
A column and row generation approach to the
crowd-shipping problem with transfers

Patrick Stokkink
École Polytechnique Fédérale de Lausanne (EPFL), Urban Transport Systems Laboratory (LUTS), Switzerland,

patrick.stokkink@epfl.ch

Jean-François Cordeau
HEC Montréal, Canada, jean-francois.cordeau@hec.ca

Nikolas Geroliminis
École Polytechnique Fédérale de Lausanne (EPFL), Urban Transport Systems Laboratory (LUTS), Switzerland,

nikolas.geroliminis@epfl.ch

Crowd-shipping is a last-mile delivery concept in which commuters pick up and deliver parcels on their

pre-existing paths. In urban areas, crowd-shipping circumvents problems that traditional last-mile delivery

systems suffer from, such as road congestion and lack of parking spaces, especially if more sustainable modes

of transport are utilized, like bikes or e-bikes. Using transfers between crowd-shippers allows for expanding

the service area and improving the overall performance. However, as this requires synchronization over space

and time, it makes the problem more complex. In this work, we develop a model that can encompass fully

heterogeneous crowd-shippers and parcels. Thereby, it allows for both direct time-synchronized transfers as

well as intermediate storage at designated parcel lockers. We design a column generation algorithm to solve

large-scale realistic instances to optimality. We extend the problem to allow crowd-shippers to carry multiple

parcels at the same time and for this, we extend the algorithm to simultaneous column and row generation.

We evaluate the performance of our algorithm as well as the potential of crowd-shipping with transfers on

a realistic case study of a bike-based crowd-shipping system in Washington DC. Our methods solve realistic

instances with 1000 crowd-shippers and 1000 parcels within minutes. The results show that a gain in revenue

and service level of 30% can be obtained by allowing transfers. By letting part of the population of crowd-

shippers carry two or three parcels at the same time, the revenue and service level can be further increased

by 30 to 50%. Maximum locker capacities are shown to be reasonable and are the highest in areas where

there is a large gap between the moment when parcels are dropped off and when they are picked up from

parcel points, which are mainly in the city center.

Key words : Crowd-shipping, Last-mile delivery, Transfers, Column generation, Row generation

1

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
2

1. Introduction

The concept of crowd-shipping as a solution to last-mile delivery problems has drawn a lot of

attention in recent years. Especially in urban areas, traditional last-mile delivery using large deliv-

ery vehicles is suffering from road congestion (Arnott et al. 2005), lack of parking spaces (Shoup

2006), and restricted access to certain areas due to pollution regulations. Paradoxically, crowd-

shipping is most successful in urban areas due to the higher availability of crowd-shippers (Erma-

gun, Shamshiripour, and Stathopoulos 2020). Crowd-shipping is seen as a low-cost, flexible, and

mostly sustainable alternative to traditional last-mile delivery systems in which large vehicles are

responsible for all deliveries. In crowd-shipping, commutes pick up and deliver a parcel on their

pre-existing path, possibly making a small detour.

One of the main operational challenges in crowd-shipping is matching crowd-shippers to parcels

that need to be delivered (Pourrahmani and Jaller 2021). The quality of such a match is influenced

by the detour that the crowd-shipper needs to make to pick up and deliver the parcel, as well

as potential time windows that need to be satisfied. Especially when the number of parcels and

the number of crowd-shippers is high, finding the optimal matching is challenging, yet important

to optimize the service level. Another major challenge that can complicate matching problems is

stochasticity in demand (i.e., uncertainty in destination, quantity, and time window) as well as

supply (the full itinerary of crowd-shippers is uncertain until they communicate it).

When the origins and destinations of parcels are further apart than those of potential crowd-

shippers, finding matches that can directly take the parcels from their origin to their destination

can be difficult. Especially in bike-based or pedestrian-based crowd-shipping, the two forms that

are considered among the least polluting and with the highest potential (i.e. lower value of time),

crowd-shipper trips are usually short whereas distances across the city can be long. In this paper,

we consider multi-stage deliveries where parcels can be transported from their origin to their desti-

nation in multiple stages and with multiple crowd-shippers. We construct a detailed compensation

scheme for crowd-shippers and we consider that crowd-shippers can carry multiple non-identical

parcels at the same time. We develop a column-generation approach that allows us to solve realistic

instances of the problem in a reasonable amount of time.

1.1. State of the art

The literature on crowd-shipping as a last-mile delivery option has been growing rapidly over the

last few years. For a review of the current practice, academic research, and empirical case studies,

the reader is referred to Le et al. (2019). Pourrahmani and Jaller (2021) study the characteristics

of crowd-shipping platforms and provide an overview of operational challenges and research oppor-

tunities. Earlier works on crowd-shipping consider direct deliveries from a depot to the customer,

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
3

often in parallel with regular drivers in traditional delivery vehicles. A common way to model

this is by extending the vehicle routing problem with occasional drivers (Archetti, Savelsbergh,

and Speranza 2016, Macrina et al. 2017). In larger networks and when potential crowd-shippers

perform relatively short trips compared to the origin-destination distance of parcels (i.e., in biker-

based or pedestrian-based crowd-shipping), direct deliveries can considerably restrict the service

level of such a system. Chen et al. (2017) show that using relays in a reverse logistics system can

substantially increase the number of successful deliveries.

The literature on crowd-shipping with transfers can be roughly divided into two types of trans-

shipments. On the one hand, there are transfers between crowd-shippers and another mode of

transport, usually traditional delivery vehicles (Macrina et al. 2020). Such transfers are commonly

modeled as two-echelon systems (Laporte and Nobert 1988). Kafle, Zou, and Lin (2017) consider

crowd-shippers performing first-leg pickups or last-leg deliveries, with relays to trucks performing

the middle leg. Several variant of the two-echelon delivery system with crowd-shippers have been

introduced, such as mobile satellites (Lan et al. 2022), parcel lockers (Enthoven et al. 2020, dos

Santos, Viana, and Pedroso 2022) and delivery options (Vincent, Jodiawan, and Redi 2022). Others

have considered two-echelon systems with transfers to mobile depots (Mousavi, Bodur, and Roorda

2022) and public transport (Kızıl and Yıldız 2023) rather than a traditional delivery vehicle.

On the other hand, there are transfers among the crowd-shippers themselves. This can again

be divided into two groups of studies. One with transfers taking place at dedicated transfer loca-

tions with, for example, parcel lockers (Raviv and Tenzer 2018) and one with time-synchronized

transfers, where parcels are transferred directly from one crowd-shipper to another and cannot be

left unattended (Chen, Mes, and Schutten 2018). The latter is highly similar to what is classified

by Agatz et al. (2012) as multi-hop ride-sharing. Multi-hop ride-sharing has received considerably

more attention (Drews and Luxen 2013, Herbawi and Weber 2011, Masoud and Jayakrishnan 2017,

Chen et al. 2019, Lu et al. 2020). We also note the similarity with public transport modeling,

where passengers can make stops and transfers when traveling through a public transport net-

work (Spiess and Florian 1989). The most important difference between multi-hop ride-sharing

and multi-stage crowd-shipping is the fact that passengers incur psychological costs when making

detours and transfers and when they are waiting at transfer points. Parcels, on the other hand, are

more flexible and can make large detours with various transfers as long as they arrive on time.

Chen, Mes, and Schutten (2018) allow for transfers between crowd-shippers but require time

synchronization such that parcels are directly passed on from one to another crowd-shipper. In

their approach, a parcel cannot be left unattended. Sampaio et al. (2020) consider a crowd-shipping

system with a single transfer at a dedicated transfer point, where parcels can be stored temporarily.

As their crowd-shippers do not have predetermined paths, their problem is similar to a pickup and

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
4

delivery problem with transfers (Mitrović-Minić and Laporte 2006, Rais, Alvelos, and Carvalho

2014). The itinerary of crowd-shippers is considered by Voigt and Kuhn (2022), but they do not

consider time windows for crowd-shippers nor parcels. Such a system is clearly less attractive for

potential crowd-shippers that wish to deliver a parcel during their commute, where time windows

are imposed. Such a system is considered by Yıldız (2021a), who develop a dynamic programming

approach to solve their problem. The authors later extend this problem by considering stochasticity

in demand (Yıldız 2021b). Their crowd-shippers are inflexible and do not deviate from their routes.

As a result, crowd-shippers are paid a fixed compensation. Raviv and Tenzer (2018) consider

compensations for stopping and handling. In their work, they assume Poisson arrivals of occasional

couriers, that have a predetermined sequence of transfer points that they will visit. Based on

this assumption, they use a stochastic dynamic programming algorithm to find an optimal policy.

Nieto-Isaza, Fontaine, and Minner (2022) take a strategic perspective and focus on finding the

optimal locations for mini-depots that function as transshipment points. DiPugliaPugliese et al.

(2021) consider transfers between two types of crowd-shippers: long-distance crowd-shippers and

short-distance crowd-shippers in an urban area. Thanks to this classification, they can more easily

model transfers.

We model our problem using paths through a network. A common approach to solve such a path-

based formulation is to use column generation (Desrosiers and Lübbecke 2005). Column generation

has been used in a broad set of applications (Lübbecke and Desrosiers 2005), among which are

several variants of the pickup-and-delivery problem (Ropke and Cordeau 2009, Ghilas et al. 2018).

