A column and row generation approach to the
crowd-shipping problem with transfers

Patrick Stokkink

Ecole Polytechnique Fédérale de Lausanne (EPFL), Urban Transport Systems Laboratory (LUTS), Switzerland,
patrick.stokkink@epfl.ch

Jean-Francois Cordeau
HEC Montréal, Canada, jean-francois.cordeau@hec.ca

Nikolas Geroliminis

Ecole Polytechnique Fédérale de Lausanne (EPFL), Urban Transport Systems Laboratory (LUTS), Switzerland,
nikolas.geroliminis@epfl.ch

Crowd-shipping is a last-mile delivery concept in which commuters pick up and deliver parcels on their
pre-existing paths. In urban areas, crowd-shipping circumvents problems that traditional last-mile delivery
systems suffer from, such as road congestion and lack of parking spaces, especially if more sustainable modes
of transport are utilized, like bikes or e-bikes. Using transfers between crowd-shippers allows for expanding
the service area and improving the overall performance. However, as this requires synchronization over space
and time, it makes the problem more complex. In this work, we develop a model that can encompass fully
heterogeneous crowd-shippers and parcels. Thereby, it allows for both direct time-synchronized transfers as
well as intermediate storage at designated parcel lockers. We design a column generation algorithm to solve
large-scale realistic instances to optimality. We extend the problem to allow crowd-shippers to carry multiple
parcels at the same time and for this, we extend the algorithm to simultaneous column and row generation.
We evaluate the performance of our algorithm as well as the potential of crowd-shipping with transfers on
a realistic case study of a bike-based crowd-shipping system in Washington DC. Our methods solve realistic
instances with 1000 crowd-shippers and 1000 parcels within minutes. The results show that a gain in revenue
and service level of 30% can be obtained by allowing transfers. By letting part of the population of crowd-
shippers carry two or three parcels at the same time, the revenue and service level can be further increased
by 30 to 50%. Maximum locker capacities are shown to be reasonable and are the highest in areas where
there is a large gap between the moment when parcels are dropped off and when they are picked up from

parcel points, which are mainly in the city center.

Key words: Crowd-shipping, Last-mile delivery, Transfers, Column generation, Row generation

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

1. Introduction

The concept of crowd-shipping as a solution to last-mile delivery problems has drawn a lot of
attention in recent years. Especially in urban areas, traditional last-mile delivery using large deliv-
ery vehicles is suffering from road congestion (Arnott et al. 2005), lack of parking spaces (Shoup
2006), and restricted access to certain areas due to pollution regulations. Paradoxically, crowd-
shipping is most successful in urban areas due to the higher availability of crowd-shippers (Erma-
gun, Shamshiripour, and Stathopoulos 2020). Crowd-shipping is seen as a low-cost, flexible, and
mostly sustainable alternative to traditional last-mile delivery systems in which large vehicles are
responsible for all deliveries. In crowd-shipping, commutes pick up and deliver a parcel on their
pre-existing path, possibly making a small detour.

One of the main operational challenges in crowd-shipping is matching crowd-shippers to parcels
that need to be delivered (Pourrahmani and Jaller 2021). The quality of such a match is influenced
by the detour that the crowd-shipper needs to make to pick up and deliver the parcel, as well
as potential time windows that need to be satisfied. Especially when the number of parcels and
the number of crowd-shippers is high, finding the optimal matching is challenging, yet important
to optimize the service level. Another major challenge that can complicate matching problems is
stochasticity in demand (i.e., uncertainty in destination, quantity, and time window) as well as
supply (the full itinerary of crowd-shippers is uncertain until they communicate it).

When the origins and destinations of parcels are further apart than those of potential crowd-
shippers, finding matches that can directly take the parcels from their origin to their destination
can be difficult. Especially in bike-based or pedestrian-based crowd-shipping, the two forms that
are considered among the least polluting and with the highest potential (i.e. lower value of time),
crowd-shipper trips are usually short whereas distances across the city can be long. In this paper,
we consider multi-stage deliveries where parcels can be transported from their origin to their desti-
nation in multiple stages and with multiple crowd-shippers. We construct a detailed compensation
scheme for crowd-shippers and we consider that crowd-shippers can carry multiple non-identical
parcels at the same time. We develop a column-generation approach that allows us to solve realistic

instances of the problem in a reasonable amount of time.

1.1. State of the art

The literature on crowd-shipping as a last-mile delivery option has been growing rapidly over the
last few years. For a review of the current practice, academic research, and empirical case studies,
the reader is referred to Le et al. (2019). Pourrahmani and Jaller (2021) study the characteristics
of crowd-shipping platforms and provide an overview of operational challenges and research oppor-

tunities. Earlier works on crowd-shipping consider direct deliveries from a depot to the customer,

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

often in parallel with regular drivers in traditional delivery vehicles. A common way to model
this is by extending the vehicle routing problem with occasional drivers (Archetti, Savelsbergh,
and Speranza 2016, Macrina et al. 2017). In larger networks and when potential crowd-shippers
perform relatively short trips compared to the origin-destination distance of parcels (i.e., in biker-
based or pedestrian-based crowd-shipping), direct deliveries can considerably restrict the service
level of such a system. Chen et al. (2017) show that using relays in a reverse logistics system can
substantially increase the number of successful deliveries.

