 4.51 -5.00

500 20% 18 0.82 -1.89 0.79 -10.19

50% 13 2.65 -2.15 1.84 -32.05

80% 15 18.37 -3.03 4.09 -6.56

Total 93 7.38 -2.36 2.15 -13.15

the customers’ presence. We present in Table 7 an analysis analogous to the one in Table 6.

When comparing these results with those of Table 6, it is possible to observe how the relative VSS

increases (on average over all the instances) when more aspects of the uncertainty in the system

are ignored. As such, an average cost increase of 14.8% is observed in the VSS2 case, in contrast to

the 7.4% obtained in the previous analysis. These values further highlight the importance of considering

uncertainty in the planning phase. Moreover, the results show the significant impact of neglecting the

uncertainty on the customers’ presence in this context.

An important observation about the results of VSS2 is the variation of the results with the prob-

ability of occurrence α. In general, the number of clusters tends to be largely overestimated for lower

values of α (when the observed scenarios have fewer customers), which constrains to a larger extent

the routing decisions and increases the corresponding cost. Large values of α impact also the service

level by requiring more skips even without overestimating the number of clusters. This observation

may be partially explained by the capacity constraints of the vehicles, which do not allow for serving

the observed demands when α is high. On the other hand, for relatively low values of α the number

of skips is reduced (compared to the SP solutions), as a result of the creation of clusters with few

customers, whose observed demands can be accommodated by the vehicles.

Table 7: Value of the stochastic solutions ignoring the customers’ presence uncertainty (VSS2)

Prob. of No. of % change Change in % % change

|Ω| occurrence instances %VSS2/OF travel cost skipped customers no. of clusters

100 20% 15 20.58 21.23 -0.20 100.00

50% 14 17.95 26.09 -1.22 53.57

80% 13 4.29 4.98 0.39 1.92

500 20% 15 22.18 23.35 -0.38 113.33

50% 14 16.38 25.47 -1.03 35.71

80% 12 4.39 5.88 0.35 0.00

Total 83 14.83 18.39 -0.37 53.92
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Note that VSS and VSS2 indicate the quality of some simplified heuristic solutions obtained by

deterministic approaches. As a heuristic, EEV (incorporating both probabilistic occurrence and de-

mand) provides a better heuristic approach compared to EEV2 (where the probability of occurrence

is ignored) for cases where α = 20 and 50%. However, for cases where α = 80%, the second approach

provides a better heuristic solution. Finally, it is worth mentioning that both EEV and EEV2 provide

solutions in which each customer is assigned to a single driver only, i.e., solutions that do not violate

any consistency target.

4.5. The Impact of Regular Customers

In a final experiment, we explored scenarios with different presence profiles for the customers. For

this purpose, we define as regular (or frequent) customers those with 50% probability of occurrence

while occasional customers have a probability of occurrence of 20%. In this context, we created

instances with different proportions of regular customers (the rest of the customers is set as occasional).

In particular, we explored five different proportions of regular customer in the scenario generation,

namely 0, 20, 50, 80 and 100%. The results are shown in Table 8 and correspond to the average total

cost of the solutions and its individual components, the average number of clusters, the violation level

of the consistency target and percentage of skipped customers of the solutions. We also show the

average relative VSS for each case, computed as in Section 4.4. Each group in the table contains 46

instances (with 100 and 500 scenarios). However, for the results in the last column we report only the

average over those instances for which we can compute the VSS to optimality.

The results show that all the cost components tend to increase with the proportion of regular

customers. In particular, the routing costs show significant increases with the proportion of more

frequent customers while the percentage of skipped customers remains relatively stable. On the other

hand, the results further reveal the difficulty of maintaining good driver consistency metrics when

the scenarios have more regular customers. However, the violation levels remain relatively low at a

value of 6 for the case with 100% of regular customers. The values of VSS further reveal that the

presence of more regular customers increases the importance of adopting approaches to explicitly take

into consideration the uncertainty in the problem.