In the crowd-shipping literature, column generation has been used by Torres, Gendreau, and Rei

(2022b) to solve a vehicle routing problem with a stochastic supply of crowd-shippers. The authors

also use column generation to solve a crowd-shipping problem with stochastic destinations (Torres,

Gendreau, and Rei 2022a).

1.2. Contribution and organization of the paper

In this work, we propose a general framework that allows the incorporation of both time-

synchronized transfers as well as transfers with intermediate storage at transfer points. To the best

of our knowledge, this is the first model that can capture both types of transfers simultaneously.

In addition to this, we consider the original itinerary of crowd-shippers including their depar-

ture times, but we consider some flexibility in their routing decisions. This makes crowd-shipping

accessible to daily commuters. On top of this, we consider a detailed compensation scheme for

crowd-shippers, which includes rewards for stops, detours, and the inconvenience of carrying a

parcel for a longer distance. Furthermore, we consider heterogeneous crowd-shippers and parcels.

We propose a column-generation approach to solve our problem. This method is highly scalable

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
5

and allows solving larger instances than those previously considered in the literature for similar

problems. Our results are evaluated on a realistic large-scale case study in the city of Washington

DC.

The rest of this paper is organized as follows. In Section 2 we provide a formal definition of the

problem at hand and in Section 3 we propose a column generation approach to solve the problem.

We describe the case study and the experimental results in Section 4 and we conclude the paper

in Section 5.

2. Problem description and formulation

In Section 2.1 we introduce the main concepts and notation used in the paper before providing a

mathematical formulation of the problem in Section 2.2.

2.1. Concepts and notation

We consider a set P of parcels that make up the considered demand requests. Every parcel p ∈ P

has an origin op, a destination dp and a delivery time window [ep, lp], where ep is the earliest delivery

time and lp is the latest. Every delivered parcel p generates revenue, which can vary between parcels,

and is denoted by ρp. The set C contains all (potential) crowd-shippers. Every crowd-shipper c∈C

has an origin oc, a destination dc, and a trip starting time at tc. Crowd-shippers may be willing to

deviate from their shortest path with a maximal detour of τc. The detour can be measured either

in units of distance or units of time.

Definition 1. A route is the trajectory a crowd-shipper traverses to get from his/her origin

to his/her destination. The route may either be the shortest path between origin and destination

or may deviate from this shortest path with a maximal detour of τc.

Based on their route, a crowd-shipper c is able to execute a set of delivery segments Sc. Figure 1

illustrates a network with a crowd-shipper traveling from A to D with its original path, marked in

green, being A→B→D. The crowd-shipper can also travel through the blue path A→B→C →D

within his maximum detour. Based on these two paths, the list of segments for this crowd-shipper

is: [AB,AC,AD,BC,BD,CD]. Based on the crowd-shipper’s start time, we can compute the time

at which the crowd-shipper starts the segment, which is given by ts. A segment also has an origin

os and a destination ds. A crowd-shipper c ∈ C is rewarded wcs for traversing a segment s ∈ Sc.

This cost is made up of three components:

1. A fixed compensation α1
c for the inconvenience of pickup and delivery;

2. A variable compensation based on the detour crowd-shipper c ∈ C makes to perform the

delivery on segment s∈ Sc, denoted by α2
c · detcs;

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
6

3. A variable compensation based on the time/distance spent carrying the parcel, which is equal

to the length of the segment and denoted by α3
c · lens.

Definition 2. A segment is a part of a crowd-shipper’s route between two nodes in the network

during which he/she can carry a parcel. Every segment corresponds to a unique crowd-shipper and

has an origin and destination node and a start time at which the crowd-shipper commences with

traversing the segment. The origin and destination of the segment may differ from the origin and

destination of the crowd-shipper.

A B C

D

A B C

D

Figure 1 Illustration of a crowd-shipper travelling from A to D that can perform segments:

AB,AC,AD,BC,BD,CD

A parcel can be transferred between crowd-shippers at a set H of transfer points or transfer hubs.

After the parcel is dropped off at the transfer point by a crowd-shipper, the next crowd-shipper

can pick up the parcel at least ∆min time units later (a safety margin) and at most ∆max time

units later (to avoid the parcel staying at the hub for too long). We note that by choosing the set

H of points to be arbitrarily large and ∆max arbitrarily small, this corresponds to direct transfers

where parcels are handed directly from one crowd-shipper to another. Otherwise, parcel lockers

need to be present at transfer hubs for crowd-shippers to temporarily store the parcels. Generally,

this may differ across transfer points h∈H and we allow ∆min
h and ∆max

h to vary.

The objective is to maximize the profit consisting of the revenue for delivered parcels minus the

costs of paying crowd-shippers. For this, we determine the optimal matching of parcels to crowd-

shippers. Specifically, for the multi-stage delivery problem, we determine the exact path a parcel

traverses from its origin to its destination. This path may be direct or through transfer points and

by using multiple crowd-shippers. To this end, we define the concept of a parcel path.

Definition 3. A parcel path is the trajectory a parcel traverses to get from its origin to

its destination. A parcel path is made up of one or more segments that a parcel travels with a

crowd-shipper. Between segments, a parcel is stored at a transfer point.

In the next section, we give a formulation of the problem based on this concept of parcel paths.

The approach we take to solve the problem is described in Section 3.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
7

2.2. Mathematical formulation

We first give a full formulation of the problem described above. This is a path-based formulation

that maximizes the revenue collected by parcel deliveries minus the costs of crowd-shipper com-

pensation. The full set of parcel paths is denoted by K, where Kp is the set of parcel paths that

correspond to parcel p ∈ P . Only feasible parcel paths (i.e., paths that are fully connected and

time-synchronized, and for which the time windows of the delivery are satisfied) are included in

the set K. The binary decision variable xk is equal to 1 if parcel path k ∈K is selected and 0,

otherwise. We define ack as a binary parameter that is equal to 1 if crowd-shipper c∈C is involved

in parcel path k ∈K. For completeness, we also introduce binary parameter bcsk, which is equal

to 1 if crowd-shipper c ∈ C contributes to parcel path k ∈K by performing segment s ∈ Sc and

0 otherwise. Although this parameter is only indirectly part of the formulation of the problem

through the defined profit of a parcel, it is required for the solution approach. Clearly, following

the definition of a segment, acs =
∑

s∈Sc
bcsk.

The profit of a parcel path k ∈Kp is defined as πk and is defined as follows:

πk = ρp −

[∑
c∈C

ackα
1
c +

∑
c∈C

∑
s∈Sc

bcsk(α
2
cdetcs +α3

clens)

]
. (1)

Here, the first term captures the revenue obtained by delivering the parcel p corresponding to

the column k ∈Kp. We emphasize that incorporating the cost of unsatisfied demand is equivalent

to the lost revenue of delivery. The second term is the fixed price paid to a crowd-shipper for

making a delivery. This does not depend on the segment and therefore only uses parameter ack.

The third term is a variable cost paid to a crowd-shipper which depends on the segment and is

therefore based on bcsk. This term captures the cost per unit of detour and cost per unit travelled

with a parcel.

The formulation of the problem is as follows:

max
∑
p∈P

∑
k∈Kp

πkxk (2)∑
k∈Kp

xk ≤ 1 ∀p∈ P (3)∑
k∈K

ackxk ≤ 1 ∀c∈C (4)

xk ∈B ∀k ∈K. (5)

The objective (2) is to maximize the total profit. By substituting Equation (1) we observe the

dependency on parameters acs and bcsk. Constraints (3) ensure that every parcel is delivered at

most once and therefore only one parcel path can be selected among those associated with that

parcel. Constraints (4) ensure that a crowd-shipper is used at most once.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
8

3. Methodology

We solve the problem using a column generation approach, where every column is a unique parcel

path. In the master problem, parcel paths from the current set of columns K̄ are selected to

maximize revenue and minimize operational costs, by solving the LP relaxation of the Restricted

Master Problem (RMP). In the pricing problem, new columns are generated that improve the

current solution, based on the dual variables of the constraints of the last iteration of the LP.

Finally, when no more columns with positive reduced cost are found the optimal solution to the

LP is obtained. We then obtain an integer solution by solving the IP with the last set of obtained

columns. We note that this does not guarantee the optimality of the IP solution. An exact method

would require embedding the column generation in a branch-and-price framework. However, in

our computational experiments, the optimality gap of the IP and LP objectives indicates that the

obtained solutions are (near) optimal.

The master problem is described in Section 3.1 and the pricing problem is described in Section

3.2. The shortest path problem that is used to solve the pricing problem is described in Section

3.3.

3.1. Master problem

The formulation of the master problem closely resembles the formulation in Section 2.2. In the

master problem, we select the best columns from the current set K̄ that maximize the obtained

revenue from delivering parcels and minimizes the costs of crowd-shippers. In addition to the total

set of columns, we define K̄p as the set of columns that correspond to parcel paths of parcel p∈ P .