The literature on crowd-shipping with transfers can be roughly divided into two types of trans-
shipments. On the one hand, there are transfers between crowd-shippers and another mode of
transport, usually traditional delivery vehicles (Macrina et al. 2020). Such transfers are commonly
modeled as two-echelon systems (Laporte and Nobert 1988). Kafle, Zou, and Lin (2017) consider
crowd-shippers performing first-leg pickups or last-leg deliveries, with relays to trucks performing
the middle leg. Several variant of the two-echelon delivery system with crowd-shippers have been
introduced, such as mobile satellites (Lan et al. 2022), parcel lockers (Enthoven et al. 2020, dos
Santos, Viana, and Pedroso 2022) and delivery options (Vincent, Jodiawan, and Redi 2022). Others
have considered two-echelon systems with transfers to mobile depots (Mousavi, Bodur, and Roorda
2022) and public transport (Kizil and Yildiz 2023) rather than a traditional delivery vehicle.

On the other hand, there are transfers among the crowd-shippers themselves. This can again
be divided into two groups of studies. One with transfers taking place at dedicated transfer loca-
tions with, for example, parcel lockers (Raviv and Tenzer 2018) and one with time-synchronized
transfers, where parcels are transferred directly from one crowd-shipper to another and cannot be
left unattended (Chen, Mes, and Schutten 2018). The latter is highly similar to what is classified
by Agatz et al. (2012) as multi-hop ride-sharing. Multi-hop ride-sharing has received considerably
more attention (Drews and Luxen 2013, Herbawi and Weber 2011, Masoud and Jayakrishnan 2017,
Chen et al. 2019, Lu et al. 2020). We also note the similarity with public transport modeling,
where passengers can make stops and transfers when traveling through a public transport net-
work (Spiess and Florian 1989). The most important difference between multi-hop ride-sharing
and multi-stage crowd-shipping is the fact that passengers incur psychological costs when making
detours and transfers and when they are waiting at transfer points. Parcels, on the other hand, are
more flexible and can make large detours with various transfers as long as they arrive on time.

Chen, Mes, and Schutten (2018) allow for transfers between crowd-shippers but require time
synchronization such that parcels are directly passed on from one to another crowd-shipper. In
their approach, a parcel cannot be left unattended. Sampaio et al. (2020) consider a crowd-shipping
system with a single transfer at a dedicated transfer point, where parcels can be stored temporarily.

As their crowd-shippers do not have predetermined paths, their problem is similar to a pickup and

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

delivery problem with transfers (Mitrovié-Mini¢ and Laporte 2006, Rais, Alvelos, and Carvalho
2014). The itinerary of crowd-shippers is considered by Voigt and Kuhn (2022), but they do not
consider time windows for crowd-shippers nor parcels. Such a system is clearly less attractive for
potential crowd-shippers that wish to deliver a parcel during their commute, where time windows
are imposed. Such a system is considered by Yildiz (2021a), who develop a dynamic programming
approach to solve their problem. The authors later extend this problem by considering stochasticity
in demand (Yildiz 2021b). Their crowd-shippers are inflexible and do not deviate from their routes.
As a result, crowd-shippers are paid a fixed compensation. Raviv and Tenzer (2018) consider
compensations for stopping and handling. In their work, they assume Poisson arrivals of occasional
couriers, that have a predetermined sequence of transfer points that they will visit. Based on
this assumption, they use a stochastic dynamic programming algorithm to find an optimal policy.
Nieto-Isaza, Fontaine, and Minner (2022) take a strategic perspective and focus on finding the
optimal locations for mini-depots that function as transshipment points. DiPugliaPugliese et al.
(2021) consider transfers between two types of crowd-shippers: long-distance crowd-shippers and
short-distance crowd-shippers in an urban area. Thanks to this classification, they can more easily
model transfers.

We model our problem using paths through a network. A common approach to solve such a path-
based formulation is to use column generation (Desrosiers and Liibbecke 2005). Column generation
has been used in a broad set of applications (Liibbecke and Desrosiers 2005), among which are
several variants of the pickup-and-delivery problem (Ropke and Cordeau 2009, Ghilas et al. 2018).
In the crowd-shipping literature, column generation has been used by Torres, Gendreau, and Rei
(2022D) to solve a vehicle routing problem with a stochastic supply of crowd-shippers. The authors
also use column generation to solve a crowd-shipping problem with stochastic destinations (Torres,

Gendreau, and Rei 2022a).

