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Abstract

Efficient algorithms and solvers are required to provide optimal or near-optimal
solutions quickly, enabling organizations to react promptly to dynamic situations
such as supply chain disruptions or changing customer demands. State-of-the-art
mixed-integer programming (MIP) solvers are crafted to tackle a wide vari-
ety of problems, yet many real-world situations present problem instances that
originate from a narrow distribution. This has inspired the creation of tailored
approaches that exploit historical data to inform heuristic design. Deep learning
(DL) methods are typically used in this context to extract patterns from data, but
they require large datasets and comprehensive hyperparameter tuning for strong
performance. This article describes a one-shot learning heuristic that leverages
solutions discovered within the branch-and-bound tree to construct a model with
minimal overhead. We evaluate our method on the locomotive assignment prob-
lem (LAP), a recurring real-world problem that is challenging to solve at scale.
Experimental results reveal a tenfold acceleration compared to a general-purpose
solver (CPLEX) with a relative gap of less than 2%. We also demonstrate that
the method is competitive with CPLEX on the majority of selected MIPLIB
instances with SOS1 constraints.

Keywords: Machine Learning, Mixed-integer programming, Learning Heuristics, Fleet
Management Problem, MIPLIB.
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1 Introduction

The intersection of mixed-integer programming (MIP) and machine learning (ML)
presents a unique opportunity to advance the frontiers of optimization and tackle
complex problems in areas such as transportation, energy, and finance. This trend has
emerged in recent years with the maturation of specialized hardware [43] and software
[34] stacks. Combined with the availability of large datasets, ML can exploit patterns
from data to design tailored algorithms. Today, there are many strategies that take
advantage of learning methods to improve upon standard solvers. Bengio et al. [4]
provide a tour d’horizon on ML for combinatorial optimization (CO) and describe the
different ways they can be integrated. The first idea uses ML to directly predict the
solution of the problem instance from the input features. One example of this is the
application of the pointer network [40] to learn to predict the optimal permutation for
the travelling salesman problem (TSP). The second approach is to learn to optimize
the hyperparameters of a CO algorithm [46]. Third, ML can also be used alongside an
optimization algorithm. In practice, this is often done via the integration of learning
in the branch-and-bound (B&B) framework [31]. Our approach belongs to the first
class of hybrid methods.

This paper proposes a primal heuristic for MIPs with special ordered sets of type
1 (SOS1 or S1) [3] that we refer to as Probe and Freeze1 (PNF). We use the shorter
notation S1 to reference special ordered sets of type 1 in the remaining of this paper.
The idea of PNF is to use the probing data to train a classifier to predict the optimal
assignment in each S1 constraint of the MIP. Training is done in a one-shot fashion,
analogous to the one-shot learning (OSL) paradigm, which is the main difference
compared to other works in the literature. The method uses entropy, a key concept
in information theory, to quantify uncertainty. The predictions are used to freeze a
subset of the variables in the S1 constraints to produce a reduced problem that can
be significantly easier to solve.

Motivations for S1. The motivation for this approach comes from the hypothesis
that S1 constraints have a structuring effect on the final solution. These constraints
are useful when a choice involves multiple options or resources, and only one can
be selected. For example, in the facility location problem (FLP), the objective is to
determine the optimal locations for a set of facilities to serve a given set of customers.
The S1 constraints can either be used to model which type of facility to build or how
to assign customers to facilities. In the locomotive assignment problem (LAP), which
is a problem studied in this paper, S1 constraints model the assignment of consists
(i.e., groups of locomotives) to trains. The flow variables in the LAP are often trivial to
optimize for a given assignment of consists to trains. In other words, the S1 constraints
are the main source of difficulty in the problem.

Motivations for OSL. The main motivation behind OSL is the cost associated
with the data generation process. In the context of MIPs, the training dataset typically
comes from solving a large number of instances. This is a time-consuming process
that requires a significant amount of computational resources. Another reason is the
fact that most of the rich data structure generated by the B&B is usually overlooked

1Source code available at https://github.com/laroccacharly/MLSOS

2



during the search. This work explores how to make use of this readily available data
using statistical tools to better inform a heuristic. As a side effect of using OSL, we
can produce a method that is easy to understand and reproduce. It is also worth
noting that the OSL paradigm is not a hard requirement for our approach. In fact,
we can use any ML classifier to predict the optimal class for each S1 constraint. The
OSL model acts as a strong baseline which can be combined with other modern ML
models to improve the accuracy of predictions.

This document first presents some related work on the integration of ML in MIP
solvers. This is followed by an overview of our methodology which is composed of
three routines: probe, select and freeze. Finally, we include results for the speed up
and the gap on a set of LAP and MIPLIB instances. The LAP is a problem that
is not only challenging to solve but also recurring i.e., similar problem instances are
solved repeatedly over time. Hence, there is a substantial economic incentive to find
a heuristic that can solve the LAP quickly. We use the Canadian National Railway
Company (CN) as the subject of our case study for the LAP.

