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�is paper studies a �ow hub location problem (FHLP) stemming from recent trends in network design for e-commerce

businesses. Speci�cally, e-commerce companies are �exible and agile in re-optimizing their logistics networks, includ-

ing supplier (origin) and customer zone (destination) decisions. Furthermore, a large number of commodities (�ows)

and a relatively small sales volume for each product incentivize e-commerce retailers to lease warehouse spaces as

hubs, yielding a large number of hub location candidates. As such, the proposed FHLP determines the origin and des-

tination of each �ow simultaneously with the hub location and �ow routing decisions, in contrast to the classical hub

location problems where the origins and destinations of all �ows are predetermined. To solve this large-scale optimiza-

tion problem, we propose an optimization algorithm that combines Lagrangian relaxation and Benders decomposition.

Novel acceleration techniques, such as a clustering-empowered multi-commodity Benders reformulation, learning-

empowered elimination tests, and variable reduction techniques, are further developed to improve the performance

and convergence of the algorithm. �e e�ciency of the proposed algorithm is evaluated via extensive computational

experiments. �e computational results show that, when compared to three other benchmark methods, the proposed

algorithm can achieve optimal solutions much quicker for small-sized test instances and reduce optimality gaps from

13-26% to 5-6% for large-sized test instances with 600-700 nodes.
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1. Introduction
Hub location problems (HLPs) are an important subset of classical facility location problems (Farahani

et al. 2013) and lie at the heart of network design decisions. �ey encompass a challenging class of opti-

mization problems that determine the choices of hubs and the interconnections between them to optimize

selected e�ciency metrics. More speci�cally, HLPs have natural links to various applications and prevail

in planning activities for supply chain networks, logistics and transportation networks, computer net-

works, and telecommunication systems. Hubs in these networks serve as centralized handling and sorting,

consolidating, connecting, and dispatching points for �ows going through them. In addition to selecting

a subset of hubs to operate from a given set of candidates, HLPs also decide the optimal links that connect
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the selected hubs as well as the routing of �ows in the network from the origins to the destinations. As a
result, hub location decisions typically aim to minimize the total costs associated with se�ing up the hubs,
as well as the hub operating costs, such as transshipment costs between hubs, origins, and destinations.
Alternative metrics like delivery speeds and environmental impacts may also be considered in single or
multiple-criteria decision models.
Despite being a classical problem in the operations research literature, HLPs have a�racted great a�en-

tion in recent supply chain practices. Several factors have forced companies to reconsider and restruc-
ture their supply chain networks. One prominent factor is the COVID-19 pandemic that has signi�cantly
altered customer behaviors, forcing retailers with brick-and-mortar stores to rethink their strategic loca-
tions. �e turmoil caused by the pandemic has also exposed vulnerabilities in supply chains. As such,
companies started paying more a�ention to resilience in their supply chains and will continue to enhance
the network structure, hub locations, and connectivity between hubs. Further, it has been reported that
there is a warehouse shortage across the United States with nearly 96% of existing commercial ware-
house space already in use1, driving up the rental prices for warehousing and storage. All these factors
have triggered the need to re-optimize logistics networks and hub locations to remain competitive and
cost-e�cient.
In this paper, we focus on an extended HLP stemming from recent trends in network design for e-

commerce businesses. Indeed, e-commerce has been booming due to its convenience to end customers.
Customers can now view, compare, and order products at their �ngertips on computers andmobile devices,
avoiding the hassle of traveling to local stores. Meanwhile, sellers have also bene�ted from the �exibility
provided by e-commerce. It reduces the barrier of working capital requirements to build and maintain
expensive brick-and-mortar stores. Sellers can simply set up a website, and ship the products directly to
the consumers from their warehouses (i.e., hubs) once an order is received. �e COVID-19 pandemic has
further accelerated the adoption of e-commerce around theworld. For example, in the U.S., the e-commerce
sales saw a 14.2% increase in 2021 a�er a rapid 50.5% increase in 20202; the e-commerce revenue in Europe
grew by 13% in 2021, where 73% of European internet users shopped online3; and China has become the
largest e-commerce market globally4.
�e growth of these direct-to-consumer channels has transformed the order ful�llment operations and

requirements, calling for an extended HLP to be solved. First, small to medium-sized online retailers o�en
sell a large number of products with a relatively small sales volume for each product. �eir customer
demands and customer bases also change more o�en than traditional retailers. As a result, they are in
favor of leasing hubs or warehouse spaces (e.g., from third-party logistics) (Gelareh et al. 2015, Wu et al.
2021) rather than building and owning an entire warehouse.�ey are also much more �exible and agile in

1 See h�ps://www.cnbc.com/2021/11/29/online-shopping-black-friday-cyber-monday-warehouses.html.
2 See h�ps://www.forbes.com/sites/jasongoldberg/2022/02/18/e-commerce-sales-grew-50-to-870-billion-during-the-pandemic.
3 See h�ps://ecommercenews.eu/european-ecommerce-grew-13-in-2021.
4 See h�ps://www.trade.gov/country-commercial-guides/china-ecommerce.
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shi�ing their hub locations in response to changing products and demands.�erefore, the hub candidates
in the problem under study can be very large, rendering the optimization problem even more challenging
to solve than traditional ones. Second, traditional HLPs comewith predetermined origins and destinations.
In contrast, theHLPs studied in this paper determine the origin and destination of a �ow (i.e., product) from
a set of alternatives, in addition to the intermediate hub locations and �ow routing. Particularly, the origin
and destination candidates are o�en subject to capacity limitations. For the choice of origin, online retailers
have the �exibility of outsourcing the procurement of a product to di�erent suppliers/manufacturers at
di�erent locations, where the supply/production capacity for each product is o�en limited. Large retailers
make supplier choice and hub location decisions at di�erent stages, but small or medium retailers have
small production volumes and would bene�t from making both decisions simultaneously. Essentially, the
agility of online retailers allows them to combine the hub location decisions with longer-term tactical
supplier selection decisions. For the choice of destination, time-to-delivery has become a key competitive
di�erentiation factor for online retailers, in addition to the traditional di�erentiator of price. Liu et al.
(2022) showed that customer demand for online retailers is directly impacted by their logistics service
quality, including shipping time, delivery time, and damaged product ratio. To increase the speed of last-
mile delivery and ful�llment responsiveness, online retailers would carefully choose the destination site
for a product from a set of candidate sites. �ese sites are all located su�ciently close to this product’s
primary service area and customer zone, but di�erent sites may have di�erent capacities and costs. To
this end, we de�ne an extension of the HLP with multiple assignments (Contreras et al. 2011a), adding the
selection of origin/destination nodes (with capacity limitations) from a set of candidates for each �ow. We
call this extended HLP the �ow hub location problem (FHLP).
�e FHLP isNP-hard since a special case of FHLP (with the sets of origin/destination nodes for all �ows

being singletons) becomes the classical HLP with multiple assignments, which is known to be NP-hard
(Contreras and Fernández 2014). Our computational tests show that the generic branch-and-boundmethod
of a commercial solver cannot achieve a good performance for relatively large-size FHLP instances. Addi-
tionally, although the literature has paid much a�ention in the past decades to �nding e�cient algorithms
to solve various HLPs (e.g., Benders decomposition in Contreras et al. (2011a) and branch-and-price in
Contreras et al. (2011c)), none of these algorithms are directly applicable to the FHLP due to its speci�c
features. Hence, it motivates us to develop a new e�cient algorithm speci�cally tailored for the FHLP.
�e proposed algorithm combines Lagrangian relaxation and Benders decomposition to exploit speci�c
structures of the problem and solve subproblems e�ciently.
�e remainder of this paper is organized as follows. In Section 2, we provide a literature review on

the research related to this paper. It is followed by Section 3 which presents mathematical models of the
FHLP and its Benders reformulation. In Section 4, we discuss how to enhance the Benders decomposition
method through the exploration of several problem properties and learning-empowered elimination tests
and variable reduction. Section 5 presents computational results to show the e�ciency of the proposed
algorithms through a vast number of computational tests. Finally, we conclude with remarks and future
research directions in Section 6. Additional computational results and model outputs are provided in the
online supplement to this paper.
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2. Literature Review
In this section, we review the literature relevant to the FHLPs under study and summarize the main con-
tributions of this paper.
From the modeling perspective, this paper contributes to the literature by presenting a new extension

of the classical HLP, where the selection of the origin and destination of each �ow is determined simul-
taneously with the typical hub location decisions, i.e., the selection of intermediary hubs to lease and the
resulting routing of �ows. �is extension is necessary to model the HLPs in e-commerce, where online
sellers can dynamically change their hubs and routing as they change the suppliers or manufacturers of
their products and/or the warehouses for last-mile delivery. A mixed integer linear programming (MILP)
model will be formulated, and several properties of the model will be discussed to reformulate the model.
To the best of our knowledge, this is the �rst paper studying such an extension. Several classical HLPs
have been studied, such as the HLPs with single or multiple allocation (O’Kelly 1987), the p-hub covering
problem (Campbell 1994), the p-hub median problem (Campbell 1996), the p-hub center problem (Ernst
et al. 2009), the hub arc location problem (Campbell et al. 2005), and the cycle hub location problem (Con-
treras et al. 2017). More recent variants of HLPs incorporate di�erent requirements and objectives, such
as the HLPs with reliability (Mohammadi et al. 2019), competition (Gelareh et al. 2010), robustness (Wang
et al. 2020, Zhao et al. 2023), multi-period (Gelareh et al. 2015), multi-objective (Monemi et al. 2021), uncer-
tainty (Alumur et al. 2012), congestion (Elhedhli and Wu 2010), interhub link failures (Blanco et al. 2023),
or economies of scale (EOS) (O’Kelly and Bryan 1998). For comprehensive reviews of the hub location
literature, we refer readers to Campbell and O’Kelly (2012), Farahani et al. (2013), and Alumur et al. (2021).
�e class of HLPs is known to be computationally challenging due to an exponentially large number

of solutions. Because the FHLPs studied in this paper extend the classical HLPs by adding the decisions
regarding the origin and destination for each �ow, this class of problems can become even more chal-
lenging to solve. Further, due to the fact that e-commerce companies have more �exibility in their hub
locations because of their smaller sales volumes and leasing options, the sizes of the FHLPs can be large.
As such, it calls for the development of a new optimization algorithm for solving large-scale FHLPs. In
general, two categories of methods have been explored to e�ectively solve the HLPs, namely, heuristic
methods and exact methods. Heuristics aim to �nd near-optimal solutions within a reasonable amount
of computational time and thus have been developed to solve large-scale optimization problems. Popular
heuristics for the HLPs include genetic algorithms (Meng and Wang 2011), tabu search (Bütün et al. 2021),
adaptive neighborhood search (Wu et al. 2022c), simulated annealing (Gha�arinasab et al. 2018), particle
swarm optimization (Özg̈un-Kibiroğlu et al. 2019, Maiyar and�akkar 2019), as well as their variants and
combinations, such as the hybrid tabu search and greedy random adaptive search algorithm for the HLP
with EOS in Klincewicz (2002). More recently, learning-based algorithms have a�racted much a�ention
and have been successfully applied to network design problems, such as the learning-based probabilistic
tabu search in Guan et al. (2018) and unsupervised learning-driven matheuristic in Wu et al. (2022b).
Despite the e�ectiveness of heuristics in �nding good solutions in a relatively short amount of time,

they typically lack guarantees on the solution quality. Due to the tactical nature of the HLPs and their
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long-term impacts, companies are o�en willing to spend more computational time in exchange for a bet-
ter solution quality. As such, exact methods have been developed for solving HLPs with proven optimal
solutions or theoretical bounds. �ese exact methods are typically based on the mathematical program-
ming framework. For example, exact methods based on branch-and-bound have been proposed for solving
uncapacitated multiple allocation HLPs (Klincewicz 1996, Mayer and Wagner 2002), single and multiple
allocation p-hub median problems (Ernst and Krishnamoorthy 1998), and the HLP with pro�ts (Armaghan
et al. 2018); methods based on branch-and-price have been proposed for the HLPs with single assignment,
where Lagrangian relaxation is used to obtain lower bounds on the restricted master problem in Contreras
et al. (2011c), and several facet-de�ning inequalities and tra�c variables are used to enhance the e�ciency
of the algorithm in Labbé et al. (2005); a branch-and-cut based algorithm is developed in Contreras et al.
(2017) for the cycle hub location problem, which uses a �ow-based formulation and two families of mixed-
dicut inequalities as a lower bounding procedure at nodes of the enumeration tree. Another popular class
of exact methods in solving the HLPs is Benders decomposition, which decomposes a large-size problem
into smaller solvable subproblems and a master problem. For example, Benders decomposition algorithms
have been developed to solve the uncapacitated HLPwith multiple assignments in telecommunication and
transportation systems (de Camargo et al. 2008), the multiple allocation HLPs with EOS (de Camargo et al.
2009), the tree of hub location problems (de Sá et al. 2013), and the uncapacitated multiple allocation HLPs
with EOS and node congestion (Waleed and Diabat 2020). It is worth mentioning that variable �xing and
reduction, approximate Pareto-optimal cuts, and acceleration techniques can be used to e�ciently solve
master problems (Contreras et al. 2011a, 2012, Taherkhani et al. 2020). A recent Benders decomposition
implementation proposed by Taherkhani et al. (2020) can optimally solve the pro�t-maximizing HLP with
up to 500 nodes and three demand classes.
From the solution methodology perspective, this paper contributes to the algorithmic development