It follows that
⋃

p∈P K̄p = K̄. The formulation of the master problem is as follows, with the dual

variables of the constraints in parentheses.

max
∑
p∈P

∑
k∈K̄p

πkxk (6)

∑
k∈K̄p

xk ≤ 1 ∀p∈ P (vp) (7)

∑
k∈K̄

ackxk ≤ 1 ∀c∈C (uc) (8)

xk ∈B ∀k ∈ K̄. (9)

3.2. Pricing problem

We extend the set of columns in the RMP by finding columns with positive reduced cost. The

reduced cost for a new column k ∈K \ K̄ is defined as rk and it can be computed as:

rk = πk − vp −
∑
c∈C

ucack. (10)

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
9

We can rewrite this by substituting πk from Equation (1), as follows:

rk = ρp −
∑
c∈C

ackα
1
c −

∑
c∈C

∑
s∈Sc

bcsk(α
2
cdetcs +α3

clens)− vp −
∑
c∈C

ucack. (11)

We can then rewrite this by grouping together similar terms:

rk = (ρp − vp)−
∑
c∈C

ack(uc +α1
c)−

∑
c∈C

∑
s∈Sc

bcsk(α
2
cdetcs +α3

clens). (12)

Recall that acs =
∑

s∈Sc
bcsk and that the total compensation paid to a crowd-shipper is denoted

by wcs. We can further simplify the definition of the reduced cost as follows:

rk = (ρp − vp)−
∑
c∈C

∑
s∈Sc

bcsk(uc +α1
c +α2

cdetcs +α3
clens) (13)

rk = (ρp − vp)−
∑
c∈C

∑
s∈Sc

bcsk(uc +wcs). (14)

From Equation (14) it is clear that finding a column with positive reduced cost can be decomposed

over the parcels. For every parcel, we search the parcel path with the highest reduced cost (if any

column with positive reduced cost exists). This is done by finding the best crowd-shippers and

segments to constitute a feasible path from origin to destination. This path has to satisfy basic

flow constraints as well as timing restrictions to ensure that a parcel can only be picked up after it

is delivered. As the problem is separated over parcels, the term ρp−vp is fixed. Finding a path with

maximal reduced costs is then equivalent to minimizing
∑

c∈C

∑
s∈Sc

bcsk(uc + wcs). This means

that finding the positive reduced cost path is equivalent to solving the shortest path problem.

We consider a layered procedure for the pricing problem where direct, indirect paths with a single

transfer, and indirect paths with multiple transfers are considered separately. This procedure is

presented in Algorithm 1. First, direct paths are generated. Direct paths constitute a simple match

of a crowd-shipper to a parcel. Here, the feasibility with respect to time windows and location

needs to be verified and the costs are computed. Thereafter, indirect paths are generated. Although

slightly more difficult due to time and location synchronization at the transfer, this can still be done

by simply enumerating for every parcel all crowd-shippers that can pick up and all crowd-shippers

that can deliver the parcel. Finally, we consider multi-stage deliveries by solving a shortest-path

problem. As the number of transfers is not fixed, this is more complicated and discussed in detail

in the remainder of this section.

This layered procedure has two main benefits. First, solving the pricing problem for direct

delivery and indirect delivery with one transfer is computationally much faster. For a direct delivery,

finding a column with a positive reduced cost only requires going over all feasible matches of crowd-

shippers and parcels, which can be done in O(|P ||C|). For an indirect delivery with one transfer, a

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
10

similar approach is used where every crowd-shipper is considered twice (once for pickup and once

for delivery), which can be done in O(|P ||C|2). Therefore, the column generation algorithm can be

warm-started first for direct deliveries and then also for indirect deliveries with one transfer, before

considering the computationally more expensive multi-stage deliveries. The second benefit is that,

by considering multi-stage deliveries separately, the shortest path problem and the corresponding

graph can be fully adapted to this type of delivery and therefore improve the speed of the algorithm.

Algorithm 1: Layered procedure for pricing problem

1 for every parcel p∈ P do
2 Generate a direct path with positive reduced costs.

3 Compute r̄; the maximum reduced cost across all generated paths

4 if r̄≤ 0 then
5 for every parcel p∈ P and every pickup segment s∈Np do
6 Generate an indirect path with one transfer with positive reduced costs.

7 Compute r̄; the maximum reduced cost across all generated paths

8 if r̄≤ 0 then
9 for every parcel p∈ P and every pickup segment s∈Np do

10 Generate an indirect path with positive reduced costs, by solving the shortest

path problem.

11 Add all generated paths with positive reduced costs to K̄

3.3. Shortest path algorithm - Graph construction

To solve the shortest path problem, a graph is constructed based on the movement of crowd-

shippers through the road network. An example of such a graph is given in Figure 2 and will be

described below. The shortest path problem is solved on a directed graph where nodes correspond

to segments. Whenever a node is part of the shortest path, the variable bcsk is equal to 1 and it

is equal to 0 otherwise. The cost of such a node is equal to uc +wcs, such that the length of the

shortest path corresponds to the second term of the reduced cost in Equation (14). An arc between

two nodes exists if the two segments are compatible, in the sense that one segment can be executed

right after the other. An arc between two nodes n1 and n2 exists if all of the following conditions

hold:

• The crowd-shipper of node n1 is different from the crowd-shipper of node n2.

• The segment of node n1 ends at the same transfer point where the segment of node n2 starts.

• The segment of node n1 finishes at least ∆min time units before and at most ∆max time units

after the segment of node n2 starts.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
11

All existing arcs have a cost of zero, which means that the only cost components are on the nodes.

For the multi-stage delivery problem we consider three types of nodes each corresponding to a

type of segment: pickup nodes/segments, dropoff nodes/segments and transfer nodes/segments.

We describe the properties of these nodes in detail below, with the set of nodes of each type in

parentheses. A feasible parcel path starts with a pickup segment and ends with a dropoff segment,

possibly with one or more transfer segments in between. A segment describes a part of the parcel

path for which the parcel is travelling with the same crowd-shipper.

1. Pickup nodes/segments (NP): A pickup segment represents the initial pickup of the parcel

from the origin location and its delivery to a transfer point. A pickup node exists if the origin of the

segment coincides with the origin of the parcel and the destination of the segment coincides with

a transfer point. Thereby, it only exists if the start time of the segment is later than the earliest

availability time of the parcel. A pickup node has no incoming arcs.

2. Dropoff nodes/segments (ND): A dropoff segment represents the final delivery of the

parcel from the last transfer point to the destination of the parcel. A delivery node exists if the

destination of the segment coincides with the destination of the parcel and the origin of the segment

coincides with a transfer point. Thereby, it only exists if the time window of the parcel is satisfied.

A dropoff node has no outgoing arcs.

3. Transfer nodes/segments (NT): A transfer segment represents the transfer of any parcel

from one transfer point to another. There are no restrictions on location or time for the existence

of a transfer node.

We emphasize that although pickup and dropoff nodes are parcel-specific, due to origins, desti-

nations, and time windows, transfer nodes are not. Therefore, transfer nodes are only added once,

whereas pickup and dropoff segments may be repeated for multiple parcels that are similar.

3.4. Modified Dijkstra’s algorithm

To find the column to add to the master problem for every parcel, we aim to find the shortest path

between any pickup segment and any dropoff segment. We do this by applying a modified version

of Dijkstra’s shortest path algorithm tailored to fit well the specifics of our problem. As Dijkstra’s

algorithm can find the shortest path from a source node to any node in the graph, we apply the

shortest path problem |NP | times. The column with the highest reduced cost (if any column with

positive reduced cost exists) is added to the master problem and this is repeated for every parcel.

Dijkstra’s algorithm takes as an input a set of nodes and an adjacency matrix which defines

the arcs between the nodes. We observe that the full graph does not change between iterations

and can therefore be pre-computed once. Then, at each call to the pricing problem, only the

costs on the nodes are updated according to the dual variables. The details on the algorithm are

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
12

O

P

1

2

21
3

(a) Network where H is the hub,
P is the parcel destination, colours
indicate a crowd-shipper and num-
bers are used to identify parts of
the route.

1,2

1 2

1 2

1,2

Pickup segments Dropoff segments

2,3

1,2,3

3

(b) Graph for the pricing problem corresponding to
the network in (a). Nodes correspond to segments and
arcs connect segments if one can be feasibly executed
after the other (timing constraints are ignored in this
example). Numbers refer to parts of the route that
together form a segment.

Figure 2 Conversion from network with 1 parcel and 5 crowd-shippers, each with a maximum detour of 0, to a

graph for the pricing problem

described in Algorithm 2. The algorithm enforces all constraints that hold between nodes through

the adjacency matrix, as these constraints are transitive. The only exception to this is that two

segments belonging to the same crowd-shipper may be included in the shortest path, as long as

at least one other segment is in between. This constraint is not enforced as a hard constraint as

this would make the problem resource-constrained. However, by construction of our problem, such

paths are never feasible if ∆min > 0. As a crowd-shipper will leave directly after dropping off the

parcel, whereas a parcel can only be transferred after ∆min time units, the crowd-shipper will

arrive at the next transfer point at least ∆min time units before the parcel arrives with another

crowd-shipper. As crowd-shippers never wait for a parcel to become available in our framework,

these paths are implicitly eliminated. In Line 11, the algorithm is terminated because there exist

no remaining unvisited nodes that can be visited through a feasible path from the source node.

In Line 13, we skip the for-loop in Lines 14-16 whenever the current node is in ND as this is by

definition the last node on a path and therefore can not be on the shortest path to another node.