2 Related Works

Commercial solvers such as CPLEX [23] and Gurobi [17] are widely considered the
state-of-the-art (SOA) for solving MIPs. The underlying algorithm of these solvers is
the “divide and conquer” framework called branch-and-bound [29]. Alone, the classical
B&B implementation will often fail to close the optimality gap in an acceptable amount
of time. Extensive research has been done to improve the performance of B&B. In the
following, we first present some of the most relevant works in the operational research
(OR) literature. We then discuss the recent advances in ML for MIPs.

Operational research approaches. Heuristics for MIPs can be classified in two
general classes: constructive and improvement heuristics [19]. An example of a con-
structive heuristic is the Feasiblity Pump (FP) [1, 5, 13] where the main goal is to
quickly produce feasible solutions. Typically, solutions generated by this type of heuris-
tic do not come with guarantees. Improvement heuristics iteratively apply updating
steps to an initial solution (feasible or not) to refine the quality of solutions. In that
category, there are Large Neighborhood Search (LNS) heuristics such as Relaxation
Induced Neighborhood Search (RINS) [10] and, more recently, Adaptive Large Neigh-
borhood Search (ALNS) [20]. LNS heuristics define a neightborhood of interest and
explore that space to improve the current incumbent solution.

Constructive heuristics, also called Start Heuristics (SH) [6], are most similar to
the methodology proposed in this paper. Diving [30] and Rounding [2, 32] heuristics
are two other examples that fit in that category. Diving heuristics employ a depth-first-
search (DFS) strategy which focuses on decreasing the number of fractional variables
in the LP. At every iteration, the algorithm selects a fractional variable to bound.
Fractional, coefficient and pseudocost diving all share this idea but they use a different
strategy to select which variable to bound [6]. Rounding heuristics use the notion of
up and down locks to perform rounding that guarantees that all linear constraints
are satisfied [2]. The Zero Integer (ZI) round [42] heuristic calculates the bounds
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for fractional variables such that the LP stays feasible. Variables are shifted to the
corresponding bound that minimizes fractionality.

We found two relevant references [15, 24] in the OR literature that exploit infor-
mation theory principles to aid decision-making during branching. In that context,
the LP value of a variable is interpreted as a probability. Similar to our approach,
the first paper [15] quantifies the amount of uncertainty of a binary variable using the
notion of entropy [35]. They describe Entropic Branching (EB), a look-ahead strategy
similar to strong branching, where variable selection is done in a way that minimizes
uncertainty in child nodes. The second paper [24] uses a restart strategy to collect
partial assignments from fathomed nodes called clauses. They experiment with both
branching alternatives and clause inequalities that use this information to guide the
search. This approach is quite similar to the Rapid Learning heuristic [7, 8] (related to
no-good or conflict learning) which applies a depth-first search to collect valid conflict
constraints. From this probing step, it identifies explanations for the infeasibility and
exploits that information in the remainder of the search to prune parts of the tree.

ML for MIPs. In the previous paragraphs, we introduced heuristics that are
readily available within SOA solvers. The solvers typically tune the schedules of these
heuristics using the empirical performance on a broad set of test instances. The works
of [9] use a data-driven approach to obtain a problem-specific schedule for different
heuristics. By accomplishing this, they are able to improve the primal integral by 49%
on two classes of instances. The scheduling of heuristics is just one of many possible
ways to improve upon the default behaviour of SOA solvers. Other papers use ML to
improve the node and variable selection strategies [14, 26]. Learning to cut is another
promising approach for strengthening the linear relaxation [38].

Graph neural networks (GNN) [18] are commonly used to model the graph repre-
sentation of a MIP. This architecture is popular because a MIP can be represented as a
bipartite graph on variables and constraints. They can be trained via supervised learn-
ing to predict the stability [11], the bias [27] or the value [22] of binary variables. The
predictions are used to guide the search in the B&B tree. These approaches keep the
exactness of the algorithm because all possible decisions made by the ML model are
valid by design. The optimality certificate is often obtained by iteratively improving
both the upper and lower bounds until they converge to the same solution. How-
ever, for many practical applications, it is preferred to have a fast heuristic that can
quickly produce a good solution without the need to prove optimality. For example,
the Deep Learning Tree Search (DLTS) [21] algorithm uses neural network predictions
for both branching and bounding. Given that it relies on an estimated bound instead
of a proven one, this approach is not guaranteed to converge to the optimal solution.
Stochastic policies trained to generate solutions to CO problems have also been pro-
posed [39]. This type of approach iteratively generates solutions by sampling from a
learned distribution over the variables, hence it does not produce any optimality cer-
tificate. Nonetheless, the authors show that the solutions generated by their approach
are of high quality.

Our work differs from previous hybrid approaches in two key aspects. First, we fix
a subset of the variables in the MIP formulation (before calling the solver) instead of
directly guiding the search. In that sense, our approach is most similar to the Relax
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and Fix [45] primal heuristic where variables are fixed based on the fractional solution
of the LP. Second, we do not rely on a large dataset to train the model. Instead,
analogous to one-shot learning, training is done on the probing data which contains
few samples.