of the hub location literature by e�ectively combining the Benders decomposition with machine learn-
ing and the Lagrangian relaxation, as well as a few other algorithmic enhancements. While Lagrangian
relaxation-based methods have been developed to solve several HLPs with the considerations of capaci-
ties, congestion, or competitive environment (Elhedhli andWu 2010, Gelareh et al. 2010, He et al. 2015, Wu
et al. 2021), in this paper, a Lagrangian relaxation heuristic is developed to generate initial solutions for the
FHLP, which are then fed into the Benders decompositionmethod to speed up the search. Further, the stan-
dard Benders decomposition algorithm is enhanced through the exploration of several problem properties,
such as a clustering-empowered multi-commodity Benders reformulation, learning-empowered elimina-
tion tests and variable reduction, and the generation of strong Pareto-optimal cuts.We have created a large
number of test instances, and the computational results indicate that the proposed method can obtain
optimal solutions in regular-size test instances and achieve much be�er solution qualities in large-size
test instances than benchmark methods, such as the Cplex solver and the elimination test (Contreras et al.
2011a, Taherkhani et al. 2020).
While this paper focuses on solving deterministic FHLPs, it is worth mentioning that some recent

research has explored the impact of uncertainties in HLPs. Examples of such uncertainties include demand
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uncertainty (Correia et al. 2018, Rostami et al. 2021), random disruptions (Torkestani et al. 2018, Moham-
madi et al. 2019, Shen et al. 2021), coexistence of stochastic demand and uncertain revenue (Taherkhani
et al. 2021), and risk aversion (Kargar and Mahmutoğulları 2022). A future extension of the FHLP under
study is to consider uncertainties brought by di�erent levels of reliability of suppliers (origins) and di�er-
ent levels of demand uncertainty of customer zones (destinations). While previous research has demon-
strated the e�ectiveness of using fast machine learning techniques to predict solution values of the second-
stage subproblems, rather than solving them exactly with costly computations, in expediting the solution
process of Benders decomposition for stochastic models (Larsen et al. 2023), we advance the research lit-
erature by using machine learning techniques to predict the likelihood of a hub being closed at an optimal
solution point, and then use the insight to guide elimination tests and a variable reduction procedure to
expedite the solution process of Benders decomposition.

3. Mathematical Models
�is section provides a MILP formulation for the problem under study. Figure 1 illustrates the location
choice and routing decisions in a three-hub one-commodity FHLP, with a comparison to the traditional
HLP. Here, > , 3 , and ⌘ in the �gure represent the origin, destination, and hub node, respectively. For the
traditional HLP, given an origin >1 and a destination 31, the problem determines a transportation route
from the set of hub nodes {⌘1,⌘2,⌘3}, as shown in Figure 1(a). In comparison, the FHLP determines not
only the hubs but also the origin selection from the set {>1,>2} and the destination from the set {31,32}.
Figure 1(b) shows four out of nine possible solutions in the FHLP given ⌘1 and ⌘2 as hubs used, expanding
the solution space of the traditional HLP.

 

Possible solution 

Possible solution 1 

a) Traditional hub location problem 

b) Extended hub location problem 

Possible solution 2 

Possible solution 3 Possible solution 4 
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ℎ1 

ℎ3 

ℎ2 

𝑜1 

𝑑1 

ℎ1 
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ℎ2 

𝑜1 

𝑑1 

ℎ1 

ℎ3 

ℎ2 

𝑜1 

𝑑1 

𝑜2 𝑑2 

𝑜2 𝑑2 𝑜2 𝑑2 

𝑜2 𝑑2 

Figure 1 HLP vs. FHLP

In this paper, we assume that the e-commerce company aims to determine origin/destination nodes
for each commodity (i.e., product) from the set of alternative origins/destinations. �e assignment of the
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origin/destination nodes incurs some associated costs. �e objective of the FHLP is to minimize the total

transshipment cost, hub location cost, and assignment cost on the origin and destination nodes.

3.1. �e Problem and MILP Model

Let⌧ = (# ,�) be a directed network, where # is the set of nodes and � is the set of arcs with (⌘1,⌘2) 2�
connecting nodes ⌘1 and ⌘2. Let � ✓ # denote the set of hub locations. �e FHLP considers a set  

of commodities indexed by : (: 2  ) whose demand F: is known. �e origin > and destination 3 for

each commodity : are not predetermined and need to be selected from a set ($: ✓ # ) of origin nodes

and a set (⇡: ✓ # ) of destination nodes, respectively. �e total demand of commodities assigned to each

origin (>) and destination (3) node cannot violate their respective capacities, denoted by 2>: and 23: for

each commodity : . We assume that the combined capacities at origins and destinations are su�cient

for satisfying the demand, i.e.,
Õ
>2$: 2>: � F: and

Õ
32⇡: 23: � F: , 8 : 2  . Every commodity (: 2  )

must be assigned at least one origin and one destination, but multiple origins and multiple destinations

can be assigned to the same commodity. Assigning an origin > (destination 3) to a commodity : incurs

an assignment cost of ?>: (?3: ). Given that hubs are uncapacitated, hub nodes are fully interconnected,

and distances follow the triangle inequality, every path between an origin and a destination contains at

least one and at most two hubs. Herein, for each commodity : , a path between two nodes takes the form

(>,⌘1,⌘2,3), where ⌘1,⌘2 2 � . Further, let �⌘1,⌘2 represent the travel distance from node ⌘1 to node ⌘2,

where �⌘1⌘2 is assumed to be symmetric. Note that when ⌘1 = ⌘2, the path only contains one hub with

�⌘1⌘2 = 0.

�e transportation cost C>3⌘1⌘2: for moving thewhole demand of commodity: along the path (>,⌘1,⌘2,3)

is proportional to F: · (f1 · �>⌘1 + f2 · �⌘1⌘2 + f3 · �⌘23 ), where f2 < f1 and f2 < f3 due to EOS for the

transportation between hubs (Contreras et al. 2011a). For each ⌘ 2 � , 5⌘ is the �xed cost for leasing hub

⌘. �e overall objective is to minimize the total costs, including the hub-leasing costs (5⌘), transportation

costs (C>3⌘1⌘2: ), and assignment costs (?>: and ?3: ). We summarize all the notation and provide the model

formulation as follows.

Sets:

$ Set of origin nodes for all commodities, indexed by > .
⇡ Set of destination nodes for all commodities, indexed by 3 .
� Set of potential hubs, indexed by ⌘,⌘1, and ⌘2.
# Set of all nodes, where # =$ [⇡ [� .
� Set of arcs.
 Set of commodities, indexed by : .
$: Set of nodes that can serve as the origin for commodity : , where $: ✓$ .
⇡: Set of nodes that can serve as the destination for commodity : , where ⇡: ✓ ⇡ .
 > Set of commodities that can originate from node > , where  > ✓  .
 3 Set of commodities that can be delivered to node 3 , where  3 ✓  .
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Parameters:

F: Demand of commodity : .
C>3⌘1⌘2: Transportation cost for delivering the total demand (F: ) of commodity : from origin > to

destination 3 through hubs ⌘1 and ⌘2.
5⌘ Leasing cost of hub ⌘.
?>: Assignment cost for selecting node > as an origin for commodity : .
?3: Assignment cost for selecting node 3 as a destination for commodity : .
2>: Capacity of origin node > for commodity : .
23: Capacity of destination node 3 for commodity : .

Variables:

G>3⌘1⌘2: Transportation variables representing the percentage of commodity : transported from origin
> to destination 3 through hubs ⌘1 and ⌘2.

I⌘ Binary hub-leasing variables; I⌘ = 1 if hub ⌘ is leased, and 0 otherwise.
~>: Binary commodity origin assignment variables; ~>: = 1 if node > is selected as an origin for

commodity : , and 0 otherwise.
D3: Binary commodity destination assignment variables; D3: = 1 if node 3 is selected as a

destination for commodity : , and 0 otherwise.

Using the above notation, the FHLP can be formulated as the following MILP:

min
’
⌘2�

5⌘ · I⌘ +
’
:2 

’
>2$:

’
32⇡:

’
⌘12�

’
⌘22�

C>3⌘1⌘2: · G>3⌘1⌘2: +
’
:2 

’
>2$:

?>: ·~>: +
’
:2 

’
32⇡:

?3: ·D3: (1)

Subject to:’
>2$:

’
32⇡:

’
⌘12�

’
⌘22�

G>3⌘1⌘2: = 1, 8 : 2  , (2)

’
>2$:

’
32⇡:

’
⌘12�

G>3⌘⌘1: +
’
>2$:

’
32⇡:

’
⌘12�\{⌘}

G>3⌘1⌘:  I⌘, 8 : 2  , ⌘ 2� , (3)

’
32⇡:

’
⌘12�

’
⌘22�

F: · G>3⌘1⌘2:  2>: ·~>: , 8 : 2  , > 2$: , (4)

’
>2$:

’
⌘12�

’
⌘22�

F: · G>3⌘1⌘2:  23: ·D3: , 8 : 2  , 3 2 ⇡: , (5)

~>: 2 {0, 1}, D3: 2 {0, 1}, 8 : 2  , > 2$: , 3 2 ⇡: , (6)

G>3⌘1⌘2: � 0, 8 : 2  , > 2$: , 3 2 ⇡: , ⌘1,⌘2 2� , (7)

I⌘ 2 {0, 1}, 8 ⌘ 2� . (8)

In this formulation, the objective function (1) is to minimize the total hub-leasing, transportation, and
assignment costs. Constraints (2) ensure that the demand for every commodity is fully satis�ed. Con-
straints (3) ensure that a hub must be leased if any commodity goes through the hub. Constraints (4)
ensure that the total demand of each commodity originating from a node does not exceed its capacity.
Constraints (5) enforce that the total demand of each commodity delivered to a node does not exceed its
capacity. Constraints (4) and (5) also ensure that a commodity can go from an origin (to a destination)
only if this origin (destination) is selected for this commodity. Constraints (6)–(7) enforce integrality and
non-negativity requirements for the di�erent types of variables.
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3.2. Variable Reduction

We notice that some properties can be utilized to preprocess the above formulation so as to reduce the

number of variables G>3⌘1⌘2: . Some of these properties are inherited from the uncapacitated hub location

problem discussed in Contreras et al. (2011a). Speci�cally, de�ne a set of hub edges 4 2 ⇢, where ⇢ is the

set of all subsets of � containing one or two hubs, and denote 4 as {41} if |4 | = 1 and as {41,42} if |4 | = 2.

�en, about half of the G>3⌘1⌘2: variables can be ruled out by simply using an undirected transportation

cost for every hub edge (Hamacher et al. 2004). In an optimal solution, every commodity needs at most one

direction of a hub edge, i.e., the one with the lowest shipping cost. �e undirected shipping cost C>34: for

each 4 2 ⇢, : 2  is de�ned as C>34: =min{C>3⌘1⌘2: , C>3⌘2⌘1: } if 4 = {⌘1,⌘2}, and C>34: = C>3⌘1⌘1: if 4 = {⌘1}.
Furthermore, it can be veri�ed that in any optimal solution, no commodities will be transported through

a hub edge containing two di�erent hubs whenever it is cheaper to transport it through only one of them

(Contreras et al. 2011a).

Property 3.1 For every : 2  , > 2 $: , 3 2 ⇡: , and 4 = {41,42} 2 ⇢, if C>34: > min
�
C>3 {41 }: , C>3 {42 }:

 
, then

G>34: = 0 in any optimal solution of the FHLP.