1.2. Contribution and organization of the paper

In this work, we propose a general framework that allows the incorporation of both time-
synchronized transfers as well as transfers with intermediate storage at transfer points. To the best
of our knowledge, this is the first model that can capture both types of transfers simultaneously.
In addition to this, we consider the original itinerary of crowd-shippers including their depar-
ture times, but we consider some flexibility in their routing decisions. This makes crowd-shipping
accessible to daily commuters. On top of this, we consider a detailed compensation scheme for
crowd-shippers, which includes rewards for stops, detours, and the inconvenience of carrying a
parcel for a longer distance. Furthermore, we consider heterogeneous crowd-shippers and parcels.

We propose a column-generation approach to solve our problem. This method is highly scalable

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

and allows solving larger instances than those previously considered in the literature for similar
problems. Our results are evaluated on a realistic large-scale case study in the city of Washington
DC.

The rest of this paper is organized as follows. In Section 2 we provide a formal definition of the
problem at hand and in Section 3 we propose a column generation approach to solve the problem.
We describe the case study and the experimental results in Section 4 and we conclude the paper

in Section 5.

2. Problem description and formulation
In Section 2.1 we introduce the main concepts and notation used in the paper before providing a

mathematical formulation of the problem in Section 2.2.

2.1. Concepts and notation
We consider a set P of parcels that make up the considered demand requests. Every parcel p2 P
has an origin 0y, a destination d, and a delivery time window [ep; Ip], where €, is the earliest delivery
time and |, is the latest. Every delivered parcel p generates revenue, which can vary between parcels,
and is denoted by p. The set C contains all (potential) crowd-shippers. Every crowd-shipper c2 C
has an origin 0, a destination d¢, and a trip starting time at t.. Crowd-shippers may be willing to
deviate from their shortest path with a maximal detour of .. The detour can be measured either
in units of distance or units of time.

Definition 1. A route is the trajectory a crowd-shipper traverses to get from his/her origin
to his/her destination. The route may either be the shortest path between origin and destination

or may deviate from this shortest path with a maximal detour of ..

Based on their route, a crowd-shipper ¢ is able to execute a set of delivery segments S¢. Figure 1
illustrates a network with a crowd-shipper traveling from A to D with its original path, marked in
green, being A ¥ B ¥ D. The crowd-shipper can also travel through the bluepath A ¥ B ¥ C I D
within his maximum detour. Based on these two paths, the list of segments for this crowd-shipper
is: [AB; AC;AD;BC;BD;CD]. Based on the crowd-shipper’s start time, we can compute the time
at which the crowd-shipper starts the segment, which is given by ts. A segment also has an origin
0s and a destination ds. A crowd-shipper ¢ 2 C is rewarded Wcs for traversing a segment S 2 Sc.
This cost is made up of three components:

1. A fixed compensation ! for the inconvenience of pickup and delivery;

2. A variable compensation based on the detour crowd-shipper ¢ 2 C makes to perform the

delivery on segment S2 S, denoted by 2 detcs;

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

3. A variable compensation based on the time/distance spent carrying the parcel, which is equal
to the length of the segment and denoted by 2 lens.

Definition 2. A segment is a part of a crowd-shipper’s route between two nodes in the network
during which he/she can carry a parcel. Every segment corresponds to a unique crowd-shipper and
has an origin and destination node and a start time at which the crowd-shipper commences with
traversing the segment. The origin and destination of the segment may differ from the origin and

destination of the crowd-shipper.

A C A B C

N Ao

D D

Figure 1 lllustration of a crowd-shipper traveling from A to D that can perform segments:
AB;AC;AD;BC;BD;CD

A parcel can be transferred between crowd-shippers at a set H of transfer points or transfer hubs.
After the parcel is dropped off at the transfer point by a crowd-shipper, the next crowd-shipper
can pick up the parcel at least A™" time units later (a safety margin) and at most A™® time
units later (to avoid the parcel staying at the hub for too long). We note that by choosing the set
H of points to be arbitrarily large and A™® arbitrarily small, this corresponds to direct transfers
where parcels are handed directly from one crowd-shipper to another. Otherwise, parcel lockers
need to be present at transfer hubs for crowd-shippers to temporarily store the parcels. Generally,
this may differ across transfer points h2 H and we allow A" and A® to vary.

The objective is to maximize the profit consisting of the revenue for delivered parcels minus the
costs of paying crowd-shippers. For this, we determine the optimal matching of parcels to crowd-
shippers. Specifically, for the multi-stage delivery problem, we determine the exact path a parcel
traverses from its origin to its destination. This path may be direct or through transfer points and
by using multiple crowd-shippers. To this end, we define the concept of a parcel path.

Definition 3. A parcel path is the trajectory a parcel traverses to get from its origin to
its destination. A parcel path is made up of one or more segments that a parcel travels with a
crowd-shipper. Between segments, a parcel is stored at a transfer point.

In the next section, we give a formulation of the problem based on this concept of parcel paths.