Table 8: Comparison for different proportions of regular and occasional customers

Total Travel Consistency Skipping No. of Violation Skipped

Profile cost cost penalty cost clusters level customers (%) %VSS/OF

0% regular 154.88 143.26 0.59 11.04 1.72 0.28 1.06 0.84

20% regular 180.49 170.97 0.70 8.82 2.20 0.51 0.87 1.86

50% regular 208.65 198.25 1.37 9.03 2.78 1.82 0.90 2.64

80% regular 239.27 219.42 2.34 17.50 2.98 3.09 1.30 3.21

100% regular 257.83 234.00 6.81 17.03 3.15 6.34 1.30 2.60
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5. Conclusions

In this paper, we have introduced and studied the consistent vehicle routing problem under the

consideration of stochastic customers and demands. We studied the problem using a two-stage scenario-

based stochastic programming approach. The first stage represents the planning phase and consists

of assigning drivers to customers. These assignments remain fixed in the operational (second) stage

in which, after the realization of the random variables, we define which customers will be visited by

which vehicle and the routes that the vehicles will follow, respecting the selected assignments. In our

problem, we set a target for the desired maximum number of drivers assigned to each customer. We

then promote consistency via a flexible approach that penalizes violations of the consistency target.

We have chosen a sample average approximation using a branch-and-cut algorithm to solve the sample

problems as the method to evaluate the value of taking consistency into account in our context as well

as to explore the cost-consistency trade-offs in the problem.

On the test set used, we have shown that our flexible approach allows finding solutions with

adequate consistency requirements without compromising excessively on other performance metrics

such as routing costs or penalties for skipping customers. In particular, the violation level of the

consistency target can be more than three times higher when we do not optimize considering explicit

consistency requirements. We have also verified the negative impacts of not considering the problem

uncertainties during the planning stage. Our experiments showed that adopting our stochastic setting

allows to avoid cost increases of up to 20% when compared to a deterministic case.

In the future, the problem could be extended to other forms of consistency. Also, studying the

impact and interrelation between different consistency requirements could be a promising path for

follow-up research. Future research directions to extend this study could also focus on solution ap-

proaches for the problem. Alternative formulations and enhancements for the branch-and-cut and

Benders decomposition methods are an avenue that could be explored. Moreover, heuristic algorithms

like progressive hedging is a worthy research direction.
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Appendix A. Impact of Methods Enhancements

This section evaluates the enhancements proposed for the branch-and-cut (BC) and Benders de-

composition (BD) methods. In this regard, we have compared the full method (Base case) to methods

without the individual enhancements. Tables A.9 and A.10 show the results of the analysis for the BC

and BD method, respectively. In the tables, we present the number of instances in each group and

the number of feasible and optimal solutions found by the methods. In addition, we report the av-

erage cost of the solutions and the average CPU time and time to find the best (final) solution, in

seconds. ‘No Ineq’ displays the results without the valid inequalities (16)-(18) for both approaches

and for the BC method, ‘No primal’ shows the results without the primal heuristic. Notice that the

primal heuristic is embedded naturally in the BD method (since we solve all the scenario subproblems

for evaluation purposes). As such, we did not evaluate a case without this component for the BD.

In these experiments, we imposed a time limit of 30 minutes per instance intending to find adequate

configurations for the methods used within the SAA approach. For this experiments we considered the

same instances of the main manuscript, as well as additional sets with 10, 20 and 50 scenarios.

The results show the positive impacts of considering the enhancements. In particular, we can

observe a significant improvement in the quality of the solutions when we include the primal heuristic

in the BC method. Moreover, the full version of the BC and BD method prove the optimality of two

and three additional solutions within the time limit, respectively. In addition, in the BC method the

time to the best solution (‘Time to best’) is shorter when the enhancements are included while for

the BD this time increases. However, this increase is compensated with the significant improvement

in the quality of the solutions in the full version of the BD method.

Table A.9: Impact of the enhancements on the BC method

No. of No. of No. of Total Total Time

Case instances feasible optimal cost time to best

Base 345 345 144 1,156.51 1,088 269

No Ineq 345 345 142 1,439.51 1,092 317

No primal 345 345 142 1,904.86 1,084 370

Table A.10: Impact of the enhancements on the BD method

No. of No. of No. of Total Total Time

Case instances feasible optimal cost time to best

Base 345 345 5 379.24 1,787 362

No Ineq 345 345 2 408.14 1,791 311

Appendix B. Choice of the SAA Parameters

This section shows the results of the SAA-BC and SAA-BD methods for different values of M and

|N | and time limits to solve the sample problems (‘Sample time’). We explore the usage of 10 and 20

26



samples (M) and sample sizes (|N |) ranging from 5 to 20 scenarios. For each configuration we analyze

the average cost of the solutions (‘Total cost’), the total CPU time (‘Total time’) and the time to find the

best solution (‘Time to best’) in seconds, the relative optimality gap of the SAA solutions (‘Opt gap’)

(computed with the formula shown in Section 3.1) as well as the average relative optimality gap of the

sample problems (‘Sample gap’). Note that the latter values refer to the average of the gaps reported

at termination by the solver for the sample problems. The results for SAA-BC and SAA-BD are

shown in Tables B.11 and B.12, respectively. It is worth mentioning that for both SAA approaches the

i-th sample problem is always the same (for the same sample size) for comparability purposes. The

results for SAA-BC show that in general better solutions can be found (and more quickly) when the

sample size (|N |) decreases. This is a result of the capacity of the BC method to find high-quality

solutions for small-sized problems. As expected, it is also possible to observe that in general using more

samples (M) increases the chances of finding better solutions. For SAA-BD, Table B.12 shows a rather

stable behavior in terms of solution quality, execution time and optimality gaps. The configuration

chosen to be used in the main body of the manuscript is marked with ‘*’.