Utilizing this property can lead to a more compact formulation with fewer variables. To this end, we

de�ne a set of candidate hub edges for each commodity : 2  , > 2$: , 3 2 ⇡: as

⇢>3: =
�
{4 2 ⇢ : |4 | = 1}[ {4 2 ⇢ : |4 | = 2 and (C>34: <min{C>3 {41 }: , C>3 {42 }: })}.

�e mathematical model can be therefore reformulated to problem P as follows:

(P) : min
’
⌘2�

5⌘ · I⌘ +
’
:2 

’
>2$:

’
32⇡:

’
42⇢>3:

C>34: · G>34: +
’
:2 

’
>2$:

?>: ·~>: +
’
:2 

’
32⇡:

?3: ·D3: (9)

Subject to:’
>2$:

’
32⇡:

’
42⇢>3:

G>34: = 1, 8 : 2  , (10)

’
>2$:

’
32⇡:

’
42⇢>3: :⌘24

G>34:  I⌘, 8 : 2  , ⌘ 2� , (11)

’
32⇡:

’
42⇢>3:

F: · G>34:  2>: ·~>: , 8 : 2  , > 2$: , (12)

’
>2$:

’
42⇢>3:

F: · G>34:  23: ·D3: , 8 : 2  , 3 2 ⇡: , (13)

~>: 2 {0, 1}, D3: 2 {0, 1}, 8 : 2  , > 2$: , 3 2 ⇡: , (14)

G>34: � 0, 8 : 2  , > 2$: , 3 2 ⇡: , 4 2 ⇢>3: , (15)

I⌘ 2 {0, 1}, 8 ⌘ 2� . (16)
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3.3. Benders Decomposition Formulation
�e presence of a large number of variables in the MILP formulation (9)�(16), particularly those binary
variables, can make the problem challenging to solve using a standard MILP solver. �e structure of the
formulationmakes it suitable to apply Benders decomposition to separate the original problem into smaller
problems that are individually easier to solve. Speci�cally, a master problem is solved over a �rst subset
of variables of the original problem, given an estimate for the cost of the remaining second subset of
variables.�en, a subproblem is solved over the second subset of variables, given the solution of the �rst
subset of variables obtained in the master problem. If the subproblem is infeasible or its cost exceeds the
current estimate, then so-called Benders cuts are generated and added to the master problem.�is process
repeats until the optimality or infeasibility of the problem is proved.�is subsection provides the Benders
reformulation and the solution framework based on the Benders formulation.
In the Benders reformulation of the FHLP, the hub-leasing and origin/destination assignment variables

(I,~,D) are handled in themaster problem and the transportation variables are handled in the subproblems.
Speci�cally, let⌧1 =B |� | ,⌧2 =B

Õ
:2 |$: | , and⌧3 =B

Õ
:2 |⇡: | denote the sets of binary vectors associated

with I⌘ , ~>: , and D3: , respectively. For any �xed vectors Ĩ 2⌧1, ~̃ 2⌧2, and D̃ 2⌧3, the primal subproblem
(PS) over the variables G>34: is given as follows:

(PS) : min

( ’
:2 

’
>2$:

’
32⇡:

’
42⇢>3:

C>34: · G>34:

)
(17)

subject to:’
>2$:

’
32⇡:

’
42⇢>3:

G>34: = 1, 8 : 2  , (18)

’
>2$:

’
32⇡:

’
42⇢>3: :⌘24

G>34:  Ĩ⌘, 8 : 2  , ⌘ 2� , (19)

’
32⇡:

’
42⇢>3:

F: · G>34:  2>: · ~̃>: , 8 : 2  , > 2$: , (20)

’
>2$:

’
42⇢>3:

F: · G>34:  23: · D̃3: , 8 : 2  , 3 2 ⇡: , (21)

G>34: � 0, 8 : 2  , > 2$: , 3 2 ⇡: , 4 2 ⇢>3: . (22)

While the master problem provides a lower bound on the original problem, the subproblem is used to
provide an upper bound.�us, PS is reformulated using its dual representation to form the dual subprob-
lem. By associating the dual variables U: , \⌘: , W>: , and g3: to constraints (18)–(21), respectively, the dual
subproblem DS is given as follows:

(DS) : max

( ’
:2 

U: �
’
:2 

’
⌘2�

Ĩ⌘ · \⌘: �
’
:2 

’
>2$:

2>: · ~̃>: ·W>: �
’
:2 

’
32⇡:

23: · D̃3: · g3:

)
(23)

subject to:

U: �\41: �\42: �F: ·W>: �F: · g3:  C>34: , 8 : 2  , > 2$: , 3 2 ⇡: , 4 2 ⇢>3: , |4 | = 2, (24)

U: �\41: �F: ·W>: �F: · g3:  C>34: , 8 : 2  , > 2$: , 3 2 ⇡: , 4 2 ⇢>3: , |4 | = 1, (25)
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\⌘: � 0, 8 : 2  , ⌘ 2� , (26)

W>: � 0, g3: � 0, 8 : 2  , > 2$: , 3 2 ⇡: . (27)

Note that both PS andDS can be decomposed to | | independent subproblems PS: andDS: , respec-
tively, given any : 2  . A�er solving DS, there are three possible outcomes. If DS has a �nite optimal
solution, and so does PS by the duality theory, the upper bound can be updated to the current optimal
value of the subproblem plus its corresponding hub-leasing and assignment costs if it is smaller than the
current upper bound, and a new constraint is added to the master problem by considering this solution;
if DS is unbounded above and thus PS is infeasible, a constraint is added to the master problem to
remove this solution; and ifDS is infeasible and thus PS is infeasible or unbounded below, the procedure
terminates.�e following property can be used to strengthen the master problem.

Proposition 3.2 For any vectors Ĩ 2 ⌧1, ~̃ 2 ⌧2, and D̃ 2 ⌧3 satisfying
Õ
⌘2� Ĩ⌘ � 1,

Õ
>2$: ~̃>: � 1 for all

: 2  , andÕ
32⇡: D̃3: � 1 for all : 2  , the primal subproblem PS is either infeasible or feasible and bounded,

and the dual subproblem DS is either unbounded or feasible and bounded.

Proof. We can prove this proposition by verifying the validity of the following three points. 1) �e
infeasibility of the primal subproblem is possible, 2) the feasibility of the primal subproblem is possible, and
3) the primal subproblem cannot be unbounded. For point 1), the infeasibility of the primal subproblem is
possible because, for a given commodity, the combined capacity of the selected origins (destinations) may
be insu�cient for its demand. For point 2), the feasibility of the primal subproblem is possible because P
has a �nite optimal solution. For point 3), from constraints (18)–(22) and the fact that the transportation
costs C>34: are �nite, any feasible solution of the primal subproblem must be bounded. Hence, the primal
subproblem is feasible and bounded or infeasible. According to strong duality, the dual subproblem is
either feasible and bounded or unbounded. ⇤

Let P denote the polyhedron de�ned by constraints (24)–(27), and let P4 and PD represent the set of
extreme points and the set of unbounded rays of P, respectively. Further, let Z denote the total transporta-
tion cost obtained by satisfying the demand. �e Benders master problem (MP) can then be formulated
as follows:

(MP) : min

( ’
⌘2�

5⌘ · I⌘ +
’
:2 

’
>2$:

?>: ·~>: +
’
:2 

’
32⇡:

?3: ·D3: + Z
)

(28)

subject to:

Z �
’
:2 

U: �
’
:2 

’
⌘2�

I⌘ · \⌘: �
’
:2 

©≠
´
’
>2$:

2>: ·~>: ·W>: �
’
32⇡:

23: ·D3: · g3:™Æ
¨
, 8 (U,\ ,W,g) 2 P4 ,

(29)
’
:2 

U: �
’
:2 

’
⌘2�

I⌘ · \⌘: �
’
:2 

©≠
´
’
>2$:

2>: ·~>: ·W>: �
’
32⇡:

23: ·D3: · g3:™Æ
¨
 0, 8 (U,\ ,W,g) 2 PD,

(30)
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’
>2$:

~>: � 1, 8 : 2  , (31)

’
32⇡:

D3: � 1, 8 : 2  , (32)

’
⌘2�

I⌘ � 1, (33)

~>: 2 {0, 1}, D3: 2 {0, 1}, 8 : 2  , > 2$: , 3 2 ⇡: , (34)

I⌘ 2 {0, 1}, 8 ⌘ 2� . (35)

Here, constraints (29) are cuts added when DS is feasible and bounded, and constraints (30) are cuts
generated when DS is unbounded. Inequalities (31)–(32) impose that for each commodity, at least one
origin and one destination must be selected. Constraint (33) imposes that at least one hubmust be selected.
�ese constraints are added to improve the quality of the initial Benders cuts. We note that the master
problemMP contains an exponential number of constraints. A cu�ing plane approach can be employed to
solveMP. We can iteratively solve relaxed master problems containing a small subset of constraints (29)
and (30) associated with the extreme points of P4 and the unbounded rays of PD , respectively.�e feasible
solution provides some substantiated values (Ĩ, ~̃, D̃) to the dual subproblem DS. �e dual subproblem
is then solved to optimality or with unbounded rays, and its solution is an extreme point of P4 (or an
unbounded ray of PD ), which can be used to generate a new constraint of (29) (or (30)) for the relaxed
master problem. A�erward, we solve the relaxed master problem to obtain new solution values (Ĩ, ~̃, D̃).
�is procedure is iteratively executed until an optimal solution to the original FHLP is found.
A pseudocode of the Benders decomposition algorithm is presented in Algorithm 1. In this algorithm,

we let LB and UB represent a lower bound and an upper bound on the optimal objective value of the
FHLP, respectively. Let Y denote the iteration count, and let P4Y and PDY be the restricted set of extreme points
and the restricted set of unbounded rays of P at iteration Y, respectively. Additionally, we let (ĨY, ~̃Y, D̃Y)
be an optimal solution vector of P4Y and let DS(ĨY, ~̃Y, D̃Y) denote the dual subproblem given (ĨY, ~̃Y, D̃Y).
Let MP(P4Y ,PDY ) be the relaxed master problem in which P4 and PD are replaced by P4Y and PDY in MP,
respectively. Moreover, we let I (DS(ĨY, ~̃Y, D̃Y)) and I (MP(P4Y ,PDY )) be the optimal objective values of the
dual subproblem DS(ĨY, ~̃Y, D̃Y) and the master problem MP(P4Y ,PDY ), respectively.
�e computational e�ciency of Algorithm 1 generally depends on: (i) the computational e�ort required

to solveMP(P4Y ,PDY ), (ii) the computational e�ort required to solve DS(ĨY, ~̃Y, D̃Y), and (iii) the number of
iterations before termination (convergence). We will, therefore, present several techniques to enhance the
performance of Algorithm 1 by tackling these points.

3.4. Feasibility of Primal Subproblems
From Proposition 3.2, the primal subproblem can be infeasible and the dual subprogram can be unbounded.
Rather than solving the dual subproblems to check if they are unbounded or not, we can use the rules in
Propositions 3.3 to check the feasibility. If unbounded, we can directly solve themodi�ed dual subproblems
to obtain the unbounded ray. Performing this step at iterations of the algorithm could save computation
time.
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Algorithm 1:�e Benders Decomposition Algorithm
LB �1, UB +1, Y 1, P4Y  ;, PDY  ; ;
Obtain the initial solution of (ĨY, ~̃Y, D̃Y) ;
repeat

Solve DS(ĨY, ~̃Y, D̃Y) ;
if Unbounded then

Obtain unbounded ray (UY,\Y,WY,gY) 2 PD ;
PDY+1 PDY [ {(UY,\Y,WY,gY)} ;

else
Obtain extreme point (UY,\Y,WY,gY) 2 P4 and I (DS(ĨY, ~̃Y, D̃Y)) ;
UB min{UB,
I (DS(ĨY, ~̃Y, D̃Y)) +

Õ
⌘2� 5⌘ · Ĩ⌘ +

Õ
:2 

Õ
>2$: ?>: · ~̃>: +

Õ
:2 

Õ
32⇡: ?3: · D̃3: } ;

P4Y+1 P4Y [ {(UY,\Y,WY,gY)} ;
end
Y Y + 1 ;
Solve MP(P4Y ,PDY ) to obtain (ĨY, ~̃Y, D̃Y) and I (MP(P4Y ,PDY )) ;
LB I (MP(P4Y ,PDY )) ;

until UB =LB;

Proposition 3.3 For any: 2  , let $̃: = {> 2$: |~̃>: = 1} and ⇡̃: = {3 2 ⇡: |D̃3: = 1}.�e primal subproblem
PS is infeasible ifF: >

Õ
>2$̃: 2>: orF: >

Õ
32⇡̃: 23: for any : 2  .