The approach we take to solve the problem is described in Section 3.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

2.2. Mathematical formulation

We first give a full formulation of the problem described above. This is a path-based formulation
that maximizes the revenue collected by parcel deliveries minus the costs of crowd-shipper com-
pensation. The full set of parcel paths is denoted by K, where K is the set of parcel paths that
correspond to parcel p 2 P. Only feasible parcel paths (i.e., paths that are fully connected and
time-synchronized, and for which the time windows of the delivery are satisfied) are included in
the set K. The binary decision variable Xy is equal to 1 if parcel path k 2 K is selected and 0,
otherwise. We define a.k as a binary parameter that is equal to 1 if crowd-shipper ¢ 2 C is involved
in parcel path k 2 K. For completeness, we also introduce binary parameter begk, which is equal
to 1 if crowd-shipper ¢ 2 C contributes to parcel path k 2 K by performing segment s 2 S; and
0 otherwise. Although this parameter is only indirectly part of the formulation of the problem

through the defined profit of a parcel, it is required for the solution approach. Clearly, following
P

the definition of a segment, acs = 2S¢ Desk .-
The profit of a parcel path k2 K, is defined as and is defined as follows:
1A} #
> L XX) .
K= p ak ¢+ besk(cdetes + cleng) (1)
c2C c2C s2S¢

Here, the first term captures the revenue obtained by delivering the parcel p corresponding to
the column k 2 K,. We emphasize that incorporating the cost of unsatisfied demand is equivalent
to the lost revenue of delivery. The second term is the fixed price paid to a crowd-shipper for
making a delivery. This does not depend on the segment and therefore only uses parameter ag.
The third term is a variable cost paid to a crowd-shipper which depends on the segment and is
therefore based on besk. This term captures the cost per unit of detour and cost per unit travelled
with a parcel.

The formulation of the problem is as follows:

X X
max k Xk (2>
> p2P k2Kp
Xk 1 8p2P (3)
)ézKp
Xk 1 82C (4)
k2K
Xk 2B 8k 2 K: (5)

The objective (2) is to maximize the total profit. By substituting Equation (1) we observe the
dependency on parameters acs and besk. Constraints (3) ensure that every parcel is delivered at
most once and therefore only one parcel path can be selected among those associated with that

parcel. Constraints (4) ensure that a crowd-shipper is used at most once.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

3. Methodology
We solve the problem using a column generation approach, where every column is a unique parcel
path. In the master problem, parcel paths from the current set of columns K are selected to
maximize revenue and minimize operational costs, by solving the LP relaxation of the Restricted
Master Problem (RMP). In the pricing problem, new columns are generated that improve the
current solution, based on the dual variables of the constraints of the last iteration of the LP.
Finally, when no more columns with positive reduced cost are found the optimal solution to the
LP is obtained. We then obtain an integer solution by solving the IP with the last set of obtained
columns. We note that this does not guarantee the optimality of the IP solution. An exact method
would require embedding the column generation in a branch-and-price framework. However, in
our computational experiments, the optimality gap of the IP and LP objectives indicates that the
obtained solutions are (near) optimal.

The master problem is described in Section 3.1 and the pricing problem is described in Section
3.2. The shortest path problem that is used to solve the pricing problem is described in Section
3.3.

3.1. Master problem

The formulation of the master problem closely resembles the formulation in Section 2.2. In the
master problem, we select the best columns from the current set K that maximize the obtained
revenue from delivering parcels and minimizes the costs of crowd-shippers. In addition to the total
set of columns, we define Kp as the set of columns that correspond to parcel paths of parcel p2 P.
It follows that szp K, = K. The formulation of the master problem is as follows, with the dual

variables of the constraints in parentheses.

X X
max k Xk (6)
P2P k2K,
Xk 1 8p2P (vp) (7)
)ézKp
Xk 1 8c2C (UC) (8)
k2K
Xk 2B 8k 2K: (9)

3.2. Pricing problem
We extend the set of columns in the RMP by finding columns with positive reduced cost. The

reduced cost for a new column k 2 K nK is defined as r and it can be computed as:

X
k= « VY Ucck- (10)
c2C

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

We can rewrite this by substituting x from Equation (1), as follows:

X X X X
MNe= o Ak = besk(2detes + Zlens) v, Ucek: (11)
c2C c2C s2S¢ c2C

We can then rewrite this by grouping together similar terms:

X L XX) .
re=(p Vp) ak(Uc+) besk(cdetes + Zlens): (12)
c2C c2C s2S¢
Recall that acs = ¢,g, besk and that the total compensation paid to a crowd-shipper is denoted

by Wes. We can further simplify the definition of the reduced cost as follows:

XX 1 2 3

e=0p Vp) besk(Uc + ¢+ cdetes+ Zlens) (13)
KR

=(p Vp) Besk (Ue + Wes): (14)
c2C s2S¢

From Equation (14) it is clear that finding a column with positive reduced cost can be decomposed
over the parcels. For every parcel, we search the parcel path with the highest reduced cost (if any
column with positive reduced cost exists). This is done by finding the best crowd-shippers and
segments to constitute a feasible path from origin to destination. This path has to satisfy basic
flow constraints as well as timing restrictions to ensure that a parcel can only be picked up after it
is delivered. As the problem is separated over parcels, the term | V, is fixed. Finding a path with
maximal reduced costs is then equivalent to minimizing o ¢2s, besk (Ue + Wes). This means
that finding the positive reduced cost path is equivalent to solving the shortest path problem.