In addition to the modifications to Dijkstra’s algorithm, more computational enhancements are

made to improve the speed of the algorithm. We consider three enhancements that allow to retain

the optimality of the algorithm and one enhancement that does not guarantee optimality.

3.4.1. Removing suboptimal nodes and arcs For some nodes and arcs, we can immedi-

ately see that they will not be part of the shortest path because the cost on the node is too high or

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
13

Algorithm 2: Modified Dijkstra’s Algorithm

1 Input: A set of nodes N =NP ∪ND ∪NT with their costs c(n) for all n∈N

2 Input: For every node n∈N , a set of neighboring nodes A(n)

3 Input: A source node s

4 Output: A set of shortest paths from source node s∈NP to all nodes in ND

5 Mark all nodes as unvisited : visit(n)→ false

6 Set the shortest distance to each node at dist(n)→∞, except for the source node which is

set to dist(s)→ c(s)

7 while Not all nodes are visited do
8 Find node q− as the unvisited node with minimal dist(q−)

9 Set visit(q−)→ true

10 if dist(q−) =∞ then
11 return shortest paths

12 if q− ∈ND then
13 continue to next node

14 for q+ ∈A(q−) do
15 if visit(q+) = false and dist(q−)+ c(q+)<dist(q+) then
16 dist(q+)→ dist(q−)+ c(q+)

17 return shortest paths

the joint costs of two nodes connected by an arc is too high. Propositions 1 and 2 identify several of

these cases where nodes and arcs can be eliminated from the graph. This also leads to identifying

parcels for which the pricing problem does not need to be solved because no column with positive

reduced cost exists for that parcel. By eliminating nodes and arcs, the size of the graph can be

reduced, which improves the speed of the shortest path algorithm.

Proposition 1 (Disregarding nodes). Let ρ = min
p∈P

ρp and w = min
c∈C,s∈Sc

wcs. A parcel p ∈ P

can be disregarded if ρp − vp − 2w ≤ 0. The corresponding pickup and dropoff segments (nodes)

can then also be disregarded. A segment (node) s∈ Sc of crowd-shipper c∈C can be disregarded if

ρ−uc −wcs −w≤ 0 orρ−uc −wcs − 2w≤ 0 if s is a transfer segment (node).

Proposition 2 (Disregarding arcs). Let ρ=min
p∈P

ρp and w= min
c∈C,s∈Sc

wcs. An arc between two

nodes s1 ∈ Sc1 of crowd-shipper c1 ∈ C and s2 ∈ Sc2 of crowd-shipper c2 ∈ C can be disregarded if

ρ−uc1wc1s1 −uc2wc2s2 or ρ−uc1wc1s1 −uc2wc2s2 −w if either s1 or s2 is a transfer segment.

As we consider multi-stage deliveries, a parcel path consists of at least two segments (i.e., a pickup

and a dropoff segment). In case the considered segment is a transfer segment, there are at least two

other segments involved. Using this property, the proof of these propositions is straightforward.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
14

3.4.2. Constructing several smaller subgraphs The nodes of the considered graph of the

shortest path problem are partitioned into three categories: pickup nodes (NP), dropoff nodes (ND)

and transfer nodes (NT). Transfer nodes are independent of the specific parcels and only depend

on crowd-shippers’ itineraries. Pickup and dropoff nodes, for their part, depend on the specific

parcel through the origin, destination and delivery time window. Constructing separate graphs,

hereafter referred to as subgraphs, that only include a part of the pickup and dropoff nodes can

solve memory issues, at the cost of a slight increase in computation time. Transfer nodes, finally,

need to be included in every subgraph to guarantee the optimality of the solution.

We consider a fraction η ∈ (0,1] of the parcels that are included in a subgraph. This means that

1/η subgraphs are constructed for which the pricing problems are solved separately. Basically, the

value of η forms a trade-off between time-savings and memory-savings, as well as the number of

subgraphs and the size of those subgraphs. When η is small, subgraphs are small and therefore

do not lead to memory issues, but many subgraphs need to be constructed at the cost of extra

computation time. When η is large, subgraphs are larger, which may lead to memory issues, but

fewer subgraphs need to be constructed which is generally faster.

3.4.3. Randomly removing highly similar nodes Whereas the aforementioned enhance-

ments improve the speed of the algorithm and reduce the memory consumption without jeopar-

dizing optimality, we now turn to a method that can very successfully reduce the size of the graph

but can no longer guarantee optimality. Due to the nature of our problem, many of the segments

(and therefore nodes in the graph) are highly similar and therefore likely unnecessary. For example,

many transfer segments between the same two transfer hubs may exist, but with different crowd-

shippers at slightly different times. For this reason, many of those nodes can be removed without

influencing optimality. However, as we do not know in advance whether such a node will be in a

shortest path or not, optimality can no longer be guaranteed. We maintain a fraction ζ ∈ [0,1) of

the nodes in the graph and remove the other 1− ζ (and the arcs connected to those nodes). These

nodes are selected randomly and with equal probability. As this is repeated at every iteration of

the column generation algorithm, different nodes can be removed across iterations. This limits the

influence on optimality, yet maintains the goal of reducing the size of the graph.

3.5. Locker and shipper capacity

So far, we have assumed that lockers have an infinite capacity and that crowd-shippers can only

carry a single parcel. In this section, we relax those assumptions and extend the formulation

accordingly. This will come at the cost of increased complexity in both the master problem and

the pricing problem but will lead to more realistic solutions.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
15

3.5.1. Shipper capacity Instead of assuming that a crowd-shipper can only make a single

delivery, we now relax this assumption and allow crowd-shippers to make multiple deliveries.We

assume that crowd-shippers only perform multiple pickups and deliveries if they involve the exact

same itinerary. That is, a crowd-shipper may carry multiple parcels at the same time, but only if

they are picked up and delivered at the exact same stations. The reason for this is that significant

effort is involved with every pickup and delivery (i.e., stopping at a locker, collecting or storing

the parcel and continuing the journey). Whereas this can be largely consolidated if the pickup and

drop-off locations are the same for the different items, this is not the case if these locations are

different. We denote the capacity of a crowd-shipper c∈C by Qc.

To efficiently model the capacity, we duplicate every segment in Sc a total of Qc times. We

redefine the set Sc by introducing Sq
c with 1≤ q ≤Qc as the qth copy of the set of segments and

Sc =∪Qc
q=1S

q
c . For the sake of notation, let s1 ∼ s2 denote the property that segments s1 and s2 are

copies of each other and s1 ≁ s2 the fact that they are not copies. Then, we reformulate problem

(2) - (5) by replacing Constraints (4) by the following set of constraints, which ensures the capacity

of a crowd-shipper:

∑
k∈K

ackxk ≤Qc ∀c∈C (uc). (15)

In addition to this, we add the following set of constraints to enforce that only segments that are

duplicates of each other are performed by the same crowd-shipper. A pair of segments that are not

duplicates of each other are deemed incompatible and columns that cannot be used together because

of such an incompatibility are part of an incompatible set I. The full collection of incompatible

sets is denoted as Icrowd with I ∈ Icrowd. Let bIk be a binary parameter taking value 1 if parcel path

k uses a segment that is part of incompatible set I, and 0 otherwise. Basically, the set I contains

all paths that are incompatible because they contain one of two incompatible segments s1 and s2

for which it holds that s1 ∈ Sc and s2 ∈ Sc for some crowd-shipper c ∈C and s1 ≁ s2. Every set I,

therefore, corresponds to a pair of incompatible segments (s1, s2). The following set of constraints

is added to exclude incompatibilities, with dual variable δI for every constraint I ∈ Icrowd:

∑
k∈K

bIkxk ≤ 1 ∀I ∈ Icrowd (δI). (16)

Instead of adding all constraints, which is computationally impossible due to the large number

of segments, we only add those constraints that are violated in the current solution. We can still

guarantee optimality as satisfied constraints do not influence the solution or the objective function.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
16

Given that they are inactive, their dual variable is by definition equal to 0 and therefore this also

does not influence the pricing problem. The procedure to identify violated constraints is as follows.

We define in advance all possible combinations of segments that would constitute a violation. That

is, we identify all possible I ∈ I. Then, every time the master problem is solved, for all the newly

added columns we verify whether they contain a segment that is in any I ∈ I. For every violation

I ∈ I we maintain the set of columns that contain any segment in this set. We note that the

violation I ∈ I is only added to the master problem if the corresponding set of columns contains

more than one column.

The new reduced cost then looks as follows, where we identify if parcel path k contains a segment

that makes it part of any of the incompatible sets I ∈ I:

rk = πk − vp −
∑
c∈C

ucack −
∑

I∈Icrowd

bIkδI . (17)

The pricing problem remains the same apart from an extra cost δI that is subtracted whenever

the new column is part of an incompatible set. We emphasize that the computational complexity

of the pricing problem remains unchanged after the addition of the capacity constraint. Even

though we duplicate the number of segments by the capacity, only the duplicate segment s with

the lowest value of
∑

I∈Icrowd bIkδI is considered in the pricing problem. The reason for this is that

the duplicate segments are identical. Therefore, a segment s′ with a higher sum of dual variables

can never be in the shortest path, as replacing it with segment s would always reduce the cost of

the path.