Proof. For any : 2  , sum both sides of Eq. (20) over > 2$: , we have
Õ
>2$:

Õ
32⇡:

Õ
42⇢>3: F: ·G>34: Õ

>2$: 2>: ·~̃>: . From Eq. (18),
Õ
>2$:

Õ
32⇡:

Õ
42⇢>3: F: ·G>34: =F: , and

Õ
>2$: 2>: ·~̃>: =

Õ
>2$̃: 2>: .�ere-

fore, ifF: >
Õ
>2$̃: 2>: for any: 2  ,PS is infeasible. In a similar vein, we can show that, ifF: >

Õ
32⇡̃: 23:

for any : 2  , PS is also infeasible. ⇤

4. Algorithmic Enhancements
In this section, we present several ways of improving the convergence and stability of the Benders decom-
position algorithm described in Algorithm 1.

4.1. Lagrangian Relaxation Heuristic for Generating Initial Solution of (ĨY, ~̃Y, D̃Y)
�e quality of the initial solution can signi�cantly a�ect the e�ciency and e�ectiveness of the Benders
decomposition algorithm. Speci�cally, a good initial solution can help the algorithm converge faster and
�nd a be�er quality solution, while a poor initial solution may cause the algorithm to converge slowly or
get stuck in a local optimum. �erefore, it is important to provide a good initial solution of (ĨY, ~̃Y, D̃Y) in
Algorithm 1. In this paper, we develop a Lagrangian relaxation heuristic to obtain an initial solution.

4.1.1. Lagrangian Formulation and Solution. Observing the FHLP model in (9)–(16), the binary
variables in constraints (11)–(13) pose challenges in solving the model, and thus, the corresponding con-
straints will be relaxed. Let k:⌘ , b>: , and b3: denote the vectors of Lagrange multipliers for constraints
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(11)–(13), respectively. A�er relaxing constraints (11)–(13) and dualizing their terms into the objective

function (9), the Lagrangian subproblem !(k , b) is given as follows:

(!(k , b)) : min
’
⌘2�

5̄⌘ · I⌘ +
’
:2 

’
>2$:

’
32⇡:

’
42⇢>3:

C̄>34: · G>34: +
’
:2 

’
>2$:

?̄>: ·~>: +
’
:2 

’
32⇡:

?̄3: ·D3:

Subject to:

(10), (14)–(16),

where 5̄⌘ = 5⌘ �
Õ
:2 k:⌘ , ?̄>: = ?>: � 2>: · b>: , ?̄3: = ?3: � 23: · b3: , and

C̄>34: =
⇢
C>34: +k:41 +k:42 +F: · (b>: + b3: ), 8 : 2  , > 2$: , 3 2 ⇡: , 4 2 ⇢>3: , |4 | = 2,
C>34: +k:41 +F: · (b>: + b3: ), 8 : 2  , > 2$: , 3 2 ⇡: , 4 2 ⇢>3: , |4 | = 1.

Since constraints (12) and (13) are relaxed, no constraints in !(k , b) connect variables G to (~,D), poten-
tially leading to low-quality or infeasible solutions. Hence, we add two sets of constraints, (36) and (37),

to !(k , b), which do not signi�cantly increase the complexity of the Lagrangian problem.

Proposition 4.1 �e following constraints (36) and (37) are valid for problem P.

’
32⇡:

’
42⇢>3:

G>34:  ~>: , 8 : 2  , > 2$: , (36)

’
>2$:

’
42⇢>3:

G>34:  D3: , 8 : 2  , 3 2 ⇡: . (37)

Proof. For any : 2  and > 2 $: , constraint (36) is equivalent to
Õ
32⇡:

Õ
42⇢>3: G>34:  0 if ~>: = 0

and
Õ
32⇡:

Õ
42⇢>3: G>34:  1 if ~>: = 1. When ~>: = 0, from Eq. (12), G>34: = 0 for all 3 2 ⇡: and 4 2 ⇢>3: ,

and thus
Õ
32⇡:

Õ
42⇢>3: G>34:  0 is valid; when ~>: = 1, from Eq. (10),

Õ
32⇡:

Õ
42⇢>3: G>34:  1 is valid.

�erefore, Eq. (36) is a valid constraint for problem P. In a similar vein, we can show that Eq. (37) is also

a valid constraint for problem P. ⇤

Noticing that the hub-leasing variables I are disjoint from the other variables (G,~,D) in the Lagrangian

subproblem !(k , b), it can be decomposed to two smaller subproblems with one over the hub-leasing

variables and the other over the remaining decision variables. We de�ne these two subproblems as !1(k )
and !2(k , b), given as follows:

(!1(k )) : min

( ’
⌘2�

5̄⌘ · I⌘ |I⌘ 2 {0, 1}, 8 ⌘ 2�
)
,

and

(!2(k , b)) : min
’
:2 

’
>2$:

’
32⇡:

’
42⇢>3:

C̄>34: · G>34: +
’
:2 

’
>2$:

?̄>: ·~>: +
’
:2 

’
32⇡:

?̄3: ·D3:

subject to:

(10), (14) � (15), (36) � (37) .
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Subproblem !2(k , b) is a semi-assignment problem that can be further decomposed into | | independent
semi-assignment problems, corresponding to each commodity : 2  , with the formulation for any given
: provided as follows:

(!:2 (k , b)) : min
’
>2$:

’
32⇡:

’
42⇢>3:

C̄>34: · G>34: +
’
>2$:

?̄>: ·~>: +
’
32⇡:

?̄3: ·D3: (38)

subject to:’
>2$:

’
32⇡:

’
42⇢>3:

G>34: = 1, (39)

’
32⇡:

’
42⇢>3:

G>34:  ~>: , 8 > 2$: , (40)

’
>2$:

’
42⇢>3:

G>34:  D3: , 8 3 2 ⇡: , (41)

~>: 2 {0, 1}, D3: 2 {0, 1}, 8 > 2$: , 3 2 ⇡: , (42)

G>34: � 0, 8 > 2$: , 3 2 ⇡: , 4 2 ⇢>3: . (43)

�e optimal solutions and the optimal objective values of !1(k ), !:2 (k , b), and !(k , b) can be conve-
niently computed as speci�ed by Proposition 4.2.

Proposition 4.2 �e optimal solution of subproblem !1(k ) and its optimal objective value !̂1(k ) are given
by

I⇤⌘ =

(
1, if 5̄⌘ < 0
0, otherwise

, 8⌘ 2� , (44)

!̂1(k ) =
’
⌘2�

min(0, 5̄⌘) . (45)

�e optimal solution of subproblem !:2 (k , b) for any : 2  and its optimal objective value !̂:2 (k , b) are given
by

G⇤>34: =

(
1, if (>,3,4) = (>⇤: ,3⇤: ,4⇤: )
0, otherwise

, 8> 2$: ,3 2 ⇡: ,4 2 ⇢>3: , (46)

~⇤>: =

(
1, if ?̄>:  0 or > = >⇤:
0, otherwise

, 8> 2$: , (47)

D⇤3: =

(
1, if ?̄3:  0 or 3 =3⇤:
0, otherwise

, 83 2 ⇡: , (48)

!̂:2 (k , b) = min
>2$: ,32⇡: ,42⇢>3:

¯̄C>34: +
’
>2$:

?̄�>: +
’
32⇡:

?̄�3: . (49)

Here, (>⇤: ,3⇤: ,4⇤: ) 2 argmin>2$: ,32⇡: ,42⇢>3:
¯̄C>34: (a tie is broken arbitrarily), where ?̄+>: = max(0, ?̄>: ) and

?̄+3: = max(0, ?̄3: ) for all : 2  , > 2 $: , ?̄�>: = min(0, ?̄>: ) and ?̄�3: = min(0, ?̄3: ) for all : 2  , 3 2 ⇡: , and
¯̄C>34: = C̄>34: + ?̄+>: + ?̄+3: for all > 2 $: , 3 2 ⇡: , 4 2 ⇢>3: . �e optimal objective value of the Lagrangian
subproblem !(k , b), denoted by !̂(k , b), is then given by

!̂(k , b) = !̂1(k ) +
’
:2 

!̂:2 (k , b) . (50)
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Proof. Since !1(k ) is an unconstrained linear optimization problem with binary decision variables, it
is straightforward to obtain its optimal solution in Eq. (44) and objective value in Eq. (45).
Now, consider !:2 (k , b). For any ?̄>:  0 (?̄3:  0), the optimal solution for the corresponding ~>: (D3: )

should be 1, since ~>: = 1 (D3: = 1) will make Eq. (40) (Eq. (41)) a dummy constraint. �is corresponds
to the term

Õ
>2$: ?̄

�
>: (

Õ
32⇡: ?̄

�
3: ) in the optimal objective (49). For any ?̄>: > 0 (?̄3: > 0), it would be

preferable to choose the corresponding ~>: = 0 (D3: = 0) so as to minimize the objective. However, it might
be impossible to set all these ~>: (D3: ) to 0 due to constraints (39)–(41). �us, the optimal solution is to
choose one of the G>34: to be 1 and all others to be 0, such that C̄>34: + ?̄+>: + ?̄+3: is minimized, leading to
conclusions in (46)–(49).
Finally, since !(k , b) is decomposed to !1(k , b) and !2(k , b), which is further decomposed to | | sub-

problems !:2 (k , b), it is not di�cult to see that Eq. (50) holds. ⇤

4.1.2. Subgradient Procedure. �e solution of the Lagrangian subproblems, for any choice of the
Lagrange multipliers (k , b), provides a lower bound to the FHLP. To obtain the best lower bound, we must
solve the Lagrangian dual:

(⇡��!% ) : max
(k ,b)�0

!(k , b).

We apply subgradient optimization to solve the Lagrangian dual problem ⇡��!% . In the subgradient
optimization procedure, we exploit the primal solutions obtained from the Lagrangian subproblem to con-
struct feasible solutions and upper bounds to the FHLP. Before the description of the Lagrangian relaxation
heuristic, we introduce the following notation:

n, n̄ Current iteration count and maximum number of iterations allowed.
!⌫,*⌫ Incumbent lower bound and upper bound for the FHLP.
X Tolerance between !⌫ and *⌫.
(kn , bn ) Dual multipliers (k , b) at iteration n .
_n Step size of movement for the subgradient procedure at iteration n .
l Prede�ned parameter.
✓, ✓̄ Current and maximum number of consecutive iterations without a lower bound improvement.
q Shrinkage parameter for updating l .

With the above notation, the proposed subgradient-based Lagrangian relaxation heuristic is provided
in Algorithm 2.
�e algorithm for constructing a feasible solution ( •In , •Gn , •~n , •Dn ) of FHLP from the solution of the

Lagrangian subproblem in iteration n is given in Algorithm 3. First, the algorithm sets the values of
( •In⌘, •~n>: , •Dn3: ) to be one if there is any �ow going through hub ⌘, origin node > , and destination node 3 for
commodity : based on solution values Ĝn>34: of the Lagrangian subproblem; otherwise the value is set to
zero. Next, the algorithm constructs solution values ( •Gn>34: , •~n>: , •Dn3: ) for each commodity based on capac-
ities, available hubs determined by •In⌘ , and the ranking of the total assignment and transportation costs
for transporting unit �ow on each available route. For each commodity : 2  , the algorithm checks if the
current origin and destination determined by ( •~n>: , •Dn3: ) have enough capacities to satisfy its demand, and
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Algorithm 2: Lagrangian Relaxation Heuristic
!⌫ �1, *⌫ +1, n 1,kn 0, bn 0, l 2 ;
repeat

Solve !(kn , bn ) using Proposition 4.2 to obtain the optimal objective value !̂(kn , bn ) and the
corresponding optimal solution (În , Ĝn , ~̂n , D̂n ) ;
if !⌫ < !̂(kn , bn ) then

!⌫ !̂(kn , bn ) ;
✓ 0 ;

else
✓ ✓ + 1 ;
if ✓ = ✓̄ then

l l
q ;

✓ 0 ;
end
Construct a feasible solution of FHLP ( •In , •Gn , •~n , •Dn ) from (În , Ĝn , ~̂n , D̂n ), and compute its
corresponding objective value I ( •In , •Gn , •~n , •Dn ), using Algorithm 3 ;

if *⌫ > I ( •In , •Gn , •~n , •Dn ) then
*⌫ I ( •In , •Gn , •~n , •Dn ) ;

Update (kn+1, bn+1) using the subgradient procedure in Algorithm 4 ;
n n + 1 ;

until *⌫ �!⌫  X or n = n̄ ;

the solution value •Gn>34: is set to Ĝn>34: if the capacities are enough. Otherwise, the solution value •Gn>34:
is set to a fraction of Ĝn>34: based on the ratio between the demand and capacities. �en, a new origin
node, destination node, and route with the minimum assignment and transportation costs per-unit �ow
are assigned to transport the remaining �ow, with the exact amount determined by the remaining capac-
ities in the assigned origin and destination. Such a procedure continues until the demand for commodity
: is fully satis�ed.