One-shot learning. One-shot learning has emerged as a significant challenge
in the ML literature, aiming to mimic human-like learning from few examples. Two
notable approaches in this domain are Matching Networks [41] and Prototypical
Networks [36]. Matching Networks employ an attention mechanism over a learned
embedding of the training set of examples to predict classes for unlabeled points, func-
tioning as a weighted nearest-neighbour classifier. Conversely, Prototypical Networks
pose that an embedding exists around a single prototype representation for each class.
It produces a distribution over classes for a query point based on a softmax of the
distances to the prototypes. Both approaches have been successfully applied to vision
and language tasks.

In summary, we noticed that a GNN trained on a large dataset is the dominant tool
used to learn to improve SOA MIP solvers. However, they require extensive training
and tuning to yield acceptable performance. In contrast, our method aims to be as
efficient as possible by exploiting readily available data from the B&B tree. As a
consequence, we can take advantage of simpler models that are less prone to overfitting.
This design choice creates the opportunity for an accurate model with low opportunity
costs.

3 Methodology

A combinatorial optimization problem P can be formulated as a mixed-integer linear
programming (MIP) model using the notation

P := arg min
x
{cTx |Ax ≤ b, x ∈ B ∪ Q ∪W}, (1)

where x is the vector of decision variables that is partitioned into B, Q and W,
the index sets of binary, integer and continuous variables, respectively. Our approach
makes the assumption that some subset of the constraints are S1 [3]. Each variable
in the set should be binary, and at most one variable in the set can be equal to 1.
The motivation for working with S1 constraints comes from the fact that it can be
modelled as a classification problem. Hence, we can use ML tools to predict the class
associated with each binary variable in the set. The solution vector for the binary
variables is analogous to the one-hot encoding of the optimal class. The mathematical
representation of S1 is given by the equation∑

k∈Kv

xk
v = 1 ∀v ∈ V, (2)

where xk
v is the binary variable that indicates whether the class k ∈ Kv belongs to the

S1 set v ∈ V. The set V contains all the S1 constraints in the problem and we assume
that each variable belongs to at most one S1 constraint. If that assumption does not
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hold, the method might produce an infeasible reduced problem. Each constraint v ∈ V
has a set of possible outcomes Kv and the goal is to find k∗ which is the optimal class in
the set. The motivation for working with S1 constraints comes from the effectiveness of
machine learning classification tools that can help predict the optimal class k∗. In that
context, we define k′ as the predicted class and we use it to freeze the corresponding
binary variable xk′

v . We will describe an S1 constraint v as frozen whenever we add
the constraint xk′

v = 1 in the MIP to create a reduced problem P ′. If a classifier can
accurately predict the optimal class (k′ = k∗), then we can expect P ′ to be significantly
easier to solve than the original problem P. The approach can be decomposed into
three steps which are probe, select and freeze. These routines are explained in more
detail in the remaining of this section.

3.1 Probe

The probing step is used to collect data about the decision variables xk
v . We call the

solver on P for a predefined probing time budget Tp and fetch intermediate solutions
in the callback. The probing routine does not discriminate any intermediate solution;
it stores all integer feasible and fractional solutions. We define xk

vt as the value of
the variable xk

v at iteration t, which corresponds to a node in the B&B tree. At
every iteration, we compute the most likely class based on which variable has the
highest value kvt = arg maxk∈Kv

{xk
vt}. We then concatenate the kvt into the vector

kv = [kv1, kv2, ..., kvn], where n is the probing sample size. The vector kv corresponds
to the probing data for the S1 constraint v, and it is used as input to the classifier.
Finally, we define K as the set of all probing data vectors kv.

3.2 Select

Given the heuristic nature of freezing variables, we need to select the S1 constraints
whose variables will be the object of a freezing in a way that minimizes potential assign-
ment errors. The selection strategy uses a scoring system to sort the S1 constraints
based on the entropy H to infer uncertainty. It is defined as

H(kv) = −
∑
k∈kv

P (k|kv) logP (k|kv), (3)

where P (k|kv) is the probability associated with the class k given the probing data
kv. The probability is computed using the corresponding frequency:

P (k|kv) =
|{z ∈ kv | z = k}|

|kv|
. (4)

Next, we compute the score which is the negative of the entropy:

score(v) = −H(kv). (5)

Finally, we select the first r · |V| constraints from the sorted list to produce the set
of selected constraints V ′. The ratio of constraints to freeze r is a hyperparameter

6



that can be tuned to modify the aggressiveness of the algorithm. The idea behind this
strategy is reasonably intuitive. On the one hand, when the entropy H(kv) is low,
it means that the solutions found during probing are similar and the most frequent
class in kv is likely to be optimal. On the other hand, when the entropy is high, the
most frequent class changes often and therefore we are less confident about what the
optimal class is.

3.3 Freeze

Once probing is done, we restart the solver and create a reduced problem P ′ by freezing
the variables xk

v in the selected constraints V ′. The freezing routine builds freezing
cuts (FC) defined as follows:

FC(v, k′) := {xk′

v = 1}, (6)

where the predicted class k′ is the most likely class in the probing vector:

k′ = arg max
k

(P (k|kv)). (7)

The underlying classifier uses the histogram method with discrete bins for each class
in kv. The reduced problem P ′ is then solved to completion or until it reaches the
total time limit. The probe and freeze methodology is summarized in Algorithm 1.