Table B.11: Performance of the SAA-BC method for different configurations

Sample No. of Total Total Time Opt Sample

time M |N | instances cost time to best gap (%) gap (%)

30 min 10 5 138 255.83 7,479 3,736 16.00 10.62

10 138 563.94 9,342 4,917 19.09 16.53

15 138 568.77 10,313 4,984 19.73 18.25

20 138 714.87 10,871 4,695 21.60 20.71

30 min 20 5 138 *253.01 15,263 7,145 16.00 10.83

10 138 564.68 18,845 8,354 19.14 16.43

15 138 566.29 20,903 9,654 19.51 18.32

20 138 712.35 21,798 9,620 21.14 20.57

60 min 10 5 138 253.47 14,269 7,466 15.60 9.97

10 138 266.40 18,164 10,740 16.76 14.03

15 138 563.93 20,050 10,476 18.92 17.34

20 138 579.57 21,213 8,215 19.75 18.63

Appendix C. Model to Improve Driver Consistency

We can try to improve the driver consistency of a given input solution x̄ by reassigning the vehicles

that carry out each route while maintaining the same routing decisions. Considering the same notation

introduced in Section 2.1, the mathematical formulation is as follows:

min
∑
i∈C

oiλi (C.1)

s.t.
∑
k∈K

xijkω =
∑
k∈K

x̄ijkω ω ∈ Ω, (i, j) ∈ Eω, (C.2)
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Table B.12: Performance of the SAA-BD method for different configurations

Sample No. of Total Total Time Opt Sample

time M |N | instances cost time to best gap (%) gap (%)

30 min 10 5 138 344.69 17,384 5,831 42.41 40.64

10 138 342.37 17,539 5,302 42.69 41.85

15 138 341.21 17,612 4,902 43.18 42.63

20 138 342.48 17,831 5,032 43.84 43.42

30 min 20 5 138 341.99 34,479 10,431 43.61 42.00

10 138 340.10 34,866 9,915 44.58 43.80

15 138 *339.84 35,221 8,052 45.53 45.12

20 138 342.31 35,670 8,039 46.70 46.48

60 min 10 5 138 343.53 34,208 11,974 41.79 40.11

10 138 341.74 34,571 11,285 42.22 41.42

15 138 340.76 34,805 9,999 42.78 42.25

20 138 341.31 35,349 10,092 43.46 43.00

∑
k∈K

yik ≤ D + λi i ∈ C, (C.3)∑
k∈K

zikω ≤ 1 ω ∈ Ω, i ∈ Cω, (C.4)∑
(j,i)∈Eω

xjikω +
∑

(i,j)∈Eω

xijkω = 2zikω ω ∈ Ω, i ∈ Cω, k ∈ K, (C.5)

∑
j∈Cω

x0jkω ≤ 2 ω ∈ Ω, k ∈ K, (C.6)

zikω ≤ yik ω ∈ Ω, i ∈ Cω, k ∈ K, (C.7)

λi ≥ 0 i ∈ C, (C.8)

yik ∈ {0, 1} i ∈ C, k ∈ K, (C.9)

zikω ∈ {0, 1} ω ∈ Ω, i ∈ Cω, k ∈ K, (C.10)

xijkω ∈ {0, 1, 2} ω ∈ Ω, (i, j) ∈ Eω : i = 0, k ∈ K, (C.11)

xijkω ∈ {0, 1} ω ∈ Ω, (i, j) ∈ Eω : i > 0, k ∈ K. (C.12)

The objective function (C.1) minimizes the cost of the inconsistencies resulting from the (poten-

tially) new assignments. Constraints (C.2) enforce that every edge traversed in the input solution is

also traversed in the output solution, but a reassignment of the drivers is allowed. The remaining

constraints serve the same purpose as in the original formulation. Note that this model can be solved

using a general-purpose solver, whose performance can be enhanced using the inequalities presented

in Section 3.2.1.
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