At iteration n , a subgradient of !(kn , bn ) is given by

i (kn , bn ) =
 ⇣ ’
>2$:

’
32⇡:

’
42⇢>3: :⌘24

Ĝn>34: � În⌘
⌘
⌘,:

,
⇣ ’
32⇡:

’
42⇢>3:

F: · Ĝn>34: � 2>: · ~̂>:
⌘
>,:
,

⇣ ’
>2$:

’
42⇢>3:

F: · Ĝn>34: � 23: · D̂3:
⌘
3,:

!
.

�e classical subgradient algorithm utilizes the subgradient of the current iteration to calculate the
direction of movement, i.e., 3n =i (kn , bn ). However, the classical subgradient algorithm o�en su�ers from
slow convergence when solving the Lagrangian dual problem. Hence, we apply a de�ected subgradient
method (e.g., Camerini et al. (1975) and Contreras et al. (2011b)) to enhance the convergence of the algo-
rithm.�e de�ected subgradient method uses the de�ection parameter cn and the direction of the previous
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Algorithm 3: Smoothing Algorithm for Obtaining a Feasible Solution of FHLP ( •In , •Gn , •~n , •Dn )
Input: (În , Ĝn , ~̂n , D̂n ) ;
Initialize ( •In , •Gn , •~n , •Dn ) = (0, Ĝn , 0, 0),F 0: =F: , ? 0>: = ?>: , ? 03: = ?3: , 2 0>: = 2>: , and 2 03: = 23: ;
Initialize V: = 0, V 0: = 0, V 00: = 0, and ` = 0 ;
Set •In⌘ = 1 if

Õ
>2$:

Õ
32⇡:

Õ
42⇢>3: :⌘24 Ĝ

n
>34: > 0, 8 ⌘ 2� ;

Set •~n>: = 1 if
Õ
32⇡:

Õ
42⇢>3: Ĝ

n
>34: > 0, 8 : 2  , > 2$: ;

Set •Dn3: = 1 if
Õ
>2$:

Õ
42⇢>3: Ĝ

n
>34: > 0, 8 : 2  , 3 2 ⇡: ;

for : 2  do
Set E = {(> 2$: ,3 2 ⇡: ) | •~n>: = 1 and •Dn3: = 1}, F = {(> 2$: ,3 2 ⇡: ,4 2 ⇢>3: ) | •Gn>34: = 1} ;
while > do

for (>,3) 2 E do
Set •~n>: = 1, •Dn3: = 1, ? 0>: = 0, and ? 03: = 0 ;
Set V 0: =

F0:
20>:

, V 00: =
F0:
203:

, V: =max(V 0: , V 00: ) ;
if V: > 1 then

SetF 0: =F
0
: �

F0:
V:
, 2 0>: = 2

0
>: �

20>:
V:

, 2 03: = 2
0
3: �

203:
V:

;

Set •Gn>34: =
1
V:

· F
0
:

F:
, 8 (>,3,4) 2 F ;

else
Set •Gn>34: =

F0:
F:

, 8 (>,3,4) 2 F ;
break ;

end
end

end
Set ` =min>2$: ,32⇡: ,42⇢>3:

n
?0>:+?

0
3:

F0:
+ C>34:

F:
| •In41 = 1, •In42 = 1,2 0>: > 0,2 03: > 0

o
;

if (>,3,4) 2
n
(> 2$: ,3 2 ⇡: ,4 2 ⇢>3: ) |` =

?0>:+?
0
3:

F0:
+ C>34:

F:
, •In41 = 1, •In42 = 1,2 0>: > 0,2 03: > 0

o
then

Set E = {(>,3)} and F = {(>,3,4)} ;
end

end
end
return ( •In , •Gn , •~n , •Dn )

Note: Symbol > means logical true.

iteration to compute the current direction of movement, i.e., 3n =i (kn , bn ) +cn ·3n�1.�e e�ectiveness of

the de�ected subgradient method depends on the se�ing of cn , and the literature has investigated several

choices of the de�ection parameter (e.g., Brännlund (1995) and Sherali and Ulular (1989)). We use the rule

cn =
⇢
| |i (kn , bn ) | |/| |3n�1 | |, if i (kn , bn ) ·3n�1 < 0,
0, otherwise,

based on the geometrical arguments (e.g., Camerini et al. (1975) and Contreras et al. (2011b)). An imple-

mentation of the de�ected subgradient algorithm is described in Algorithm 4.
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Algorithm 4: Subgradient Procedure at Iteration n
Initialize 30 = 0 and compute the subgradient i (kn , bn ) ;
if i (kn , bn ) ·3n�1 < 0 then

cn = | |i (kn , bn ) | |/| |3n�1 | |
else

cn = 0
end
Obtain the direction of movement 3n =i (kn , bn ) +cn ·3n�1 ;
if n = 1 then

Compute the step length _n l · !̂ (kn ,bn )
i (kn ,bn ) ·3n�1 ;

else
Compute the step length _n l · (*⌫�!̂ (kn ,bn ))

i (kn ,bn ) ·3n�1 ;
end
(kn+1, bn+1) (kn , bn ) + _n ·3n ;

4.2. Cutting Planes
In this section, we introduce cu�ing planes that can e�ectively improve the computational speed of the
algorithm. In addition to the cu�ing planes presented in this subsection, Pareto-optimal cuts are proposed
to further improve the convergence of the Benders algorithm. However, due to their lower e�ectiveness in
our numerical experiments compared to other cuts, we present them in Section 1 of the Online Supplement
to this paper.

4.2.1. Generating Initial Cuts Using Uncapacitated FLHP. �e FLHP becomes the uncapaci-
tated FHLP (UFHLP) by dropping constraints (12)–(13) and adding constraints (36)–(37), i.e., UFHLP =

{min(9) | (I,G,~,D) 2 (10), (11), (14)� (16), (36), (37)}. In the Benders reformulation of the UFHLP, the vari-
ables (I,~,D) are handled in the master problem, which is de�ned as MPU = {min (28)) | (I,~,D) 2 (31)�
(35),Z � Õ

:2 U: �
Õ
:2 

Õ
⌘2� I⌘ · \⌘: �

Õ
:2 

�Õ
>2$: ~>: · W>: �

Õ
32⇡: D3: · g3:

�
, 8 (U,\ ,W,g) 2 P4 }. �e

variables G are handled in the primal subproblem, which is de�ned as PSU = {min (17)| (G) 2 (18) �
(19), (22),

Õ
32⇡:

Õ
42⇢>3: G>34:  ~̃>: ,8 : 2  , > 2 $: ,

Õ
>2$:

Õ
42⇢>3: G>34:  D̃3: ,8 : 2  , 3 2 ⇡: }. �e

dual subproblem (DSU) can be presented as follows:

(DSU) : max

( ’
:2 

U: �
’
:2 

’
⌘2�

Ĩ⌘ · \⌘: �
’
:2 

’
>2$:

~̃>: ·W>: �
’
:2 

’
32⇡:

D̃3: · g3:

)
(51)

subject to:

U: �\41: �\42: �W>: �g3:  C>34: , 8 : 2  , > 2$: , 3 2 ⇡: , 4 2 ⇢>3: , |4 | = 2, (52)

U: �\41: �W>: �g3:  C>34: , 8 : 2  , > 2$: , 3 2 ⇡: , 4 2 ⇢>3: , |4 | = 1, (53)

\⌘: � 0, 8 : 2  , ⌘ 2� , (54)

W>: � 0, g3: � 0, 8 : 2  , > 2$: , 3 2 ⇡: . (55)
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Since the UFLHP is a relaxation of the FLHP, we can warm start the Benders decomposition algorithm

for the FLHP by �rst solving the UFLHP to generate an initial set of optimality cuts. �e merit of �rst

solving the uncapacitated model is that a large number of optimality cuts can be generated from the

dual subproblems that are much smaller and easier to solve. �ese optimality cuts are valid for the MP
because the primal subproblem for the UFHLP is a relaxation for that of the FHLP achieved by removing

the capacity constraints. �e polyhedron of the dual subproblem associated with the master problem of

the UFLHP is thus contained in that of the dual subproblem associated with the MP. Hence, a dual

solution obtained by solving the dual subproblem of the UFHLP is assured to be feasible for theMP.�is

solution may lie in the interior of the polyhedron but it will nonetheless provide a valid optimality cut.

�e idea of solving a relaxed problem to generate initial cuts for a Benders decomposition algorithm was

implemented before, e.g., by Cordeau et al. (2001). Moreover, it is known that both the lower bound of

the master problem in the Benders reformulation of the UFHLP and its optimal solution can yield a valid

lower bound for the MP problem.

For any : 2  , let $̃: = {> 2$: |~̃>: = 1} and ⇡̃: = {3 2 ⇡: |D̃3: = 1}. Further, let �0 = {⌘ 2 � |Ĩ⌘ = 0} be
the set of non-leased hubs and �1 = {⌘ 2� |Ĩ⌘ = 1} be the set of leased hubs.�e primal subproblem PSU

can be rewri�en as | | independent smaller problems PSU: for each : 2  ,

(PSU: ) : min
8>><
>>:

’
>2$̃:

’
32⇡̃:

’
42⇢>3:\(�1⇥�1)

C>34: · G>34:
9>>=
>>;

(56)

subject to:’
>2$̃:

’
32⇡̃:

’
42⇢>3:\(�1⇥�1)

G>34: = 1, (57)

G>34: � 0, 8 > 2 $̃: ,3 2 ⇡̃: ,4 2 ⇢>3: \ (�1 ⇥�1) . (58)

It is not di�cult to observe that the optimal solution ofPSU: is achieved at G>⇤:3⇤:4⇤:: = 1 and G>34: = 0 for

all other values of (>,3,4), where (>⇤: ,3⇤: ,4⇤: ,:) 2 argmin>2$̃: ,3 2⇡̃: ,42⇢>3:\(�1⇥�2) C>34: . �e corresponding

optimal objective value of PSU for (Ĩ, ~̃, D̃), denoted by I (PSU(Ĩ, ~̃, D̃)), can be calculated as follows:

I (PSU(Ĩ, ~̃, D̃)) =
’
:2 

C>⇤:3
⇤
:4
⇤
::

=
’
:2 

min
>2$̃: ,32⇡̃: ,42⇢>3:\(�1⇥�2)

C>34: . (59)

4.2.2. Valid Cuts. �e following valid cuts (60)–(61) can be added to the master problem to generate

solutions that may less likely cause the infeasiblity of the subproblems and accelerate convergence to the

optimal solution:

’
>2$:

~>: �
F:

max
>2$:

2>:
, 8 : 2  , (60)

’
32⇡:

D3: �
F:

max
32⇡:

23:
, 8 : 2  . (61)
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Constraints (60)–(61) ensure the minimum number of origin/destination nodes required for commodity :
based on the ratio between its demand and the maximum supply/procurement capacity of the commod-
ity. When the demand of a commodity is larger than the maximum supply/procurement capacity of the
commodity for all of its origin/destination nodes, these additional constraints can ensure that more than
one origin/destination nodes are selected for the commodity, which can signi�cantly boost the solution
quality of the master problem passed to the dual subproblem. For each : 2  , we rank 2>: for all > 2$: in a
decreasing order, with the rank of 2>: denoted by 2̄>: .�en, constraints (60)–(61) can be further enhanced
to constraints (62)–(63) as follows:’

>2$:
~>: �min{[|

’
>2$: |2̄>: [

2>: �F: }, 8 : 2  , (62)

’
32⇡:

D3: �min{[|
’

32⇡: |2̄3: [
23: �F: }, 8 : 2  . (63)

4.3. Clustering-empowered Multi-commodity Benders Reformulation
�e number of cuts needed to obtain an optimal solution of the Benders reformulation can equal the
number of extreme points in P in the worst case. However, this number can be reduced given that the
subproblem can be decomposed to | | independent subproblems (see, e.g., Birge and Louveaux (1988)).
Hence, we can generate cuts from the dual polyhedra of these | | subproblems. Let Z: be the expected total
cost of Z for commodity: . Let P4: and P