Algorithm 1 Probe and Freeze (PNF) algorithm

procedure PNF(P, Tp, r)
P ′ ← P . Make a copy of the problem
K ← solve(P, Tp) . Solve to collect probing data
V ′ ← select(K, r) . Select the constraints to freeze
for v ∈ V ′ do

kv ← K . Get probing data for the constraint v
k′ ← arg maxk(P (k|kv)) . Predict the optimal class
P ′ ← P ′ ∪ {FC(v, k′)} . Freeze the selected constraint

end for
x′ ← solve(P ′) . Solve the reduced problem and produce an approximate

solution x′

end procedure

4 Experimental Results

We test our approach on two different sets of instances. The first set includes LAP
instances constructed using historical data from CN. The second set contains instances
with S1 constraints from the MIPLIB 2017 [16] library. These two sets differ with
respect to the underlying distribution. The first set is regular, whereas the second set
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is much more diverse. The LAP instances are generated using consecutive weeks of
data from CN, which implies that all instances come from the same distribution. In
contrast, instances in MIPLIB were built independently and relate to many different
problems. For this reason, MIPLIB can be seen as a more challenging test bed given
our methodology targets a regular setting. Since each instance in MIPLIB is unique,
it is not possible to effectively calibrate the two hyperparameters of PNF (r, Tp).
Nevertheless, we believe it is important to test PNF on MIPLIB to assess its limitations
and understand where it may not be applicable. The results are presented in Sections
4.1 and 4.2.

Metrics. The main goal of this work is to predict the optimal solution in a MIP
with S1 constraints to speed up the solution process. Naturally, the main metric we
focus on is the runtime speed up (RS), which is the ratio between the runtime of the
baseline CPLEX and the algorithm as defined in the following equation:

RS =
runtime(CPLEX)

runtime(PNF) + Tp
. (8)

There are two points that are worth noting about how RS is computed. First, the
runtime is not measured when the solver stops, but instead, it is measured relative to
the moment when the best feasible solution is found. Second, since PNF has a probing
phase, we add the probing time budget Tp to the measured runtime. This is required
to make a fair comparison with CPLEX. The second metric we report is the relative
gap (RG) in percentage which is defined as follows:

RG =
cTx′ − cTxCPLEX

cTxCPLEX
× 100, (9)

where x′ and xCPLEX are the best solutions found by the heuristic and CPLEX,
respectively. The value of RG can be negative if the heuristic finds a better solution
than CPLEX.

Setup. Our software stack is fully written in Julia and we use CPLEX version
12.10. By default, we run each scenario for one hour on a single thread of Intel Gold
6148 Skylake (2.4 GHz) and 35 GiB of memory.

4.1 LAP Instances

The LAP is a scheduling problem that is used to assign locomotives to trains in a
railway network. The problem is modelled using a space-time network in which each
node represents a time and space location, whereas each arc represents a movement of
locomotives. The goal of the LAP is to find the cheapest way to send a certain number
of locomotives through a network such that all capacity and demand constraints are
satisfied. The main reasons that motivate the use of a learning heuristic for the LAP
are the following. First, the problem is NP-hard and it is challenging to find good
solutions in a reasonable amount of time. Second, given the scheduling nature of
the problem, instances follow daily and weekly cyclical patterns which are useful for
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learning. Third, there is a vast amount of historical data available from CN which can
be used to generate instances and train/validate the strategy.

MIP model. The S1 constraints in the LAP are used to model the fact that only
one set of locomotives (i.e., a consist) can be assigned to each train. The decisions
xk
v represent the configuration of locomotives k assigned to each train arc v in the

instance. The MIP of the LAP also contains flow conservation constraints for each
node in the network. We will not discuss the details of the model here as it is not the
focus of this paper. We refer to [33] for the details on the MIP formulation of the LAP.

Instance generation. The historical data used to build the instances were pro-
vided by CN. The dataset contains the origin and destination stations for each train
operated during the year. We study the performance on different difficulty levels to
access the generalization properties of the heuristic. To adjust the difficulty level, we
subsample the data in a way that preserves the weekly and daily patterns. This is
done by selecting the set of trains that operate in a given region of the network. We
tune the radius of the region to control the size of the instances and its difficulty as
shown in Table 1. The difficulty level is labeled as easy (E), medium (M), or hard (H).
Instances E and M are generated using the subsample process whereas H instances
are full instances. These full instances are generated using the same methodology as
in [33] and we run them with a time limit of 6 hours instead of 1 hour. The main
difference compared to [33] is that we test on the most difficulty instances (all trains)
whereas [33] split the test set into mainline only and all trains.