3.5.2. Locker capacity In our framework, we allow parcels to be stored in parcel lockers at

the transfer point. So far, we assumed that parcel lockers had infinite capacity. Here, we limit the

number of parcels that can be stored at a transfer point h ∈H to be Q̄h. Similar to the capacity

of the crowd-shippers, we identify sets of columns that are incompatible because the capacity of

a locker is exceeded at some point in time. The full collection of incompatible sets is denoted as

I locker. We adapt the master problem by adding the same set of constraints as in (16), but for the

new collection:

∑
k∈K

bIkxk ≤ 1 ∀I ∈ I locker (δI). (18)

Again, we do not add all constraints at once but identify those that are violated. Although the

number of transfer points is much lower than the number of crowd-shippers, the capacity of the

transfer point needs to be considered at every time interval. We only consider transfer points with

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
17

transfer lockers, as direct time-synchronized transfers do not need to be stored and therefore do

not influence the capacity. To identify the violated constraints, we use the following procedure.

For every transfer point, we identify the parcel paths that store a parcel at this point. We sort

the parcel paths twice: once in ascending order of their arrival time at the transfer point and once

in ascending order of their departure time from the transfer point. We start with an empty set of

paths V . We then go over those events one by one in chronological order. Every time an arrival

is recorded, the parcel path is added to V . Every time a departure is recorded, the parcel path is

removed from V . Whenever a parcel arrives that causes the cardinality of V to exceed Q̄h, we add

violation I with bIk = 1 for all k ∈ V and we store the time tIh at which the violation occurs, which

will later aid the pricing problem. For every transfer point, we only add a single constraint and

then re-solve the master problem. This is repeated until no violated constraints are encountered.

The reduced cost can then be computed as follows, where we identify if a parcel path k stores a

parcel at transfer point h at time tIh for any of the incompatibilities I ∈ I locker:

rk = πk − vp −
∑
c∈C

ucack −
∑

I∈Icrowd

bIkδI −
∑

I∈Ilocker

bIkδI . (19)

If this is the case, bIk = 1 for the new parcel path. The pricing problem can then be extended by

exploiting the start and end times of every segment. We recall that every node in the network

discussed in Section 3.2 corresponds to a segment. So far, a node corresponding to a segment s∈ Sc

of crowd-shipper c ∈C was attributed a cost uc +wcs, and no costs were attributed to arcs. Now,

for an arc between two nodes corresponding to segment s1 with end time t and s2 with start time

t̄ where ds1 = os2 = h a cost of δI is added for every I ∈ I locker for which it holds that t≤ tIh ≤ t̄.

We note that if an arc violates multiple constraints, multiple dual variables can be added to the

same arc.

4. Results

We describe the details of the case study and the parameter settings in Section 4.1. In Section

4.2 we evaluate the performance of the algorithm in terms of optimality gap and computation

time. We evaluate the effect of crowd-shipper capacity and locker capacity in Sections 4.4 and 4.5,

respectively. Finally, we perform a sensitivity analysis on the cost parameters in Section 4.6.

4.1. Case Study

The city of Washington DC is used as a case study. We use data on the spatial distribution of the

population (Census Reporter 2021) and the movement of individuals throughout the city based on

bike-sharing users (Capital Bikeshare 2020). The bike-sharing system of Washington DC has over

500 stations and 4500 bikes, making it one of the largest in the USA. A selection of 240 stations

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
18

that are in the city center or the closest suburbs is used in our case study. Bike-sharing stations

are considered as demand locations. This can either be through parcel lockers or home delivery

to an individual living arbitrarily close to a station. Thereby, historical data on the movement of

bike-sharing users throughout the city is used to approximate the movement of potential crowd-

shippers.

The case study and the construction of the dataset are highly similar to that of Stokkink and

Geroliminis (2023). The main difference is that the size of the network we consider in this work

is more than three times as large. Thereby, we consider time-dependent arrival rates of crowd-

shippers. For a detailed description of how the case study is constructed, the reader is referred

to their work. Figure 3 displays a bubble chart of the considered network, where the size of the

bubble is determined relative to the population around the corresponding station. Whereas most

commuters travel around Union Station, the Mall, and the center of Washington DC, most people

live in the suburbs and this is therefore where demand is the highest. We note the large asymmetry

in supply and demand for a crowd-shipping system in an urban network, making our case study

highly realistic.

Figure 3 Bubble chart of bike-sharing stations, where the size of the bubble is determined by the population in

the area.

The baseline parameters used for the model and the column generation algorithm are given in

Table 1. These parameters are used in all numerical experiments, except for sensitivity analyses

on these parameters. According to an analysis from American survey data in Le and Ukkusuri

(2019), on average, crowd-shippers expect a compensation of 12$ per hour. Considering 10 minutes

to perform both the pickup and delivery, we set α1 = $2. Using an average bikers speed of 12km/h,

we set α3 = $1/km, which is similar to the value chosen by Le et al. (2021). Intuitively, α2 >

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
19

α3 and therefore we set α2 = $2/km. This is in line with the findings of Rougès and Montreuil

(2014), who studied 26 crowd-shipping businesses, that found the prices of intra-urban deliveries to

start between $4 and $10 plus additional charges for inconveniences such as heavy loads and long

distances. According to Le and Ukkusuri (2019), a traditional carrier charges $15 per parcel. To

accommodate distance aspects, we set the cost per parcel to a base cost of $10, which can increase

up to $15 with $2.00 per kilometer between the origin and destination of the parcel. The maximum

runtime of the algorithm is set to 1800 seconds. The maximum runtime is checked before every

call to the pricing problem and may therefore be slightly exceeded.

The base case we consider has two origin locations and we construct a subgraph for every

origin in the pricing problem. This means η = 1/2. Parcels are stored at a random origin in the

morning and not necessarily at the closest origin to the destination. The relative rate of parcels

and crowd-shippers (|C|/|P |) is fixed. For computational reasons, we reduce the set C by removing

crowd-shippers that cannot contribute to any delivery (complete or partial). This yields the reduced

set C ′. The number of crowd-shippers in |C ′| depends on other parameters such as the transfer

locations H and the maximum detour τ . Therefore, in the experiments that follow, the reported

ratio |C ′|/|P | is not necessarily constant.

CPLEX version 12.6.3.0 is used in Java to solve all ILPs and LPs. The LPs during the iterations

of the column generation algorithm are solved to optimality and the IP after the final iteration of

the column generation algorithm is solved up to a 0.5% optimality gap.

Table 1 Parameter settings

Model parameters

α1 $1.00/parcel
α2 $2.00/parcel/km
α3 $1.00/parcel/km
∆min 1 minute
∆max 10 hours
ρ min{$15.00,$10+$2.00/km}/parcel

Algorithm parameters

η 0.5
ζ 0.3
CPU time limit 1800 seconds

4.2. Algorithm evaluation

In this section, we evaluate the performance of our column-generation algorithm in terms of objec-

tive value and computation time. We evaluate the performance for various model parameters and

problem sizes. Thereby, we compare the performance of the algorithm for multiple levels of ζ. The

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
20

results are displayed in Table 2. Clearly, the computation time of the algorithm increases as the

size of the problem increases. The most important determinant of the complexity of the algorithm

is the number of segments that are used to construct the graph in the pricing problem. Therefore,

the computation time increases drastically with |P |, |C|, and τ . This also explains why using only

a random portion of the segments to construct the graph in every iteration leads to a significant

reduction in computation time. By using a portion ζ, the computation time is reduced almost by

a factor 10. Hence, larger instances can be solved without decomposing the pricing problem over

more subgraphs.

The algorithm finds optimal or near-optimal solutions. When ζ is 1 and the algorithm converges

before the time limit, we can use the LP solution as an upper bound to the objective value and

therefore compute an optimality gap. For ζ < 1, the LP solution is not necessarily an upper bound.

Hence, we only compute the optimality gap if the optimal LP solution is found for ζ = 1. The

optimality gap is at most 0.5% for all tested instances for which the optimality gap was computable.

Even when ζ = 0.3, the optimality gap is almost negligible. Furthermore, using transfers leads to

an improvement between 15% and 50% both in the objective value (i.e., revenue - costs) and the

service level (i.e., number of served parcels).

To further evaluate the effect of ζ on computation time and optimality gap, we evaluate the case

where |P | = 681, |C ′| = 1202, τ = 500, and |H| = 11 for 6 different values of ζ. In Figure 4, the

optimality gap is displayed relative to the number of iterations (left) and the computation time

in seconds (right). Clearly, the computation time per iteration decreases drastically by decreasing

the random portion of segments that are used at every iteration. However, because the subgraphs

are not complete, they may lead to not all columns with positive reduced costs being identified

in an iteration. Therefore, the algorithm may require more iterations and can lead to suboptimal

solutions. The best value of ζ is thus a trade-off between the number of iterations and the compu-

tation time per iteration. The best value is also dependent on the size of the problem. In general,

for larger problems, smaller values of ζ can be chosen at the cost of limited losses.

4.3. Performance compared to locally optimized benchmark

In this section, we compare the performance of our optimized assignment procedure to a myopic

first-best assignment policy. Such a policy is commonly applied for dynamic settings in practice

and in the literature (Bent and Van Hentenryck 2004, 2007, Mousavi et al. 2021).