We consider a layered procedure for the pricing problem where direct, indirect paths with a single
transfer, and indirect paths with multiple transfers are considered separately. This procedure is
presented in Algorithm 1. First, direct paths are generated. Direct paths constitute a simple match
of a crowd-shipper to a parcel. Here, the feasibility with respect to time windows and location
needs to be verified and the costs are computed. Thereafter, indirect paths are generated. Although
slightly more difficult due to time and location synchronization at the transfer, this can still be done
by simply enumerating for every parcel all crowd-shippers that can pick up and all crowd-shippers
that can deliver the parcel. Finally, we consider multi-stage deliveries by solving a shortest-path
problem. As the number of transfers is not fixed, this is more complicated and discussed in detail
in the remainder of this section.

This layered procedure has two main benefits. First, solving the pricing problem for direct
delivery and indirect delivery with one transfer is computationally much faster. For a direct delivery,
finding a column with a positive reduced cost only requires going over all feasible matches of crowd-

shippers and parcels, which can be done in O(jPjjCj). For an indirect delivery with one transfer, a

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

similar approach is used where every crowd-shipper is considered twice (once for pickup and once
for delivery), which can be done in O(jPjjCj?). Therefore, the column generation algorithm can be
warm-started first for direct deliveries and then also for indirect deliveries with one transfer, before
considering the computationally more expensive multi-stage deliveries. The second benefit is that,
by considering multi-stage deliveries separately, the shortest path problem and the corresponding

graph can be fully adapted to this type of delivery and therefore improve the speed of the algorithm.

Algorithm 1: Layered procedure for pricing problem

1 for every parcel p2 P do
2 L Generate a direct path with positive reduced costs.

3 Compute F; the maximum reduced cost across all generated paths

4 if r 0 then

5 for every parcel p2 P and every pickup segment s 2 N, do

6 L Generate an indirect path with one transfer with positive reduced costs.

7 Compute F; the maximum reduced cost across all generated paths

8 if r 0 then

9 for every parcel p2 P and every pickup segment s2 N, do

10 Generate an indirect path with positive reduced costs, by solving the shortest
path problem.

11 Add all generated paths with positive reduced costs to K

3.3. Shortest path algorithm - Graph construction
To solve the shortest path problem, a graph is constructed based on the movement of crowd-
shippers through the road network. An example of such a graph is given in Figure 2 and will be
described below. The shortest path problem is solved on a directed graph where nodes correspond
to segments. Whenever a node is part of the shortest path, the variable begk is equal to 1 and it
is equal to 0 otherwise. The cost of such a node is equal to U + W¢s, such that the length of the
shortest path corresponds to the second term of the reduced cost in Equation (14). An arc between
two nodes exists if the two segments are compatible, in the sense that one segment can be executed
right after the other. An arc between two nodes n; and n, exists if all of the following conditions
hold:

e The crowd-shipper of node n; is different from the crowd-shipper of node n,.

e The segment of node N; ends at the same transfer point where the segment of node n, starts.

e The segment of node N finishes at least A™" time units before and at most A™® time units

after the segment of node n, starts.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

All existing arcs have a cost of zero, which means that the only cost components are on the nodes.
For the multi-stage delivery problem we consider three types of nodes each corresponding to a
type of segment: pickup nodes/segments, dropoff nodes/segments and transfer nodes/segments.
We describe the properties of these nodes in detail below, with the set of nodes of each type in
parentheses. A feasible parcel path starts with a pickup segment and ends with a dropoff segment,
possibly with one or more transfer segments in between. A segment describes a part of the parcel
path for which the parcel is travelling with the same crowd-shipper.

1. Pickup nodes/segments (Np): A pickup segment represents the initial pickup of the parcel
from the origin location and its delivery to a transfer point. A pickup node exists if the origin of the
segment coincides with the origin of the parcel and the destination of the segment coincides with
a transfer point. Thereby, it only exists if the start time of the segment is later than the earliest
availability time of the parcel. A pickup node has no incoming arcs.

2. Dropo nodes/segments (Np): A dropoff segment represents the final delivery of the
parcel from the last transfer point to the destination of the parcel. A delivery node exists if the
destination of the segment coincides with the destination of the parcel and the origin of the segment
coincides with a transfer point. Thereby, it only exists if the time window of the parcel is satisfied.
A dropoff node has no outgoing arcs.

3. Transfer nodes/segments (Nt): A transfer segment represents the transfer of any parcel
from one transfer point to another. There are no restrictions on location or time for the existence
of a transfer node.