Results. The quantiles for the speed up and relative gap of the PNF heuristic are
presented in Tables 2 and 3, respectively. The suffixes of the scenarios are the fixing
ratio r and the probing time budget Tp in seconds. The tables include a variety of
scenarios with different hyperparameters to reveal their impact on the performance of
the algorithm. The fixing ratio r adjusts the number of variables that are fixed and,
therefore, the aggressiveness of the heuristic. When r = 0.9, the heuristic can produce
on average a speed up of 27.75x for easy instances and 17.1x for hard instances. In both
cases, the relative gap is less than 2% on average and the 95th quantile is below 4%.
Inversely, when r is small, the speed up is lower but the quality of solutions is better.
For r between 0.2 and 0.5, the speed up is at most 2x but the relative gap is usually
negligible. In fact, we discover a better solution than CPLEX for most M instances
because the relative gap is negative. The hyperparameter Tp has the opposite effect on
performance. A large probing time budget leads to a smaller speed up because more
time is spent probing. However, the relative gap can improve because the heuristic
will collect more data. The first two scenarios (E+PNF 0.2 10, E+PNF 0.2 20) reveal
that effect as the speed up goes from 1.84x to 1.32x but the relative gap improves
from 0.02% to 0.01% on average.

Full instances. The performance metrics on the full instances (H) have a distinct
behaviour compared to the other instance types. In most cases, the speed up is close
to 1, which is due to the fact that closing the optimality gap is difficult and, therefore,
all scenarios reach the time limit. To better appreciate the acceleration benefit of
PNF on full instances we computed the performance over time as shown in Tables 5
and 6. These tables respectively display the gap relative to the best known solution
and the number of instances solved at different points in time. On average, with
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the best configuration (PNF 0.5 1800), PNF is able to find an upper bound within
1.48% of the best known solution after 1 hour (1800s for probing + 1800s for solving)
whereas CPLEX’s average gap is above 4%. Furthermore, PNF finds a feasible upper
bound for more instances during the first two hours (10/20 for PNF 0.2 1800 and 7/20
for CPLEX). Even in the worst case, the best configuration finds a better solution
than CPLEX with a 95th quantile of -0.36% (see Table 3). The worst configuration
(PNF 0.2 600) has a 95th quantile of 4.25%, which shows that the heuristic needs a
longer probing time budget to perform well on full instances.

In Table 4, we report the correlation between the relative gap and each hyperpa-
rameter to understand their impact on the performance of the algorithm. We choose
to compute the Spearman [37] and Kandall [25] correlations because they are robust
to outliers. As expected, the fixing ratio r has a strong positive correlation with the
relative gap (0.56 on average). This is because the fixing ratio controls the number of
variables to freeze; the quality of solutions is more likely to decline when r increases.
The probing time budget Tp has a negative but weaker correlation with the relative
gap (-0.37 on average). This is because Tp controls the amount of data that is col-
lected and, therefore, the accuracy of the heuristic.

Table 1 Average summary metrics for LAP instances using
CPLEX

Difficulty Runtime (s) Train count Optimality gap (%)

E 206.42 141.77 0.01
M 2450.07 336.40 0.26
H 21600.20 5673.20 2.94

Table 2 Quantiles for runtime speed up in LAP instances

Scenario Quantiles Mean Sample size
0.05 0.25 0.5 0.75 0.95

E+PNF 0.5 8 1.02 1.84 3.21 5.46 9.73 4.07 30.00
E+PNF 0.9 6 2.73 4.46 19.79 40.64 50.40 27.75 30.00
E+PNF 0.2 10 0.52 0.90 1.27 2.23 4.82 1.84 30.00
E+PNF 0.2 20 0.53 0.66 1.01 1.68 2.66 1.32 30.00
E+PNF 0.5 30 0.37 0.65 1.77 2.91 5.29 2.39 30.00
M+PNF 0.2 60 0.45 0.93 1.00 1.08 3.98 1.32 30.00
M+PNF 0.5 60 0.92 1.01 1.16 2.64 9.85 2.63 30.00
M+PNF 0.2 120 0.48 0.92 0.99 1.11 3.51 1.25 30.00
M+PNF 0.5 120 0.96 1.03 1.37 1.82 7.50 2.27 30.00
M+PNF 0.9 120 1.51 4.07 21.74 26.37 28.83 17.10 30.00
H+PNF 0.2 600 0.90 0.99 1.00 1.02 1.19 1.02 20.00
H+PNF 0.2 1800 0.97 0.99 1.00 1.02 1.02 1.00 20.00
H+PNF 0.5 1800 0.92 0.98 0.99 1.00 1.00 0.98 20.00
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Table 3 Quantiles for relative gap (%) in LAP instances

Scenario Quantiles Mean Sample size
0.05 0.25 0.5 0.75 0.95

E+PNF 0.5 8 -0.00 0.01 0.05 0.20 0.38 0.11 30.00
E+PNF 0.9 6 0.55 0.94 1.50 2.31 3.40 1.73 30.00
E+PNF 0.2 10 -0.00 -0.00 0.00 0.02 0.08 0.02 30.00
E+PNF 0.2 20 -0.00 -0.00 0.00 0.00 0.05 0.01 30.00
E+PNF 0.5 30 -0.00 0.00 0.03 0.13 0.22 0.07 30.00
M+PNF 0.2 60 -0.42 -0.12 -0.00 0.00 0.04 -0.09 30.00
M+PNF 0.5 60 -0.52 -0.11 0.01 0.04 0.12 -0.08 30.00
M+PNF 0.2 120 -0.38 -0.05 -0.00 0.00 0.03 -0.06 30.00
M+PNF 0.5 120 -0.44 -0.03 0.01 0.03 0.11 -0.07 30.00
M+PNF 0.9 120 0.46 0.65 1.02 1.47 2.43 1.15 30.00
H+PNF 0.2 600 -1.58 -1.09 -0.87 -0.58 4.25 -0.10 20.00
H+PNF 0.2 1800 -1.14 -0.99 -0.74 -0.48 0.90 -0.52 20.00
H+PNF 0.5 1800 -1.93 -1.16 -0.98 -0.69 -0.36 -1.03 20.00