Crowd-shippers arrive dynamically over time. Every time a crowd-shipper arrives, the first-best

parcel is selected which maximizes the revenue. That is, we choose the parcel that is locally optimal,

ignoring information about potential future crowd-shippers. For a direct delivery, the profit can

be computed exactly as the full trip is known. For an indirect delivery, the costs of the current

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
21

Table 2 Algorithm Evaluation

|P | |C ′| |H| τ ζ CPU time (s) Opt. gap (%) Obj. ($) Gain (%) SL Gain (%)

310 339 6 250 1 2.4 0.0 1094.33 30.7 32.7 35.4
310 491 6 500 1 8.7 0.0 1475.85 24.6 31.0 28.8
681 777 6 250 1 25.0 0.0 2715.32 18.0 34.6 20.1
681 1028 6 500 1 387.3 0.4 3762.00 13.2 37.5 16.3

1043 1165 6 250 1 79.8 0.1 3988.24 14.7 34.3 17.0
1043 1531 6 500 1 ∗1800.0 - 5461.77 12.5 36.7 15.9

310 442 11 250 1 4.5 0.1 1178.63 40.7 27.1 46.3
310 577 11 500 1 45.5 0.2 1636.59 38.1 29.8 45.8
681 976 11 250 1 53.7 0.0 2823.08 22.6 28.8 25.4
681 1202 11 500 1 1456.3 0.1 4033.96 21.4 34.9 26.9

1043 1447 11 250 1 520.4 0.2 4195.71 20.6 29.2 23.4
1043 1774 11 500 1 ∗1800.0 - 5860.22 20.7 34.5 26.2

310 339 6 250 0.3 0.9 0.0 1094.26 30.7 32.7 35.4
310 491 6 500 0.3 1.9 0.0 1475.81 24.6 31.0 28.8
681 777 6 250 0.3 4.1 0.0 2716.18 18.0 34.6 20.1
681 1028 6 500 0.3 89.7 0.4 3763.67 13.3 37.5 16.3

1043 1165 6 250 0.3 16.0 0.0 3989.80 14.7 34.3 17.0
1043 1531 6 500 0.3 200.2 - 5453.03 12.3 36.6 15.7

310 442 11 250 0.3 2.2 0.0 1179.20 40.8 27.1 46.3
310 577 11 500 0.3 10.1 0.4 1633.30 37.9 29.6 44.9
681 976 11 250 0.3 10.1 0.0 2823.58 22.7 28.8 25.4
681 1202 11 500 0.3 230.7 0.5 4018.04 20.9 34.7 26.0

1043 1447 11 250 0.3 36.5 0.1 4200.88 20.8 29.2 23.7
1043 1774 11 500 0.3 991.9 - 5869.61 20.9 34.6 26.6

Note: |P | = number of parcels, |C′| = number of potential crowd-shippers, τ = maximum detour of crowd-shippers, |H| =
number of transfer hubs, ζ is the portion of random segments used in the construction of the subgraph for the pricing
problem. The optimality gap is the percentage difference between the IP solution and the LP solution for ζ = 1. SL = service
level. The gain columns display the improvement that is obtained by using transfers over not using transfers. Scenarios for
which the CPU time limit is reached and therefore no optimality gap can be obtained are denoted with an asterisk. The two
largest instances for ζ = 1 cannot be solved due to memory issues.

0 50 100 150

Iteration

0

5

10

15

20

25

30

35

40

45

50

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

 = 1

 = 0.7

 = 0.5

 = 0.3

 = 0.1

 = 0.05

0 100 200 300 400 500

CPU time (s)

0

5

10

15

20

25

30

35

40

45

50

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

 = 1

 = 0.7

 = 0.5

 = 0.3

 = 0.1

 = 0.05

Figure 4 Iterative optimality gap for different values of ζ

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
22

delivery stage are known. The costs of previous delivery stages have already been incurred and can

be considered sunk costs, which are therefore omitted from the optimization. It is assumed that

after the current stage, the parcel is directly picked up from the transfer point and taken to the final

destination of the parcel. Due to coordination issues in the dynamic arrival of crowd-shippers, we

only allow for two-stage deliveries and strictly prefer delivering a parcel to the final destination over

delivery to a transfer point. With these cost components and the revenue obtained from delivering

the parcel, the expected profit can be computed. Since the strategy is myopic, no information is

used on potential future crowd-shippers.

We note that for the myopic first-best assignment policy, parcels may remain at transfer points

whereas for the optimized assignment this is not possible. In case a parcel remains at the transfer

point, the revenue is not obtained although a part of the costs is already incurred. For the sake

of comparison, we compare the optimized assignment to two dynamic benchmarks. One where the

costs for uncompleted deliveries are excluded (B1) and one for which the costs for uncompleted

deliveries are included (B2).

The results are displayed in Table 3 where the first set of rows denotes the results for |H|= 0,

implying that only direct deliveries are allowed and the second set of rows denotes the results for

|H|= 11 where transfers are allowed. Global optimization allows for the coordination of transfers.

As a consequence, global optimization outperforms local optimization by 25% in terms of service

level and objective value when transfers are allowed. Without transfers, the effect is only 5%.

Table 3 Benchmark comparison

Global optimization Local optimization Effect of global optimization
|P | |C ′| τ |H| SL Obj SL B1 B2 SL B1 B2

310 442 250 0 26.5 837.40 25.2 797.75 797.75 -4.9 -4.7 -4.7
310 577 500 0 38.1 1184.80 37.1 1144.06 1144.06 -2.5 -3.4 -3.4
681 976 250 0 32.9 2301.94 32.3 2251.91 2251.91 -1.8 -2.2 -2.2
681 1202 500 0 48.6 3322.31 45.5 3107.11 3107.11 -6.3 -6.5 -6.5

1043 1447 250 0 32.8 3477.75 31.4 3328.68 3328.68 -4.1 -4.3 -4.3
1043 1774 500 0 46.5 4856.33 44.9 4650.70 4650.70 -3.5 -4.2 -4.2

310 442 250 11 38.7 1179.20 29.4 905.14 864.79 -24.2 -23.2 -26.7
310 577 500 11 55.2 1633.30 40.6 1208.52 1098.46 -26.3 -26.0 -32.7
681 976 250 11 41.3 2823.58 34.5 2367.28 2298.17 -16.4 -16.2 -18.6
681 1202 500 11 61.2 4018.04 48.3 3198.28 3044.50 -21.1 -20.4 -24.2

1043 1447 250 11 40.6 4200.88 33.3 3471.00 3379.15 -18.0 -17.4 -19.6
1043 1774 500 11 58.9 5869.61 47.2 4768.41 4522.80 -19.9 -18.8 -22.9
Note: |P | = number of parcels, |C′| = number of potential crowd-shippers, τ = maximum detour of crowd-shippers, |H| =
number of transfer hubs, SL = service level given as a percentage, obj = objective value given in dollars, B1 and B2 are the
objective values of two local optimization benchmarks given in dollars. The last three columns denote the percentual
difference between the local and the global optimization strategies.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
23

4.4. Crowd-shipper capacity

In this section, we evaluate the influence of crowd-shipper capacity on the profit and service level.

We consider that a part of the potential crowd-shippers can carry multiple parcels at the same

time. When generating the instance, every crowd-shipper has an equal probability for each capacity

level, such that we obtain an evenly distributed population. The results are obtained for ζ = 0.05,

to further reduce the CPU time. Here, we also apply the described row generation procedure

to identify violated constraints that we iteratively add to the formulation. As a result of using

ζ = 0.05, the obtained LP solution is not necessarily optimal. Therefore, the optimality gap is an

approximation.

The results are displayed in Table 4. By considering higher capacities, computation times increase

drastically. For this reason, a time limit of 3600 seconds (1 hour) is used instead. The reason for

the increased computation times is two-fold. First, we consider duplicate segments, such that the

number of considered segments and therefore the computation time of the pricing problem increases.

Second, the violated constraints need to be identified and added to the master problem, which

makes solving the master problem more computationally demanding. Furthermore, we observe that

the optimality gap increases with capacity. However, the highest observed optimality gap is 9%,

which is deemed reasonable.

We note that to obtain an optimal solution the column generation framework would have to be

integrated into a branch-and-price framework. However, given the relatively small optimality gap,

the already substantial computation time of the column generation algorithm, and the fact that we

are dealing with an operational problem rather than a strategic one, developing a branch-and-price

framework looks unappealing for our specific problem.

The increase in capacity leads to a substantial improvement in the objective (profit) and the

service level. Depending on the problem setting, using a capacity of 2 for half of the population

improves the objective and service level by 20% to 50%. For higher capacities, the observed increase

is even higher, even though the algorithm has reached the time limit before the optimal solution

has been found.