D
: be the sets of extreme points of P4 and unbounded rays of PD of the

subproblem associated with commodity : , respectively. We obtain the following Benders reformulation:

(MP) : min

( ’
⌘2�

5⌘ · I⌘ +
’
:2 

’
>2$:

?>: ·~>: +
’
:2 

’
32⇡:

?3: ·D3: +
’
:2 

Z<

)
(64)

subject to: (31) � (35),
Z: � U: �

’
⌘2�

I⌘ · \⌘: �
’
>2$:

2>: ·~>: ·W>: �
’
32⇡:

23: ·D3: · g3: , 8 : 2  , (U,\ ,W,g) 2 P4: , (65)

U: �
’
⌘2�

I⌘ · \⌘: �
’
>2$:

2>: ·~>: ·W>: �
’
32⇡:

23: ·D3: · g3:  0, 8 : 2  , (U,\ ,W,g) 2 PD: . (66)

When the size of | | gets large, adding | | cuts per iteration can increase the computational e�ort
required for solving the relaxed master problems. Instead of generating all | | cuts in a disaggregated way
at each iteration, we can add a set of feasibility and optimality cuts associated with the clusters of com-
modity families derived by clustering models. Our motivation here is to use the clustering models to group
commodities with similar origin and destination nodes into the same cluster such that the performance
of the Benders reformulation can be enhanced. Let R be the total number of clusters, indexed by A , and
CA be the subset of commodities in any cluster A 2 R. Let ZA be the expected total cost of Z for commodity
cluster A . Let P4A and PDA be the sets of extreme points of P4 and unbounded rays of PD of the subproblem
associated with commodity cluster A , respectively. �e multi-commodity cluster Benders reformulation
can be presented as follows:

(MP) : min

( ’
⌘2�

5⌘ · I⌘ +
’
:2 

’
>2$:

?>: ·~>: +
’
:2 

’
32⇡:

?3: ·D3: +
’
A 2R

ZA

)
(67)
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subject to: (31)� (35),

ZA �
’
:2CA

U: �
’
:2CA

’
⌘2�

I⌘ · \⌘: �
’
:2CA

©≠
´
’
>2$:

2>: ·~>: ·W>: �
’
32⇡:

23: ·D3: · g3:™Æ
¨
, 8 A 2 R, (U,\ ,W,g) 2 P4A ,

(68)
’
:2CA

U: �
’
:2CA

’
⌘2�

I⌘ · \⌘: �
’
:2CA

©≠
´
’
>2$:

2>: ·~>: ·W>: �
’
32⇡:

23: ·D3: · g3:™Æ
¨
 0, 8 A 2 R, (U,\ ,W,g) 2 PDA .

(69)

Table 1 shows an example of input data for clustering models.�e input data are obtained from$: and
⇡: . In Table 1, the number “1” for each origin node and commodity indicates that the commodity can
originate from the origin node, similarly for the numbers associated with destination nodes.

Table 1 Input Data for Clustering Models

$: ⇡:

k\(>,3) >1 >2 >3 >4 >5 >6 >7 >8 31 32 33 34 35 36 37 38

1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0
3 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0
5 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1
6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1

Di�erent portions of the cost data could be used to build the clustering models based on their pa�erns.
For example, when the average cost of ?>: is much higher than the average cost of ?3: , we can build the
clustering models using the input data associated with $: . When the assignment costs ?>: and ?3: are
close, we can build the clustering models using the input data associated with both $: and ⇡: . Examples
of these clustering variants are illustrated in Figure 2.
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Figure 2 Clustering Variants

Regarding the clustering technique, a customized K-means clustering model is used. Speci�cally, let the
number of clusters be an input variable and use a threshold ^ on the average distance within each cluster
as the stopping criterion. �e clustering procedure begins by classifying the commodities into a given
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number of clusters using the K-means method.�e average distance within each cluster is then calculated.
�e clustering procedure stops if the average distance within each cluster is smaller than the threshold
^. Otherwise, it increases the number of clusters and reruns the aforementioned K-means clustering.�is
process repeats until the average distance within each cluster satis�es the stop criterion.

4.4. Learning-empowered Elimination Tests (LET) and Variable Reduction (LVR)
Along with the variable-reduction technique discussed in Section 3.2, we can use the LET to further reduce
the size of the master problem and subproblems by exploiting the information obtained during the inner
iterations of the Benders decomposition algorithm, similar to the two elimination tests studied by Contr-
eras et al. (2011a) and Taherkhani et al. (2020).
More speci�cally, the following two elimination tests can be performed.
1. Determine a set of hubs&0 ⇢ � that must be closed in an optimal solution usingUB and the primal

information obtained by solving the LP relaxation ofMP. Speci�cally, letMPY
!% denote the LP relaxation

ofMP at iteration Y, let I (MPY
!% ) denote its optimal objective value, and let A2⌘ denote the reduced cost

associated with nonbasic variable I⌘ for all ⌘ 2 � . If I (MPY
!% ) + A2⌘ > UB, hub ⌘ must be closed in an

optimal solution, since I (MPY
!% ) + A2⌘ is a lower bound on the objective value if hub ⌘ is open.

2. Determine a set of hubs &1 ⇢ � that must be closed in an optimal solution using a modi�ed master
problem MPY (&1). Speci�cally, the modi�ed master problem MPY (&1) can be constructed by adding
a constraint

Õ
⌘2&1 I⌘ � 1 to MPY . If I (MPY (&1)) > UB, all hubs in &1 must be closed in an optimal

solution, since I (MPY (&1)) is a lower bound on the objective function value if a hub is located in &1.
�e variables for hubs that satisfy the above elimination tests, as well as their associated variables and
constraints, can be eliminated permanently from the master problem and subproblems, so as to reduce
the solution space and speed up the algorithm’s convergence.
�e performance of the second elimination test depends on the choice of &1. Contreras et al. (2011a)

chose &1 by using the reduced cost associated with nonbasic variables ofMPY
!% . Taherkhani et al. (2020)

proposed di�erent ways to generate&1 by sorting the hubs in a nondecreasing order of their ratio of �xed
cost to capacity and by sorting hubs in a nonincreasing order of the number of times the hubs have been
opened in previous iterations of the Benders algorithm. Additionally, rather than running a single test at
each iteration, Taherkhani et al. (2020) partitioned &1 into a certain number of smaller subsets and ran
a reduction test for each subset. In contrast, the LET proposed in this paper chooses &1 using likelihood
values derived from machine learning models. Let L(I) denote the likelihood of variables I taking a value
of one in an optimal solution.�e LET is only performed on hubs that have likelihood values smaller than
a threshold j1, and the detailed procedure is presented in Algorithm 5.
Besides L(I), we also introduce L(~) and L(D) denoting the likelihood of variables ~ and D taking a

value of one in an optimal solution, respectively, for the LVR technique. We next proceed to introducing
the machine learning models used to compute L(I), L(~), and L(D). Such learning-based models are
typically built using easily accessible solution values (e.g., Lagrangian relaxation solution values) and
problem features. In this paper, we use logistic regression. To generate su�cient data for training the
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Algorithm 5: LET for Obtaining &1

Input: UB, L(I), j1, and &0 ;
termination false ;
&1 � \&0 ;
repeat

&1 &1\{⌘ :L(I⌘) � j1} ;
if &1 < ; then

Solve MPY (&1) to obtain I (MPY (&1)) ;
if I (MPY (&1)) >UB or &1 = ; then

termination true ;
else

&1 &1\{⌘ : solution of I⌘ for MPY (&1) = 1} ;
end

until termination = true;

model, a large number (⌫) of small-sized instances were created, where their optimal solution values,
denoted by (Î, ~̂, D̂, Ĝ), were easily computed.�e following is then used.
1. For each small-sized instance,

(a) obtain subgradient-based Lagrangian relaxation solution values for 50 iterations, and compute
the average solution values for each speci�c variable, denoted by (I!06,~!06,D!06,G!06);

(b) obtain LP-relaxation solution values, denoted by (I!% ,~!% ,D!% ,G!% );
(c) obtain the solution values of the Benders reformulation for every iteration up to 10 iterations,

denoted by (IY⌫⇡ ,~Y⌫⇡ ,DY⌫⇡ ), as well as the reduced costs for hub variables associated with the solutions
of the relaxed master problems, ranked in a nondecreasing order and denoted by (IYA2A ,~YA2A ,DYA2A ), 8 Y 2
{1, ..., 10};

(d) rank the hub-leasing costs and the assignment costs ?>: and ?3: in a nondecreasing order,
denoted by (I2A ,~2A ,D2A ).
Consequently, we generate ⌫ · |� | records of (Î,I!06,I!% ,IY⌫⇡ ,IYA2A ,I2A ), ⌫ · Õ

:2 |$: | records of
(~̂,~!06,~!% ,~Y⌫⇡ ,~YA2A ,~2A ), and ⌫ ·

Õ
:2 |⇡: | records of (D̂,D!06,D!% ,DY⌫⇡ ,DYA2A ,D2A ) observation data for each

iteration of the Benders decomposition algorithm.
2. Train a logistic regression model for variable I using the above observation data for each iteration

Y (8, Y 2 {1, ..., 10}) of the Benders decomposition algorithm, where the solution values of hub location
variables, (I2A ,IYA2A ,I!% ,I!06,IY⌫⇡ ), are independent variables, and Î is the dependent variable. �e trained
logistic regression model is given as follows:

L(I) = 4 5 (I)

1+ 4 5 (I)
, 5 (I) =10 +11 · I!06 +12 · I!% +13 · IY⌫⇡ +14 · IYA2A +15 · I2A , (70)

where 10, . . . ,15 are coe�cients of the models. Similar models, L(~) and L(D), can be trained for the
assignment variables ~ and D, respectively. We note that the models trained for the 10C⌘ iteration of the
Benders decomposition are used for all iterations larger than 10.
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Although the elimination tests have been shown e�ective in solving the HLPs with high hub setup
costs (Contreras et al. 2011a, Taherkhani et al. 2020), its e�ectiveness in FHLP may be hindered due to
the existence of leasing costs, assignment costs, and hub capacity constraints in the FHLPs.�erefore, we
further propose the LVR technique to speed up the solution process of the Benders algorithm, introduced
as follows:
1. Use the likelihood values L(I), L(~), and L(D) to guide the elimination of variables from the mas-

ter problem. Although the removed variables are not guaranteed to have a value of zero in the optimal
solution, the Benders algorithm can still generate valid cuts for the master problem. As a result, the mas-
ter problem becomes much smaller so that it is much quicker to generate optimality cuts for the master
problem. In this phase, the lower bound of such a master problem is not guaranteed to be a valid lower
bound of the FLHP, but the generated valid cuts can still potentially close the optimality gap.
2. Terminate the learning-empowered variable reduction process. �e master problem then starts to

deliver the valid lower bounds, and the algorithm can converge to optimality.
More speci�cally, let j2, j3, and j4 be three threshold numbers, let&2 be a subset of hubs in � that are

removed from the master problem based on j2, and let&3 be a subset of connection arcs in ⇥$ and ⇥⇡
that are removed from the master problem based on j3 and j4, with &2 = {⌘ |{L(I⌘) < j2,8⌘ 2 �\&1}}
and &3 = {(>:,3:) |{L(~>: ) < j3,8: 2  ,> 2$: ,L(D3: ) < j4,8: 2  ,3 2 ⇡: }}. Let MP(P4Y ,PDY ,&1,&2,&3)
be the modi�ed master problemMP(P4Y ,PDY ) with hubs in &1 and &2 and connection arcs in &3 removed.
LetMP(P4Y ,PDY ,&1) andDS(ĨY, ~̃Y, D̃Y,&1) be their corresponding master and dual subproblems with hubs
in &1 removed. Let LBF be a lower bound of the MP(P4Y ,PDY ,&1,&2,&3) problem. Further, let T1 be the
computational time limit for the �rst phase of the algorithm. With these de�nitions, a pseudocode of
the Benders algorithm with learning-empowered elimination tests and variable reduction is presented in
Algorithm 6.