We emphasize that although pickup and dropoff nodes are parcel-specific, due to origins, desti-
nations, and time windows, transfer nodes are not. Therefore, transfer nodes are only added once,

whereas pickup and dropoff segments may be repeated for multiple parcels that are similar.

3.4. Modi ed Dijkstra’s algorithm
To find the column to add to the master problem for every parcel, we aim to find the shortest path
between any pickup segment and any dropoff segment. We do this by applying a modified version
of Dijkstra’s shortest path algorithm tailored to fit well the specifics of our problem. As Dijkstra’s
algorithm can find the shortest path from a source node to any node in the graph, we apply the
shortest path problem jNpj times. The column with the highest reduced cost (if any column with
positive reduced cost exists) is added to the master problem and this is repeated for every parcel.
Dijkstra’s algorithm takes as an input a set of nodes and an adjacency matrix which defines
the arcs between the nodes. We observe that the full graph does not change between iterations
and can therefore be pre-computed once. Then, at each call to the pricing problem, only the

costs on the nodes are updated according to the dual variables. The details on the algorithm are

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

Pickup segments Dropoff segments

O O O [r

1 2
3

O/0 O
o> O O

(b) Graph for the pricing problem corresponding to

(a) Network where H is the hub, the network in (a). Nodes correspond to segments and
P is the parcel destination, colours arcs connect segments if one can be feasibly executed
indicate a crowd-shipper and num- after the other (timing constraints are ignored in this
bers are used to identify parts of example). Numbers refer to parts of the route that
the route. together form a segment.

Figure 2 Conversion from network with 1 parcel and 5 crowd-shippers, each with a maximum detour of 0, to a
graph for the pricing problem

described in Algorithm 2. The algorithm enforces all constraints that hold between nodes through
the adjacency matrix, as these constraints are transitive. The only exception to this is that two
segments belonging to the same crowd-shipper may be included in the shortest path, as long as
at least one other segment is in between. This constraint is not enforced as a hard constraint as
this would make the problem resource-constrained. However, by construction of our problem, such
paths are never feasible if A™" > (. As a crowd-shipper will leave directly after dropping off the
parcel, whereas a parcel can only be transferred after A™" time units, the crowd-shipper will
arrive at the next transfer point at least A™" time units before the parcel arrives with another
crowd-shipper. As crowd-shippers never wait for a parcel to become available in our framework,
these paths are implicitly eliminated. In Line 11, the algorithm is terminated because there exist
no remaining unvisited nodes that can be visited through a feasible path from the source node.
In Line 13, we skip the for-loop in Lines 14-16 whenever the current node is in Np as this is by
definition the last node on a path and therefore can not be on the shortest path to another node.

In addition to the modifications to Dijkstra’s algorithm, more computational enhancements are
made to improve the speed of the algorithm. We consider three enhancements that allow to retain

the optimality of the algorithm and one enhancement that does not guarantee optimality.

3.4.1. Removing suboptimal nodes and arcs For some nodes and arcs, we can immedi-

ately see that they will not be part of the shortest path because the cost on the node is too high or

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

Algorithm 2: Modified Dijkstra’s Algorithm
1 Input: A set of nodes N =Np [Np [Nt with their costs ¢(n) for all n2 N

For every node N2 N, a set of neighboring nodes A(n)

A source node s

N

Output: A set of shortest paths from source node S2 Np to all nodes in Np

5 Mark all nodes as unvisited: visit(n) ¥ false

6 Set the shortest distance to each node at dist(n) ¥ 1, except for the source node which is
set to dist(s) ¥ c(s)

while Not all nodes are visited do
8 Find node q as the unvisited node with minimal dist(q)

~

9 Set visit(q) ¥ true
10 if dist(q)= 1 then

11 | return shortest paths
12 if ¢ 2Np then
13 | continue to next node

14 for g 2A(q) do
15 if visit(q") = false and dist(q)+c(q") <dist(q") then
16 | dist(q™) ¥ dist(q)+c(q)

17 return shortest paths

the joint costs of two nodes connected by an arc is too high. Propositions 1 and 2 identify several of
these cases where nodes and arcs can be eliminated from the graph. This also leads to identifying
parcels for which the pricing problem does not need to be solved because no column with positive
reduced cost exists for that parcel. By eliminating nodes and arcs, the size of the graph can be

reduced, which improves the speed of the shortest path algorithm.

Proposition 1 (Disregarding nodes). Let = rlqzigl p and w = ZICniIZIS Wes. A parcel p2 P
- p czCisZ25c

can be disregarded if , v, 2w 0. The corresponding pickup and dropo segments (nodes)

can then also be disregarded. A segment (node) s2 S, of crowd-shipper ¢ 2 C can be disregarded if

U Wes W OoOr u Wes 2w 0 if sisa transfer segment (node).