Figure 5 displays a Gannt chart of the movement of parcels. Each colored bar represents the

time spent with a crowd-shipper. Identical bars in identical locations signal that a crowd-shipper

is carrying multiple parcels at the same time. A deeper investigation reveals that the additional

flexibility leads to parcels being carried collectively on one leg and separately on the other, which

is clear from the zoomed figure. We also observe the influence of travel patterns on crowd-shipping

activity. We observe a clear morning and evening peak, by the frequency of the activities. The

evening peak contains significantly more activities, despite the number of potential crowd-shippers

not being significantly different from the morning commute. The reason for this is that most

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
24

Table 4 Influence of crowd-shipper capacity

|P | |C′| qc τ (m) CPU time (s) Obj. ($) SL (%) ˜Opt. gap (%) Gain obj. (%) Gain SL (%)

310 442 {1} 250 2.2 1179.20 38.7 0.0 - -
310 442 {1,2} 250 132.4 1559.52 52.3 2.5 32.3 35.0
310 442 {1,2,3} 250 176.8 1661.95 55.2 8.0 40.9 42.5

310 577 {1} 500 8.6 1633.30 55.2 0.4 - -
310 577 {1,2} 500 664.0 2008.52 68.4 2.8 23.0 24.0
310 577 {1,2,3} 500 1642.1 2158.09 73.2 5.3 32.1 32.7

681 976 {1} 250 10.0 2823.58 41.3 0.0 - -
681 976 {1,2} 250 3433.3 4025.81 60.2 42.6 45.9
681 976 {1,2,3} 250 ∗3600.0 4431.95 66.1 57.0 60.1

681 1202 {1} 500 188.2 4018.04 61.2 0.5 - -
681 1202 {1,2} 500 ∗3600.0 4079.37 59.2 1.5 -3.4
681 1202 {1,2,3} 500 ∗3600.0 - - - - -

Note: |P | = number of parcels, |C′| = number of potential crowd-shippers, qc is the considered crowd-shipper

capacity, each with equal probability, τ = maximum detour of crowd-shippers, The optimality gap is the percentage

difference between the IP solution and the LP solution. Since we use ζ = 0.3, the optimality gap is not exact but an

approximation. SL = service level. The gain columns display the improvement that is obtained by increasing the

capacity. Scenarios for which the CPU time limit is reached and therefore no optimality gap can be obtained are

denoted with an asterisk. The largest instance cannot be solved due to memory issues.

destinations for parcels are in the suburbs. Hence, the evening commute from the center to the

suburbs is more useful for reaching these destinations.

4.5. Parcel locker capacity

As parcel locker capacity does not seem to be a restrictive parameter for reasonable values of Q̄h,

these constraints are not considered in the obtained results. In this section, we discuss the evolution

of locker capacity over time. Out of the 11 transfer hubs, we specifically focus on three locations

that have distinct patterns. The locations are identified in Figure 6b, where origins are marked in

red, transfer points are marked in yellow, destinations of parcels are marked in green and the flow

of parcels that make at least one transfer is marked by blue lines. Here, the size of the line denotes

the number of parcels. The total number of parcels stored in the transfer points is displayed in

Figure 6a.

The three chosen transfer points are the most used among a total of 11. It is clear that a capacity

of 10, therefore, suffices for all transfer points. The first two points are in the city center. This is

clear because they fill up quickly during the morning commute after which they are emptying out

slowly during the evening commute. During the morning commute, potential crowd-shippers travel

from the suburbs to the city center, passing by these transfer points. The opposite is observed for

the third transfer point, which is at the main train station of Washington DC, parcels gradually

accumulate throughout the day before being emptied out rapidly during the evening commute

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
25

Figure 5 Gannt chart of the movement of parcels with time on the x-axis and the parcel index on the y-axis.

Parcels are sorted by the start time of the first segment. Each colored bar represents the time spent

with a crowd-shipper. In the upper left corner, we zoom on four specific parcels.

when people are traveling back home (i.e., to the suburbs) from the train station. Clearly, the

results in Figure 6 align with the results in Figure 5.

4.6. Sensitivity for cost parameters

In this section, we evaluate the effect of the cost parameters on the observed performance and the

number of transfers per parcel path. We consider similar settings as in the previous experiment, but

with a constant |H|= 11 and ζ = 0.3. We consider non-linear cost components for crowd-shipper

compensation where we replace the profit in Equation (1) with the following function:

πk = ρp −

[∑
c∈C

ackα
1 +

∑
c∈C

∑
s∈Sc

bcsk

(
α2(detcs)

β2 +α3(lens)
β3

)]
. (20)

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
26

(a) Number of parcels stored over time
(b) Flow of parcels that make at least one
transfer

Figure 6 Step and flow charts that indicate the number of parcels stored at transfer points over time and the

flow of parcels in the network

The results are displayed in Table 5. We observe that the effect of transfers on service level is

relatively constant for different cost parameter combinations. The effect on the objective improve-

ment is more substantial. For higher values of τ , the relative improvement of the objective function

compared to the case |H|= 0 is lower than for lower values of τ . Thereby, if the penalty for distance

traveled with a parcel is non-linear, the improvement of the objective decreases by approximately

10%. The value of α1 has a significant influence on the number of transfers on a path. When

the fixed compensation is negligible, transfers become more beneficial and we observe significantly

more paths with two or more transfers.

5. Conclusion

In this paper, we developed a crowd-shipping model with intermediate transfers. In contrast with

the majority of the existing literature, our model allows for high levels of heterogeneity of crowd-

shippers, parcels, and transfer points. We consider a detailed individual-specific cost structure for

crowd-shipper compensation and allow for different weights to be assigned to different parcels,

for example, to differentiate between locations in the network. Thereby, we allow for direct time-

synchronized transfers, where a parcel is directly handed from one crowd-shipper to another, as

well as transfers with intermediate storage at strategically located parcel lockers. We designed a

column generation algorithm to solve large-scale realistic scenarios to optimality within a reasonable

amount of time.

To improve the performance of the system, we allow crowd-shippers to carry more than one parcel

at the same time. This further complexifies the problem, as additional constraints are required

to regulate crowd-shipper capacity and compatibility of parcels. To solve this problem, we extend

our column generation algorithm to simultaneous column and row generation. This algorithm

identifies violated compatibility constraints and adds these to the master problem after every

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
27

Table 5 Sensitivity to cost parameters

|P | |C ′| τ α1 α2 α3 β2 β3 Improvement over |H|= 0 Transfers per path (%)
Obj. (%) SL (%) 0 1 2+

310 442 250 1 2 1 1 1 40.8 46.3 66.7 33.3 0.0
310 577 500 1 2 1 1 1 38.4 45.8 66.3 32.0 1.7
310 442 250 1 1.6 1 1.2 1 40.3 48.1 65.0 34.2 0.8
310 577 500 1 1.6 1 1.2 1 34.4 46.2 64.9 33.3 1.8
310 442 250 1 2 0.8 1 1.2 29.7 46.3 64.2 34.2 1.7
310 577 500 1 2 0.8 1 1.2 23.1 43.2 68.0 30.8 1.2
310 442 250 1 1.6 0.8 1.2 1.2 28.3 46.9 66.4 32.8 0.8
310 577 500 1 1.6 0.8 1.2 1.2 18.6 32.5 70.3 29.0 0.6
310 442 250 0.01 2 1 1 1 46.2 46.3 56.7 38.3 5.0
310 577 500 0.01 2 1 1 1 43.8 45.8 60.5 33.7 5.8
310 442 250 0.01 1.6 1 1.2 1 46.4 48.1 56.7 38.3 5.0
310 577 500 0.01 1.6 1 1.2 1 41.3 47.0 58.7 34.3 7.0
310 442 250 0.01 2 0.8 1 1.2 39.3 46.3 49.2 42.5 8.3
310 577 500 0.01 2 0.8 1 1.2 33.9 44.1 51.8 38.8 9.4
310 442 250 0.01 1.6 0.8 1.2 1.2 38.0 46.9 53.8 42.0 4.2
310 577 500 0.01 1.6 0.8 1.2 1.2 29.0 41.0 53.9 38.8 7.3

Note: |P | = number of parcels, |C ′| = number of potential crowd-shippers, τ = maximum detour of

crowd-shippers, α1 = fixed crowd-shipper compensation in dollars, α2 = variable crowd-shipper

compensation per km detour, α3 = variable crowd-shipper compensation per km traveled with parcel, β2 =

power of detour component, β3 = power of distance component. SL = service level. α1, α2, and α3 are

given in dollars (per kilometer).

column generation iteration. A similar approach can be taken to enforce constraints on locker

capacity, but the results show that in the considered scenarios locker capacity is not restrictive.

We evaluated the performance of our model and algorithm on a realistic case study in the city of

Washington DC. Demand for parcels is approximated through the number of inhabitants of a region

and the flow of potential crowd-shippers through the network is based on the flow of bike-sharing

users. For a large network with 250 regions, 11 transfer points, approximately 500 parcels, and 500

crowd-shippers, our algorithm finds the optimal matching within one minute. For larger models of

approximately 1000 parcels and 1000 crowd-shippers, we find solutions that are optimal or near-

optimal within 10 to 30 minutes. Computation times increase with the total number of segments.

This means that as the number of crowd-shippers, transfer points, and maximum detour crowd-

shippers are willing to make increases, the computation time also increases. However, computation

time can be significantly improved by randomly reducing the set of segments in every iteration.

Although this removes the optimality guarantee, an optimality gap smaller than 0.5% is observed

across the tested instances. Due to the complexity of coordination between crowd-shippers in a

system with transfers, our optimal approach outperforms a myopic first-best (locally optimized)

approach by 25%.

Our results indicate that the use of parcel lockers for intermediate transfers allows for increasing

the total revenue and service level by around 30%, depending on the system configurations. A

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
28

further increase of 30 to 50% can be obtained by allowing some crowd-shippers to carry two or

three parcels at the same time (with an average capacity of two across the population). Due to

the asymmetric movement of crowd-shippers during the day (i.e., suburbs to the city center in the

morning and city center to suburbs in the afternoon), some parcels can be stored for an entire

work day in a parcel locker before being transported to their final destination. Due to the increased

computation time for the case where crowd-shippers can carry more than one parcel, developing a

heuristic solution approach is an important direction of future research.