5. Computational Experiments
We generated test instances of the FHLP with various sizes for computational experiments, with the hub-
and-spoke network inherited from the Australia Post (AP) data introduced by Ernst and Krishnamoorthy
(1996).�e AP data is based on a postal delivery network in Sydney, Australia, with 200 nodes representing
postal districts.When generating these test instances, we took the coordinates of |# | nodes of the hub-and-
spoke network in the AP data. When the number |# | is larger than 200, we extrapolated the coordinates
of the AP data to �t the larger-sized instances. �e sizes of these test instances are shown in Tables 2–8,
with the details of their parameter se�ings described as follows. Speci�cally, parameters F: , ?>: , ?3: , 5⌘ ,
|$: |, and |⇡: | were uniformly drawn from⇠F ·[25, 80],⇠0 ·[20, 40],⇠0 ·[20, 40],⇠5 ·[200, 1000], {2, . . . ,⇠> },
and {2, . . . ,⇠3 }, respectively. �e parameter of transportation cost (C>3⌘1⌘2: ) was set to ⇠C · 10�4 · E: · F: ·
(�>⌘1 +⇠4 · �⌘1⌘2 + �⌘23 ). Parameter E: was sampled from a uniform distribution in the range of [0.1, 2].
Capacities 2>: and 23: were uniformly drawn from⇠2 ·[0.95, 1.15]·F: . Unless stated otherwise, parameters
⇠F ,⇠0 ,⇠5 ,⇠> ,⇠3 ,⇠C , and⇠4 were set to 1, 1, 1, 4, 4, 1, and 0.3, respectively, and there are three scenarios
for ⇠2 , namely, 0.7, 1.0, and 1.1.
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Algorithm 6: Benders with the LET and the LVR technique
UB +1, Y  1, P4Y  ;, PDY  ;, phase 1 ;
termination false ;
repeat

&1 Start the learning-empowered elimination tests from a certain iteration ;
Update L(I), L(~), and L(D) ;
if phase = 1 then

&2 {⌘ |{L(I⌘) < j2,8⌘ 2�\&1}} ;
&3 {(>:,3:) |{L(~>: ) < j3,8: 2  ,> 2$: ,L(D3: ) < j4,8: 2  ,3 2 ⇡: }} ;
Solve MP(P4Y ,PDY ,&1,&2,&3) to obtain (ĨY, ~̃Y, D̃Y) and I (MP(P4Y ,PDY ,&1,&2,&3)) ;
LBF  I (MP(P4Y ,PDY ,&1,&2,&3)) ;
if A stopping criterion is satis�ed (e.g., LBF + 0.0001 �UB or the total computing time

> T1) then
if &2 ✓&1 and &3 = ; then

LB LBF ;
termination true ;

else
phase 2 ;

end
else

Solve MP(P4Y ,PDY ,&1) to obtain (ĨY, ~̃Y, D̃Y) and I (MP(P4Y ,PDY ,&1)) ;
LB I (MP(P4Y ,PDY ,&1)) ;

end
if UB = LB then

termination true ;
else

Solve DS(ĨY, ~̃Y, D̃Y,&1) ;
if Unbounded then

Get unbounded ray (UY,\Y,WY,gY) 2 PD ;
PDY+1 PDY [ {(UY,\Y,WY,gY)} ;

else
Get extreme point (UY,\Y,WY,gY) 2 P4 and I (DS(ĨY, ~̃Y, D̃Y,&1)) ;
UB min {UB,
I (DS(ĨY, ~̃Y, D̃Y,&1)) +

Õ
⌘2� 5⌘ · Ĩ⌘ +

Õ
:2 

Õ
>2$: ?>: · ~̃>: +

Õ
:2 

Õ
32⇡: ?3: · D̃3: };

P4Y+1 P4Y [ {(UY,\Y,WY,gY)} ;
end

end
Y  Y + 1 ;

until termination = true;
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We compared the proposed Algorithm 6 (LEBD) with the branch-and-cut method (CPX) included in
the commercial Cplex solver, as well as the elimination tests proposed by Contreras et al. (2011a) and
Taherkhani et al. (2020) (CET and TET), respectively. We implemented all the above methods using a
high-level algebraic modeling language (GAMS) that uses IBM ILOG Cplex 12.10 as the LP/IP solver. All
computations were run on a PC with Intelr Core (TM) i7-8750H CPU @ 2.2 GHz with 32 GB RAM, with
a time limit ranging from 1,000 seconds to 1 hour depending on the sizes of test instances. For the LEBD
method, parametes ^, j1, j2, j3, and j4 were set to 1, 0.1, 0.1, 0, and 0, respectively. �e computational
time allowed to solve the master problem was set to 100 seconds.�e time limit T1 for the �rst phase is set
to one third of the total time allowed for the LEBD method.�e method terminates once the gap between
the lower and upper bounds is less than 10�4. For the Lagrangian relaxation heuristic used to generate the
initial solution value for the LEBDmethod, parametersl , q , and ✓̄ were set to 2, 1.001, and 20, respectively.
�e maximum number of iterations allowed is up to 50, and the gap tolerance between lower and upper
bounds was set to 10�4.�e same se�ings used for the CET and the TETwere applied in our computational
experiments. To compare closely with the CET and the TET, we have set parameters j3 and j4 to be zero
such that no connection arcs are removed in &3 for the LEBD method in our computational experiments.
To further remove connection arcs in &3, we suggest that the removal should be more focused on the
connection arcs for commodities with more origin and destination options and lower likelihood values
L(~) and L(D).
Section 2 of the Online Supplement to this paper presents the training and outputs for the logistic

regression models proposed in Section 4.4. In summary, the model outputs show that all independent
variables are strongly correlated with the dependent variable. Hence, the logistic regression models used
in our numerical experiments include all independent variables, andwere ��ed using the statsmodels.logit
module in Python.
Computational results are presented in Tables 2–8, where columns #Ins, #NO, Gap, TM, Y, LB, and UB

represent the total number of instances, the number of instances not solved to optimality, the average
optimality gap, the average computational time in seconds, the average number of iterations, the lower
bound, and the upper bound, respectively. �e optimality gaps reported for all the methods except for
HEUR are computed as the di�erence between the lower and upper bounds divided by the upper bound.
Since HEUR does not obtain a lower bound, we use the lower bound obtained by the LEBD method to
compute its optimality gaps.

5.1. Impact of the Algorithmic Enhancements
We �rst analyze how each algorithmic enhancement proposed in Section 4 impacts the algorithm perfor-
mance. Speci�cally, Tables 2 and 3 show the average enhancement results, where column BSC shows the
computational results obtained by the Benders algorithm without any algorithmic enhancements, and the
other columns provide results associated with the proposed enhancement techniques. �e abbreviations
LGBD, FC, IC, VC, CMC, LET, LVR, and PO represent the integrated Lagrangian relaxation and Benders
decomposition method, the feasibility check (Section 3.4), initial cuts (Section 4.2.1), valid cuts (Section
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4.2.2), clustering-empowered multi-commodity Benders reformulation (Section 4.3), learning-empowered

elimination tests (Section 4.4), learning-empowered variable reduction (Section 4.4), and Pareto-optimality

cuts (Section 1 of the Online Supplement), respectively.

Table 2 Results for Combinations of Algorithmic Enhancements

BSC ENH 1 ENH 2 ENH 3 ENH 4

⇠2 |$ | |⇡ | | | |� | #Ins Gap #NO Y TM Gap #NO Y TM Gap #NO Y TM Gap #NO Y TM Gap #NO Y TM

0.7
15 15 15 10 10 0.00% 0 161 57 0.00% 0 160 55 0.00% 0 160 54 0.00% 0 160 54 0.00% 0 132 51
25 25 25 15 10 0.05% 3 346 389 0.05% 3 348 383 0.05% 3 343 383 0.05% 3 349 377 0.05% 3 301 373
40 40 40 25 10 0.72% 10 440 1,003 0.70% 10 442 1,002 0.70% 10 448 1,003 0.68% 10 457 1,003 0.65% 10 390 1,003
60 60 50 50 10 10.69% 10 131 1,004 3.46% 10 357 1,003 3.21% 10 378 1,003 3.10% 10 388 1,004 3.12% 10 296 1,003

1
15 15 15 10 10 0.00% 0 31 3 0.00% 0 31 3 0.00% 0 31 3 0.00% 0 31 3 0.00% 0 31 3
25 25 25 15 10 0.00% 0 86 28 0.00% 0 85 27 0.00% 0 85 27 0.00% 0 85 26 0.00% 0 82 25
40 40 40 25 10 0.00% 1 170 342 0.01% 1 172 359 0.01% 1 172 349 0.00% 1 172 334 0.00% 1 170 327
60 60 50 50 10 2.57% 10 132 1,005 0.21% 3 253 843 0.20% 3 253 829 0.18% 2 257 799 0.19% 2 254 786

1.1
15 15 15 10 10 0.00% 0 22 2 0.00% 0 20 2 0.00% 0 20 2 0.00% 0 9 1 0.00% 0 9 1
25 25 25 15 10 0.00% 0 64 25 0.00% 0 64 24 0.00% 0 64 25 0.00% 0 25 7 0.00% 0 25 7
40 40 40 25 10 0.00% 1 173 475 0.01% 1 171 489 0.01% 1 171 486 0.00% 0 41 50 0.00% 0 41 50
60 60 50 50 10 1.62% 10 126 1,004 0.32% 8 217 947 0.32% 8 218 946 0.00% 0 92 184 0.00% 0 92 185

Total 120 1.31% 45 157 445 0.40% 36 193 428 0.37% 36 195 426 0.33% 26 172 320 0.33% 26 152 318
ENH 1: LGBD, ENH 2: LGBD+FC, ENH 3: LGBD+FC+IC, and ENH 4: LGBD+FC+IC+VC

Table 3 Results for Additional Combinations of Algorithmic Enhancements

ENH 5 ENH 6 ENH 7 ENH 8

⇠2 |$ | |⇡ | | | |� | #Ins Gap #NO Y TM Gap #NO Y TM Gap #NO Y TM Gap #NO Y TM

0.7
15 15 15 10 10 0.00% 0 11 1 0.00% 0 11 2 0.00% 0 11 2 0.00% 0 13 2
25 25 25 15 10 0.00% 0 18 6 0.00% 0 18 8 0.00% 0 18 7 0.00% 0 21 6
40 40 40 25 10 0.00% 0 22 65 0.00% 0 22 97 0.00% 0 22 73 0.00% 0 26 39
60 60 50 50 10 0.004% 1 29 366 0.02% 1 29 592 0.004% 1 29 340 0.00% 0 34 216

1
15 15 15 10 10 0.00% 0 17 2 0.00% 0 17 2 0.00% 0 17 2 0.00% 0 19 3
25 25 25 15 10 0.00% 0 27 7 0.00% 0 26 7 0.00% 0 27 5 0.00% 0 29 7
40 40 40 25 10 0.00% 0 35 39 0.00% 0 37 20 0.00% 0 36 19 0.00% 0 38 22
60 60 50 50 10 0.00% 0 44 162 0.00% 0 44 180 0.00% 0 44 159 0.00% 0 48 149

1.1
15 15 15 10 10 0.00% 0 6 1 0.00% 0 6 1 0.00% 0 7 1 0.00% 0 8 1
25 25 25 15 10 0.00% 0 9 3 0.00% 0 9 2 0.00% 0 9 2 0.00% 0 11 2
40 40 40 25 10 0.00% 0 9 14 0.00% 0 10 5 0.00% 0 10 6 0.00% 0 12 5
60 60 50 50 10 0.00% 0 12 33 0.00% 0 11 32 0.00% 0 11 28 0.00% 0 13 30

Total 120 0.00% 1 20 58 0.00% 1 20 79 0.00% 1 20 54 0.00% 0 23 40
ENH 5: LGBD+FC+IC+VC+CMC, ENH 6: LGBD+FC+IC+VC+CMC+PO, ENH 7: LGBD+FC+IC+VC+CMC+LET, and ENH 8:

LGBD+FC+IC+VC+CMC+LET+LVR

More speci�cally, Tables 2-3 show the results for various combinations of enhancements. By comparing

di�erent combinations of enhancements, the main observations are summarized below.

• Comparing the results of BSC and ENH1, the LGBD method can improve the solution quality and

reduce the computing time compared to the standard Benders algorithm, indicating that the initial solution

values provided from the Lagrangian relaxation heuristic can speed up the convergence process, especially

for the large-size test instances.

• Comparing the results of ENH1 and ENH2, the FC procedure can reduce computational time by

avoiding solving some infeasible subproblems unnecessarily.
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• Comparing the results of ENH2 and ENH3, the IC improves the solution quality for high-capacity
instances as it can reduce the total number of iterations required for convergence, and the Benders refor-
mulation of the uncapacitated FHLP is easier to solve than those of the FHLP. We should mention that IC
is not used for the high capacitated instances.