Table 4 Correlations with relative gap for LAP instances

Parameter Spearman Kendall Average

Fixing ratio 0.61 0.51 0.56
Probing time budget (s) -0.42 -0.33 -0.37

Table 5 Gap (%) for full LAP instances

Scenario Time after probing (s)
1800 3600 5400 7200

cplex nan 4.04 3.94 2.49
PNF 0.2 600 1.72 1.48 1.09 0.88
PNF 0.2 1800 2.01 1.67 1.18 1.17
PNF 0.5 1800 1.48 1.39 0.89 0.69

Table 6 Full LAP instances with feasible solution

Scenario Time after probing (s)
1800 3600 5400 7200

cplex 0 6 7 7
PNF 0.2 600 7 9 9 9
PNF 0.2 1800 7 10 10 10
PNF 0.5 1800 8 9 9 9

4.2 MIPLIB Instances

The MIPLIB [16] dataset is an open source library of MIP instances. It contains
a variety of instances from different fields such as transportation, scheduling, and
others related to combinatorial optimization. The instances in MIPLIB are generated
independently and are not related to each other. This makes it a more challenging test
bed for our approach. The main reason for using MIPLIB is to show that our approach
can generalize to instances that have S1 constraints as the only common trait.

Identifying S1 constraints. The main assumption of the approach is the pres-
ence of S1 constraints in the MIP. Hence, the first step is to identify the subset of
MIPLIB instances with that type of constraint. To do so, we need an algorithm to
detect S1 constraints in the MIP. A constraint i can be decomposed into the so-called
left-hand side (LHS) and right-hand side (RHS) as follows:

LHS :=
∑
j

aijxj , RHS := bi, (10)
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where aij are the coefficients of the variables xj and bi is the right-hand side. For a
constraint to be S1 as defined in (2), the aij must be 0 when xj is not binary, aij
must be 0 or 1 if xj is binary, and the bi must be equal to 1. Also, there must be an
equality sign between the LHS and RHS.

Instance selection. The No Free Lunch (NFL) theorem [44] shows that, for
optimization problems, the average performance of any pair of algorithms across all
possible problems is identical. In that sense, the PNF heuristic is unlikely to perform
well on all MIPLIB instances. The task of selecting the appropriate algorithm for
a given problem is often called the Algorithm Selection Problem (ASP) [28]. This
can be done by building a mapping between the features of the problem and the
expected performance of an algorithm. In our case, we are interested in selecting the
MIPLIB instances on which the PNF heuristic is likely to perform well. To achieve
this, we identify the features related to the implicit assumption of the approach. The
main assumption of PNF is related to the stability of the solutions; if the solutions
found during probing are stable then they are likely to be optimal. For that reason,
the PNF heuristic can perform poorly when the average entropy of solutions is high
(
∑

v∈V H(kv)/ |V| > 1) and, therefore, we should not apply the method when that is
the case. The other indicator of interest is the probing sample size (n) which is related
to the probing time budget (Tp). We remove every scenario where n ≤ 5 because the
sample size would be too small to be representative. For reference, the results on the
full MIPLIB dataset are available in the Appendix.

Instance types. We split the MIPLIB dataset into three categories based on the
runtime required to solve the instance with CPLEX. The distribution of runtimes is
presented in Table 7. The easy category contains instances that can be solved in less
than 60 seconds, hard instances reach the time limit of 3,600 seconds, and the medium
category contains the remaining instances. This classification is required to adjust the
probing time budget Tp to be proportional to the instance difficulty. It is worth noting
that MIPLIB instances already have a classification based on their difficulty. However,
we found that the classification based on the runtime is more relevant to our approach.

Results. The quantiles for the speed up and the relative gap are shown in Tables 9
and 10, respectively. For the MIPLIB dataset, we use a more conservative set of
hyperparameters to reduce the likelihood of outliers. In particular, the fixing ratio
is set to 0.2 for all scenarios and the probing time budget is around 10% of the
CPLEX runtime. The results reveal an average speed up between 1.19x and 2.8x,
which is comparable to the LAP results when r = 0.2. However, the results for the
relative gap differ significantly. We observe extreme outliers in both directions. For
example, in scenario H+PNF 0.2 300, the 95th quantile is 23.83% and the 5th quantile
is −21.62%. This is due to the fact that the set of instances in MIPLIB is diverse
and the hyperparameters are not tuned appropriately for each instance. Interestingly,
the average relative gap is negative for both hard scenarios (−1.16% and −4.87%).
This shows that the proposed approach has the potential to find better solutions than
CPLEX within 1 hour. In Fig. 1, we summarize the results via a histogram which
shows the number of improved scenarios based on an indicator that includes both the
speed up and the relative gap. A scenario is defined as improved if there is a speed
up above 1x and a relative gap of at most 1%. The main takeaway is that the PNF
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heuristic is able to outperform CPLEX on the majority of selected instances (58.3%)
at the cost of potentially getting a strictly worse outcome (6% of the time).