A comparison between transfer points shows that the location of the transfer point strongly

impacts the quality of the obtained solution. The strategic decision of choosing the optimal location

of depots and transfer points remains an important direction of future research. In this work, we

consider that crowd-shippers that carry two parcels at the same time receive double the compen-

sation. An adaptive pricing strategy and behavioral analysis of the crowd-shippers’ response to

prices is an important direction of future research.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
29

References

Agatz N, Erera A, Savelsbergh M, Wang X, 2012 Optimization for dynamic ride-sharing: A review. European

Journal of Operational Research 223(2):295–303.

Archetti C, Savelsbergh M, Speranza MG, 2016 The vehicle routing problem with occasional drivers. European

Journal of Operational Research 254(2):472–480.

Arnott R, Rave T, Schöb R, et al., 2005 Alleviating urban traffic congestion. MIT Press Books 1.

Bent R, Van Hentenryck P, 2004 Regrets only! online stochastic optimization under time constraints. AAAI,

volume 4, 501–506.

Bent R, Van Hentenryck P, 2007 Waiting and relocation strategies in online stochastic vehicle routing. IJCAI,

volume 7, 1816–1821 (Citeseer).

Capital Bikeshare, 2020 Capital Bikeshare, https://www.capitalbikeshare.com/system-data.

Census Reporter, 2021 Census Reporter, https://censusreporter.org/. Accessed: 10-03-2021.

Chen C, Pan S, Wang Z, Zhong RY, 2017 Using taxis to collect citywide e-commerce reverse flows: a crowd-

sourcing solution. International Journal of Production Research 55(7):1833–1844.

Chen W, Mes M, Schutten M, 2018 Multi-hop driver-parcel matching problem with time windows. Flexible

Services and Manufacturing Journal 30(3):517–553.

Chen Y, Guo D, Xu M, Tang G, Zhou T, Ren B, 2019 Pptaxi: Non-stop package delivery via multi-hop

ridesharing. IEEE Transactions on Mobile Computing 19(11):2684–2698.

Desrosiers J, Lübbecke ME, 2005 A primer in column generation. Column generation, 1–32 (Springer).

DiPugliaPugliese L, Guerriero F, Macrina G, Scalzo E, 2021 Crowd-shipping and occasional depots in the

last mile delivery. Optimization and Decision Science, 213–225 (Springer).

dos Santos AG, Viana A, Pedroso JP, 2022 2-echelon lastmile delivery with lockers and occasional couriers.

Transportation Research Part E: Logistics and Transportation Review 162:102714.

Drews F, Luxen D, 2013 Multi-hop ride sharing. International Symposium on Combinatorial Search, vol-

ume 4.

Enthoven DL, Jargalsaikhan B, Roodbergen KJ, Uit het Broek MA, Schrotenboer AH, 2020 The two-

echelon vehicle routing problem with covering options: City logistics with cargo bikes and parcel lockers.

Computers & Operations Research 118:104919.

Ermagun A, Shamshiripour A, Stathopoulos A, 2020 Performance analysis of crowd-shipping in urban and

suburban areas. Transportation 47(4):1955–1985.

Ghilas V, Cordeau JF, Demir E, Woensel TV, 2018 Branch-and-price for the pickup and delivery problem

with time windows and scheduled lines. Transportation Science 52(5):1191–1210.

Herbawi W, Weber M, 2011 Evolutionary multiobjective route planning in dynamic multi-hop ridesharing.

European Conference on Evolutionary Computation in Combinatorial Optimization, 84–95 (Springer).

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
30

Kafle N, Zou B, Lin J, 2017 Design and modeling of a crowdsource-enabled system for urban parcel relay and

delivery. Transportation Research Part B: Methodological 99:62–82.

Kızıl KU, Yıldız B, 2023 Public transport-based crowd-shipping with backup transfers. Transportation Science

57(1):174–196.

Lan YL, Liu F, Ng WW, Gui M, Lai C, 2022 Multi-objective two-echelon city dispatching problem with mobile

satellites and crowd-shipping. IEEE Transactions on Intelligent Transportation Systems .

Laporte G, Nobert Y, 1988 A vehicle flow model for the optimal design of a two-echelon distribution system.

Advances in Optimization and Control, 158–173 (Springer).

Le TV, Stathopoulos A, Van Woensel T, Ukkusuri SV, 2019 Supply, demand, operations, and management of

crowd-shipping services: A review and empirical evidence. Transportation Research Part C: Emerging

Technologies 103:83–103.

Le TV, Ukkusuri SV, 2019 Crowd-shipping services for last mile delivery: Analysis from american survey

data. Transportation Research Interdisciplinary Perspectives 1:100008.

Le TV, Ukkusuri SV, Xue J, VanWoensel T, 2021 Designing pricing and compensation schemes by integrating

matching and routing models for crowd-shipping systems. Transportation Research Part E: Logistics

and Transportation Review 149:102209.

Lu W, Liu L, Wang F, Zhou X, Hu G, 2020 Two-phase optimization model for ride-sharing with transfers

in short-notice evacuations. Transportation Research Part C: Emerging Technologies 114:272–296.

Lübbecke ME, Desrosiers J, 2005 Selected topics in column generation. Operations Research 53(6):1007–1023.

Macrina G, Di Puglia Pugliese L, Guerriero F, Laganà D, 2017 The vehicle routing problem with occasional

drivers and time windows. International Conference on Optimization and Decision Science, 577–587

(Springer).

Macrina G, Pugliese LDP, Guerriero F, Laporte G, 2020 Crowd-shipping with time windows and transship-

ment nodes. Computers & Operations Research 113:104806.

Masoud N, Jayakrishnan R, 2017 A decomposition algorithm to solve the multi-hop peer-to-peer ride-matching

problem. Transportation Research Part B: Methodological 99:1–29.

Mitrović-Minić S, Laporte G, 2006 The pickup and delivery problem with time windows and transshipment.

INFOR: Information Systems and Operational Research 44(3):217–227.

Mousavi K, Bodur M, Cevik M, Roorda MJ, 2021 Approximate dynamic programming for crowd-shipping

with in-store customers.

Mousavi K, Bodur M, Roorda MJ, 2022 Stochastic last-mile delivery with crowd-shipping and mobile depots.

Transportation Science 56(3):612–630.

Nieto-Isaza S, Fontaine P, Minner S, 2022 The value of stochastic crowd resources and strategic location of

mini-depots for last-mile delivery: A benders decomposition approach. Transportation Research Part B:

Methodological 157:62–79.

Stokkink, Cordeau, and Geroliminis: A column and row generation approach to the crowd-shipping problem with transfers
31

Pourrahmani E, Jaller M, 2021 Crowdshipping in last mile deliveries: Operational challenges and research

opportunities. Socio-Economic Planning Sciences 78:101063.

Rais A, Alvelos F, Carvalho MS, 2014 New mixed integer-programming model for the pickup-and-delivery

problem with transshipment. European Journal of Operational Research 235(3):530–539.

Raviv T, Tenzer EZ, 2018 Crowd-shipping of small parcels in a physical internet. Workingpaper, Tel Aviv

University .

Ropke S, Cordeau JF, 2009 Branch and cut and price for the pickup and delivery problem with time windows.

Transportation Science 43(3):267–286.

Rougès JF, Montreuil B, 2014 Crowdsourcing delivery: New interconnected business models to reinvent deliv-

ery. 1st International Physical Internet Conference, volume 1, 1–19.

Sampaio A, Savelsbergh M, Veelenturf LP, Van Woensel T, 2020 Delivery systems with crowd-sourced drivers:

A pickup and delivery problem with transfers. Networks 76(2):232–255.

Shoup DC, 2006 Cruising for parking. Transport Policy 13(6):479–486.

Spiess H, Florian M, 1989 Optimal strategies: a new assignment model for transit networks. Transportation

Research Part B: Methodological 23(2):83–102.

Stokkink P, Geroliminis N, 2023 A continuum approximation approach to the depot location problem

in a crowd-shipping system. Transportation Research Part E: Logistics and Transportation Review

176:103207.

Torres F, Gendreau M, Rei W, 2022a Crowdshipping: An open vrp variant with stochastic destinations.

Transportation Research Part C: Emerging Technologies 140:103677.

Torres F, Gendreau M, Rei W, 2022b Vehicle routing with stochastic supply of crowd vehicles and time

windows. Transportation Science 56(3):631–653.

Vincent FY, Jodiawan P, Redi AP, 2022 Crowd-shipping problem with time windows, transshipment nodes,

and delivery options. Transportation Research Part E: Logistics and Transportation Review 157:102545.

Voigt S, Kuhn H, 2022 Crowdsourced logistics: The pickup and delivery problem with transshipments and

occasional drivers. Networks 79(3):403–426.

Yıldız B, 2021a Express package routing problem with occasional couriers. Transportation Research Part C:

Emerging Technologies 123:102994.

Yıldız B, 2021b Package routing problem with registered couriers and stochastic demand. Transportation

Research Part E: Logistics and Transportation Review 147:102248.