Proposition 2 (Disregarding arcs). Let = Héipn pandw= 2%111213 Wcs. An arc between two
- p c 1S25¢
nodes s; 2S¢, of crowd-shipper ¢, 2C and s, 2'S., of crowd-shipper ¢, 2 C can be disregarded if

Ue,Weys; Ue,Weps, OF UeWeys, Ug,We,s, W if either s, or s, is a transfer segment.

As we consider multi-stage deliveries, a parcel path consists of at least two segments (i.e., a pickup
and a dropoff segment). In case the considered segment is a transfer segment, there are at least two

other segments involved. Using this property, the proof of these propositions is straightforward.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

3.4.2. Constructing several smaller subgraphs The nodes of the considered graph of the
shortest path problem are partitioned into three categories: pickup nodes (Np), dropoff nodes (Np)
and transfer nodes (Nt). Transfer nodes are independent of the specific parcels and only depend
on crowd-shippers’ itineraries. Pickup and dropoff nodes, for their part, depend on the specific
parcel through the origin, destination and delivery time window. Constructing separate graphs,
hereafter referred to as subgraphs, that only include a part of the pickup and dropoff nodes can
solve memory issues, at the cost of a slight increase in computation time. Transfer nodes, finally,
need to be included in every subgraph to guarantee the optimality of the solution.

We consider a fraction 2 (0;1] of the parcels that are included in a subgraph. This means that
1= subgraphs are constructed for which the pricing problems are solved separately. Basically, the
value of forms a trade-off between time-savings and memory-savings, as well as the number of
subgraphs and the size of those subgraphs. When is small, subgraphs are small and therefore
do not lead to memory issues, but many subgraphs need to be constructed at the cost of extra
computation time. When is large, subgraphs are larger, which may lead to memory issues, but

fewer subgraphs need to be constructed which is generally faster.

3.4.3. Randomly removing highly similar nodes Whereas the aforementioned enhance-
ments improve the speed of the algorithm and reduce the memory consumption without jeopar-
dizing optimality, we now turn to a method that can very successfully reduce the size of the graph
but can no longer guarantee optimality. Due to the nature of our problem, many of the segments
(and therefore nodes in the graph) are highly similar and therefore likely unnecessary. For example,
many transfer segments between the same two transfer hubs may exist, but with different crowd-
shippers at slightly different times. For this reason, many of those nodes can be removed without
influencing optimality. However, as we do not know in advance whether such a node will be in a
shortest path or not, optimality can no longer be guaranteed. We maintain a fraction 2 [0;1) of
the nodes in the graph and remove the other 1 (and the arcs connected to those nodes). These
nodes are selected randomly and with equal probability. As this is repeated at every iteration of
the column generation algorithm, different nodes can be removed across iterations. This limits the

influence on optimality, yet maintains the goal of reducing the size of the graph.

3.5. Locker and shipper capacity

So far, we have assumed that lockers have an infinite capacity and that crowd-shippers can only
carry a single parcel. In this section, we relax those assumptions and extend the formulation
accordingly. This will come at the cost of increased complexity in both the master problem and

the pricing problem but will lead to more realistic solutions.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

3.5.1. Shipper capacity Instead of assuming that a crowd-shipper can only make a single
delivery, we now relax this assumption and allow crowd-shippers to make multiple deliveries.We
assume that crowd-shippers only perform multiple pickups and deliveries if they involve the exact
same itinerary. That is, a crowd-shipper may carry multiple parcels at the same time, but only if
they are picked up and delivered at the exact same stations. The reason for this is that significant
effort is involved with every pickup and delivery (i.e., stopping at a locker, collecting or storing
the parcel and continuing the journey). Whereas this can be largely consolidated if the pickup and
drop-off locations are the same for the different items, this is not the case if these locations are
different. We denote the capacity of a crowd-shipper ¢ 2 C by Q.

To efficiently model the capacity, we duplicate every segment in S; a total of Q. times. We
redefine the set S by introducing S9 with 1 g Q. as the g™ copy of the set of segments and
Sc= [nglsg. For the sake of notation, let S; S, denote the property that segments S; and S, are
copies of each other and S; S, the fact that they are not copies. Then, we reformulate problem
(2) - (5) by replacing Constraints (4) by the following set of constraints, which ensures the capacity

of a crowd-shipper:

X
aXk Qe 8c2C (uc): (15)

k2K
In addition to this, we add the following set of constraints to enforce that only segments that are
duplicates of each other are performed by the same crowd-shipper. A pair of segments that are not
duplicates of each other are deemed incompatible and columns that cannot be used together because
of such an incompatibility are part of an incompatible set I. The full collection of incompatible
sets is denoted as 1°7°%d with 1 2 1°°"d Let b\ be a binary parameter taking value 1 if parcel path
k uses a segment that is part of incompatible set I, and 0 otherwise. Basically, the set | contains
all paths that are incompatible because they contain one of two incompatible segments S; and S,
for which it holds that s; 2S¢ and S, 2 S¢ for some crowd-shipper c2C and S; S,. Every set I,
therefore, corresponds to a pair of incompatible segments (S;;S;). The following set of constraints

is added to exclude incompatibilities, with dual variable , for every constraint | 2 Iowd:

X
bxc 1 gl21eowd (). (16)

k2K
Instead of adding all constraints, which is computationally impossible due to the large number
of segments, we only add those constraints that are violated in the current solution. We can still

guarantee optimality as satisfied constraints do not influence the solution or the objective function.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

Given that they are inactive, their dual variable is by definition equal to 0 and therefore this also
does not influence the pricing problem. The procedure to identify violated constraints is as follows.
We define in advance all possible combinations of segments that would constitute a violation. That
is, we identify all possible | 2 I. Then, every time the master problem is solved, for all the newly
added columns we verify whether they contain a segment that is in any | 2 I. For every violation
I 2 1 we maintain the set of columns that contain any segment in this set. We note that the
violation I 2 I is only added to the master problem if the corresponding set of columns contains
more than one column.

The new reduced cost then looks as follows, where we identify if parcel path k contains a segment
that makes it part of any of the incompatible sets | 21:

> <

k=« Vp Ucack bik 1 (17)
c2C 121 crowd

The pricing problem remains the same apart from an extra cost ; that is subtracted whenever
the new column is part of an incompatible set. We emphasize that the computational complexity
of the pricing problem remains unchanged after the addition of the capacity constraint. Even
though we duplicate the number of segments by the capacity, only the duplicate segment s with
the lowest value of |, crowd bik 1 is considered in the pricing problem. The reason for this is that
the duplicate segments are identical. Therefore, a segment S” with a higher sum of dual variables
can never be in the shortest path, as replacing it with segment S would always reduce the cost of

the path.

3.5.2. Locker capacity In our framework, we allow parcels to be stored in parcel lockers at
the transfer point. So far, we assumed that parcel lockers had infinite capacity. Here, we limit the
number of parcels that can be stored at a transfer point h 2 H to be Q. Similar to the capacity
of the crowd-shippers, we identify sets of columns that are incompatible because the capacity of
a locker is exceeded at some point in time. The full collection of incompatible sets is denoted as
I'ocker We adapt the master problem by adding the same set of constraints as in (16), but for the

new collection:

>
biex 1 8l 2 'ocker (1 (18)

k2K
Again, we do not add all constraints at once but identify those that are violated. Although the
number of transfer points is much lower than the number of crowd-shippers, the capacity of the

transfer point needs to be considered at every time interval. We only consider transfer points with

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers

transfer lockers, as direct time-synchronized transfers do not need to be stored and therefore do
not influence the capacity. To identify the violated constraints, we use the following procedure.
For every transfer point, we identify the parcel paths that store a parcel at this point. We sort
the parcel paths twice: once in ascending order of their arrival time at the transfer point and once
in ascending order of their departure time from the transfer point. We start with an empty set of
paths V. We then go over those events one by one in chronological order. Every time an arrival
is recorded, the parcel path is added to V. Every time a departure is recorded, the parcel path is
removed from V. Whenever a parcel arrives that causes the cardinality of V to exceed Qp, we add
violation | with bj, =1 for all k 2V and we store the time t;, at which the violation occurs, which
will later aid the pricing problem. For every transfer point, we only add a single constraint and
then re-solve the master problem. This is repeated until no violated constraints are encountered.

The reduced cost can then be computed as follows, where we identify if a parcel path k stores a
parcel at transfer point h at time t;, for any of the incompatibilities | 2 1'0¢ker:

X X X
k=« Vp Ucack ik 1 bik 1 (19)
c2C 121 crowd 121 locker

If this is the case, by =1 for the new parcel path. The pricing problem can then be extended by
exploiting the start and end times of every segment. We recall that every node in the network
discussed in Section 3.2 corresponds to a segment. So far, a node corresponding to a segment S 2 S
of crowd-shipper ¢ 2 C was attributed a cost Uc + W¢s, and no costs were attributed to arcs. Now,
for an arc between two nodes corresponding to segment S; with end time t and S, with start time
t where ds, =0s, =h a cost of ; is added for every I 2 1'°*" for which it holds that t t;, t.
We note that if an arc violates multiple constraints, multiple dual variables can be added to the

same arc.

4. Results

We describe the details of the case study and the parameter settings in Section 4.1. In Section
4.2 we evaluate the performance of the algorithm in terms of optimality gap and computation
time. We evaluate the effect of crowd-shipper capacity and locker capacity in Sections 4.4 and 4.5,

respectively. Finally, we perform a sensitivity analysis on the cost parameters in Section 4.6.

4.1. Case Study

The city of Washington DC is used as a case study. We use data on the spatial distribution of the
population (Census Reporter 2021) and the movement of individuals throughout the city based on
bike-sharing users (Capital Bikeshare 2020). The bike-sharing system of Washington DC has over
500 stations and 4500 bikes, making it one of the largest in the USA. A selection of 240 stations