Limitations. An important limitation of PNF is that it is not guaranteed to
produce a feasible reduced problem P ′. As reported in Table 8, given the best con-
figuration, the PNF heuristic is unable to find a feasible solution for 11% of selected
instances (21/188). In particular, this will happen if the same variable is frozen in
two different constraints with different values. The PNF heuristic assumes that S1
constraints in P are independent from each other, which is not always the case in
MIPLIB instances. In general, PNF does not come with any guarantee. We recom-
mend using the PNF heuristic only when the user is aiming for a substantial speed
up and is willing to handle possible feasibility issues. The integration of a feasibility
recovery strategy is left for future work. For now, we propose a few possible paths
to mitigate the risk of infeasibility. Whenever the reduced problem P ′ is infeasible,
the user could fallback to the original problem P to solve the instance, reduce the
parameter r or increase the probing time budget Tp. It is also possible to repair MIP
infeasibility through local branching [12]. Another solution would be to solve a feasi-
bility relaxation of the problem to see which constraint is not satisfied in the reduced
problem. From that experience, the user can decide to change the selection routine to
avoid fixing variables in S1 constraints that are not independent. The user might also
realize that the OSL classifier returns poor predictions for his problem. In the end,
the exact reason for infeasibility is problem specific and, therefore, we cannot provide
a general solution. It is worth noting that we never encountered infeasibility in the
LAP because the S1 constraints are independent by construction.

Table 7 CPLEX runtime on MIPLIB instances with S1 constraints

Scenario Quantiles Mean Sample size
0.05 0.25 0.5 0.75 0.95

E+cplex 2.98 4.00 7.05 13.53 39.29 11.84 68.00
M+cplex 76.81 116.72 449.53 1307.78 2281.55 770.16 44.00
H+cplex 3600.00 3600.01 3600.02 3600.06 3600.83 3598.90 76.00

Table 8 Number of solved MIPLIB instances

Scenario Number of instances Solved Unsolved

E+PNF 0.2 1 68 67 1
E+PNF 0.2 2 68 57 11
M+PNF 0.2 60 44 39 5
M+PNF 0.2 120 44 37 7
H+PNF 0.2 300 76 61 15
H+PNF 0.2 600 76 58 18
Total 376 319 57
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Table 9 Quantiles for runtime speed up in selected MIPLIB instances

Scenario Quantiles Mean Sample size
0.05 0.25 0.5 0.75 0.95

E+PNF 0.2 2 0.83 1.07 1.19 1.24 1.68 1.19 14.00
M+PNF 0.2 60 0.10 0.38 0.61 3.62 10.07 2.80 11.00
M+PNF 0.2 120 0.06 0.30 0.63 1.34 4.78 1.23 13.00
H+PNF 0.2 300 0.01 0.29 0.83 1.01 4.40 1.32 18.00
H+PNF 0.2 600 0.01 0.38 0.91 1.31 4.32 1.22 18.00

Table 10 Quantiles for relative gap (%) in selected MIPLIB instances

Scenario Quantiles Mean Sample size
0.05 0.25 0.5 0.75 0.95

E+PNF 0.2 2 -0.00 -0.00 0.00 0.00 0.32 0.06 14.00
M+PNF 0.2 60 -0.00 0.00 0.00 2.32 24.07 4.80 11.00
M+PNF 0.2 120 -0.00 0.00 0.00 0.00 8.94 1.57 13.00
H+PNF 0.2 300 -21.62 -0.06 0.00 0.00 23.83 -1.16 18.00
H+PNF 0.2 600 -31.21 -0.00 0.00 0.06 2.75 -4.87 18.00

5 Perspectives and Future Work

The main purpose of the paper was to explore if a one-shot learning heuristic could
improve the performance of a commercial solver on MIPs with S1 constraints. Accord-
ing to our reading of the literature, most other works on this subject use some form of
neural networks combined with supervised or reinforcement learning. The overhead of
DL is problematic in practice because of the specialized hardware requirements and
the challenge of generating representative training datasets. Our method bypasses this
issue by using a classical ML model that can be trained using readily available data.
This means that it can be integrated natively within a commercial solver without
requiring any additional resources. Despite the small capacity of our model, we were
able to find good quality solutions for the LAP faster than CPLEX for both small
and full instances. Furthermore, we discovered a clear correlation between the quality
of solutions and the hyperparameters of the heuristic (r, Tp). Therefore, they can be
tuned by the end user to achieve the desired trade-off between quality and speed. On
the MIPLIB dataset, the performance of PNF was less reliable, which reveals the core
limitation of the method. This was expected because there are some problems with
a strong dependence between S1 constraints, which PNF does not take into account.
Nevertheless, we remain optimistic about the potential of PNF since it can find better
solutions than CPLEX on many hard instances of MIPLIB. This study has demon-
strated that the initial solutions found during the first few iterations of the B&B search
can serve as reliable proxies for the optimal solution. A significant contribution of this
research lies in the use of entropy as an effective measure of solution uncertainty. By
identifying and avoiding freezing the constraints with high entropy, we minimize the
risk of compromising the quality of the final solution. Future research might attempt to
augment the heuristic by adding more features or more data. However, we found that
this did not improve the performance enough to justify the additional cost. In fact, we
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Fig. 1 Histogram for the improvement indicator in MIPLIB instances (improved if speed up > 1 and
relative gap less than 1%, worse if speed up below 1 and relative gap above 1%, neutral otherwise )

realized that the simpler heuristic was more robust and performed better in practice.
This is consistent with Occam’s razor principle which states that the simplest expla-
nation is usually the best. For that reason, we believe PNF should be seen as a strong
baseline for future works on learned heuristics for MIPs because it is easy to under-
stand and reproduce. An interesting next step would be to add a worst-case analysis
and a feasibility recovery strategy on top of the heuristic to increase its robustness
and reliability.
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Appendix A Extra MIPLIB Results

This appendix contains the results for the full MIPLIB dataset. We report the speed
up and relative gap in Tables A1 and A2, respectively.

Table A1 Quantiles for runtime speed up in all MIPLIB instances

Scenario Quantiles Mean Sample size
0.05 0.25 0.5 0.75 0.95

E+PNF 0.2 1 0.99 1.18 1.59 2.23 4.23 2.28 67.00
E+PNF 0.2 2 0.85 1.07 1.19 1.52 5.69 1.88 57.00
M+PNF 0.2 60 0.14 0.53 1.21 3.20 11.35 3.03 39.00
M+PNF 0.2 120 0.07 0.36 0.73 1.71 5.74 1.74 37.00
H+PNF 0.2 300 0.01 0.09 0.94 1.80 11.27 2.14 61.00
H+PNF 0.2 600 0.00 0.04 0.63 1.39 5.62 1.25 58.00

Table A2 Quantiles for relative gap (%) in all MIPLIB instances

Scenario Quantiles Mean Sample size
0.05 0.25 0.5 0.75 0.95

E+PNF 0.2 1 0.00 0.00 0.00 4.17 338.54 194.80 67.00
E+PNF 0.2 2 -0.00 0.00 0.00 0.34 104.49 23.63 57.00
M+PNF 0.2 60 -1.86 0.00 0.00 4.71 67.83 72.57 39.00
M+PNF 0.2 120 -0.82 0.00 0.00 2.25 75.14 75.09 37.00
H+PNF 0.2 300 -58.90 -0.97 0.00 1.18 47.42 9.54 61.00
H+PNF 0.2 600 -60.36 -0.19 0.00 1.00 20.62 3.23 58.00
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[19] Hanafi S, Todosijević R (2017) Mathematical programming based heuristics for
the 0–1 MIP: a survey. Journal of Heuristics 23(4):165–206

[20] Hendel G (2022) Adaptive large neighborhood search for mixed integer program-
ming. Mathematical Programming Computation 14(2):185–221. https://doi.org/
10.1007/s12532-021-00209-7

[21] Hottung A, Tanaka S, Tierney K (2020) Deep learning assisted heuristic tree
search for the container pre-marshalling problem. Computers & Operations
Research 113:104781

[22] Huang L, Chen X, Huo W, et al (2022) Improving primal heuristics for mixed
integer programming problems based on problem reduction: A learning-based
approach. In: 2022 17th International Conference on Control, Automation,
Robotics and Vision (ICARCV), IEEE, pp 181–186

[23] IBM Corporation (2021) IBM ILOG CPLEX Optimization Studio (Version 12.10)

[24] Karzan FK, Nemhauser GL, Savelsbergh MW (2009) Information-based branch-
ing schemes for binary linear mixed integer problems. Mathematical Programming
Computation 1(4):249–293

[25] Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93

19

https://doi.org/10.1016/j.disopt.2010.07.001
https://doi.org/10.1016/j.disopt.2010.07.001
https://www.gurobi.com
https://doi.org/10.1007/s12532-021-00209-7
https://doi.org/10.1007/s12532-021-00209-7


[26] Khalil E, Bodic PL, Song L, et al (2016) Learning to Branch in Mixed Inte-
ger Programming. Proceedings of the AAAI Conference on Artificial Intelligence
30(1). https://doi.org/10.1609/aaai.v30i1.10080

[27] Khalil EB, Morris C, Lodi A (2022) MIP-GNN: A data-driven framework for guid-
ing combinatorial solvers. In: Proceedings of the AAAI Conference on Artificial
Intelligence, pp 10219–10227

[28] Kotthoff L (2012) Algorithm selection for combinatorial search problems: A
survey. AI Mag 35:48–60

[29] Land AH, Doig AG (1960) An automatic method of solving discrete programming
problems. Econometrica 28(3):pp. 497–520
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