• Comparing the results of ENH3 and ENH4, the VC does not enhance the solution quality signi�cantly.
However, it can reduce the total number of iterations by reducing the number of infeasibility cuts.

• Comparing the results of ENH4 and ENH5, the CMC can signi�cantly improve the solution quality
by reducing the total number of iterations required for convergence.

• Comparing the results of ENH5 and ENH6, although the PO technique o�en improves convergence
for various problems by incorporating optimal cuts, it does not seem to be e�ective for the FHLP instances,
especially for the ones with a low capacity.

• Comparing the results of ENH5 and ENH7, the LET technique eliminates some hubs from the master
problem and subproblems, and thus improves the solution quality and computational time.

• Comparing the results of ENH7 and ENH8, the LVR technique can signi�cantly improve the solution
quality by solving smaller-sized master problems. In fact, all test instances are solved to optimality a�er
incorporating the LVR.
From the above results and analysis, the Benders algorithm with the LGBD, FC, IC, VC, CMC, LET,

and LVR enhancement techniques (i.e., ENH 8) is the best combination of techniques developed in this
paper, and we will use this combination as the recommended implementation of the LEBD method in
the remaining experiments, unless stated otherwise. To further verify this observation, we performed the
Tukey-Kramer HSD tests, which indicate that the optimality gaps obtained by ENH 8 are be�er than those
obtained by other combinations with strong statistical signi�cance.

5.2. Sensitivity Analysis
We evaluated the sensitivity of the algorithm performance and solution quality for various parameter
se�ings described in Table 4. Let SET1 denote the set that includes all instances in G1–G7. �ere are 30
instances in G1 and 60 instances in each group of G2–G7, resulting in a total of 390 instances in SET1.

Table 4 Description of the Instance Groups for Sensitivity Analysis

|$ | |⇡ | | | |� | Group Feature Se�ing

Low High

60 60 50 50

G1 Default instances
G2 Assignment costs ⇠0 = 0.1 ⇠0 = 10
G3 Demand ⇠F = 0.1 ⇠F = 10
G4 EOS ⇠4 = 0.1 ⇠4 = 0.6
G5 Hub costs ⇠5 = 0.1 ⇠5 = 10
G6 Origin and destination cardinality (⇠> ,⇠3 ) = (3, 3) (⇠> ,⇠3 ) = (6, 6)
G7 Transportation costs ⇠C = 0.1 ⇠C = 10

�e computational results obtained by the LEBD method are displayed in Table 5. We observe that the
parameter se�ing of the capacity, hub costs (G5), and the cardinalities of origin and destination options
for each commodity (G6) have the most impactful in�uence on the e�ciency of the LEBD method. �e
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instances with high cardinalities, low capacities, or low hub costs are more challenging to solve. More-
over, the instances with high demand deviation, high transportation costs, and low EOS are also more
challenging to solve.�e parameter se�ing of the assignment costs (G2) is less impactful than the others.

Table 5 Computational Results of LEBD for Sensitivity Analysis

⇠2 = 0.7 ⇠2 = 1.0 ⇠2 = 1.1
Type Value #Ins Gap #NO Y TM #Ins Gap #NO Y TM #Ins Gap #NO Y TM

G1 10 0.00% 0 33.50 216.17 10 0.00% 0 47.50 148.56 10 0.00% 0 13.20 29.84

G2 Low 10 0.00% 0 31.50 125.11 10 0.00% 0 51.10 153.91 10 0.00% 0 12.80 22.90
High 10 0.00% 0 38.70 210.28 10 0.00% 0 41.90 131.30 10 0.00% 0 16.90 43.14

G3 Low 10 0.00% 0 10.60 12.78 10 0.00% 0 33.50 97.07 10 0.00% 0 9.30 11.40
High 10 0.47% 3 37.00 803.71 10 0.00% 0 56.10 170.17 10 0.00% 0 14.80 27.07

G4 Low 10 0.02% 1 36.30 406.99 10 0.00% 0 48.30 253.43 10 0.00% 0 23.60 89.06
High 10 0.00% 0 26.60 153.45 10 0.00% 0 46.20 84.62 10 0.00% 0 12.70 18.59

G5 Low 10 1.32% 10 29.80 1,127.76 10 0.00% 0 48.50 169.01 10 0.00% 0 16.00 46.55
High 10 0.00% 0 11.90 18.65 10 0.00% 0 41.00 163.79 10 0.00% 0 9.00 13.37

G6 Low 10 0.00% 0 39.60 163.45 10 0.00% 0 47.50 98.89 10 0.00% 0 15.10 20.29
High 10 2.36% 10 35.80 1,118.88 10 0.00% 0 53.20 395.25 10 0.00% 0 15.90 58.25

G7 Low 10 0.00% 0 10.90 13.03 10 0.00% 0 33.70 99.13 10 0.00% 0 9.00 10.96
High 10 0.42% 3 36.30 753.25 10 0.00% 0 55.10 165.24 10 0.00% 0 14.60 26.20

Total � 130 0.35% 27 29.12 394.12 130 0.00% 0 46.43 163.87 130 0.00% 0 14.07 32.12

�e computational results obtained by the CPX method are displayed in Table 6. We observe that the
parameter se�ing of the capacity and the cardinalities of origin and destination options for each commod-
ity (G6) have the most impactful in�uence on the e�ciency of the CPX method. �e instances with high
cardinalities or low capacities are more challenging to solve. Further, we observe that the LEBD method
is most advantageous to the CPX method for low-capacitated instances with high setup costs, low trans-
portation costs, or low demand. It is because the instances with these se�ings have a higher ratio between
hub setup and other costs, and the learning-empowered elimination tests and variable reduction are very
e�cient to handle these se�ings.

Table 6 Computational Results of CPX for Sensitivity Analysis

⇠2 = 0.7 ⇠2 = 1.0 ⇠2 = 1.1
Type Value #Ins Gap #NO TM #Ins Gap #NO TM #Ins Gap #NO TM

G1 10 2.65% 10 1007.90 10 0.00% 0 209.48 10 0.00% 0 16.04

G2 Low 10 0.01% 1 612.21 10 0.00% 0 122.41 10 0.00% 0 15.61
High 10 1.49% 10 1007.65 10 0.01% 1 400.60 10 0.00% 0 16.19

G3 Low 10 2.40% 8 988.99 10 0.00% 0 227.12 10 0.00% 0 14.87
High 10 0.02% 1 641.23 10 0.00% 0 183.33 10 0.00% 0 14.68

G4 Low 10 3.54% 10 1007.65 10 0.00% 0 227.84 10 0.00% 0 18.45
High 10 0.82% 8 956.17 10 0.00% 0 122.54 10 0.00% 0 15.19

G5 Low 10 1.48% 8 911.57 10 0.00% 0 175.45 10 0.00% 0 15.10
High 10 0.32% 6 828.64 10 0.00% 0 182.66 10 0.00% 0 14.14

G6 Low 10 0.49% 3 801.00 10 0.00% 0 65.95 10 0.00% 0 13.25
High 10 9.04% 10 1013.63 10 0.07% 3 546.25 10 0.00% 0 32.52

G7 Low 10 1.79% 9 995.88 10 0.00% 0 307.00 10 0.00% 0 15.76
High 10 0.02% 1 581.00 10 0.00% 0 192.71 10 0.00% 0 14.92

Total � 130 1.85% 85 873.35 130 0.01% 4 227.95 130 0.00% 0 16.67
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We further analyzed the performance of the LEBD method under nine di�erent se�ings of j2, which
adjusts the percentage of hubs removed from the master problem based on the likelihood values L(I) at
the �rst phase of the LEBD method. �e computational results are presented in Figure 3. Let PG denote
the percentage di�erence between the upper bound achieved by the �rst phase of the LEBD method and
the �nal upper bound UB, let RR denote the hub-removal ratio computed as |&2 |

|� | , and let FE denote the
error ratio of the removed hubs in &2, with FE computed as the number of hubs that are removed in &2

and have a solution value of one in the optimal solution divided by |� |. In Figure 3, the metrics RR and
FE are the average performance for all instances in SET1 that are solved to optimality, and the metric PG
is the average performance for all instances in SET1. Further, the TM index is computed as the average
of computational time consumed for solving the 390 instances under each of the nine se�ings divided by
the average of their computational time when j2 is set to 0.0001, with the Gap and #NO indices computed
similarly.
From Figure 3, we observe that more than 65% of hubs can be removed from the master problem in

the �rst phase of the LEBD method when j2 is equal to or larger than 0.01, while the error ratio FE is as
small as 0.1% when j2 is set to 0.01 and increases to 1.5% when j2 is set to 0.5. It implies that the learning-
empowered variable reduction technique can remove a large portion of hubs with a low error ratio. As
indicated by the PG metric, the upper bound obtained by the �rst phase of the LEBD method is about
0.04% away from the �nal upper bound obtained by the LEBD method, and it increases to about 1.75%
when j2 is set to 0.5.�ese results indicate that the LEBD method can generate optimality cuts leading to
good upper bounds during the �rst phase.

Figure 3 Performance of the LEBD method under Various Se�ings of j2

�e computational results in Figure 3 also show that the performance indices of TM, Gap, and #NO for
the LEBD method improve about 30-40% when parameter j2 increases from 0.0001 to 0.01. In this range,
the increase of j2 can signi�cantly reduce the size of the master problem, while the error ratio FE increases
slightly.�e performance of the LEBD method starts to �uctuate when the se�ing of j2 ranges from 0.01
to 0.5. As the se�ing of j2 increases within this range, both RR and FE do not change dramatically, and the
negative impact from the increase of the error ratio counterbalances the bene�t from the size reduction of
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the master problem. It explains the �uctuation of the performance of the LEBD method within this range.
As such, when deciding the se�ing of j2, we should pay a�ention to a good balance between the two
primary factors, namely, the size of the master problem before and a�er removing the hubs from &2 and
the error ratio FE. Because of this, we set parameter j2 to be 0.1 as its default value.

5.3. Comparison with Benchmark Algorithms
To compare the proposed algorithm with other benchmark algorithms, we created another set of test
instances (SET2) with various sizes described in Table 8. Set SET2 includes 25 instances with low capacities
and other parameters set as default. We compare the LEBD method with the CPX, TET, and CET methods
by using test instances in SET1 and SET2, with their computational results presented in Tables 7 and 8.�e
TET and CET methods were implemented based on the LGBD+FC+IC+VC+CMC techniques, such that
the di�erences among TET, CET, and LEBD lie in the learning-empowered elimination test and variable
reduction techniques.�e computational results presented in Tables 7 and 8 show that the LEBD method
outperforms the other three methods, especially for the low-capacitated instances and the ones with large
sizes.

Table 7 Solution Comparison for SET1

CPX TET CET LEBD
Type Value |$ | |⇡ | | | |� | #Ins Gap #NO TM Gap #NO Y TM Gap #NO Y TM Gap #NO Y TM

G1 60 60 50 50 30 0.88% 10 411.14 0.59% 8 25.37 496.11 0.00% 2 28.33 241.44 0.00% 0 31.40 131.52

⇠2
0.70 60 60 50 50 130 1.85% 85 873.35 1.23% 73 18.60 712.00 0.60% 42 22.17 511.49 0.35% 27 29.12 389.50
1.00 60 60 50 50 130 0.01% 4 227.95 0.22% 7 43.88 305.52 0.10% 2 44.08 158.42 0.00% 0 46.43 163.87
1.10 60 60 50 50 130 0.00% 0 16.67 0.28% 8 10.82 148.95 0.02% 2 11.06 71.20 0.00% 0 14.07 32.12

G2 Low 60 60 50 50 30 0.00% 1 250.08 1.11% 7 27.60 439.30 0.32% 2 28.93 203.44 0.00% 0 31.80 100.64
High 60 60 50 50 30 0.50% 11 474.81 0.10% 6 25.53 431.41 0.03% 2 28.43 231.35 0.00% 0 32.50 128.24

G3 Low 60 60 50 50 30 0.80% 8 410.33 0.00% 0 15.90 45.98 0.00% 0 16.10 31.35 0.00% 0 17.80 40.42
High 60 60 50 50 30 0.01% 1 279.74 0.39% 10 29.10 434.79 0.18% 7 30.07 391.86 0.16% 3 35.97 333.65

G4 Low 60 60 50 50 30 1.18% 10 417.98 1.02% 10 26.03 551.18 0.03% 3 29.60 331.75 0.01% 1 36.07 249.83
High 60 60 50 50 30 0.27% 8 364.63 0.38% 5 24.57 354.70 0.00% 1 25.67 135.39 0.00% 0 28.50 85.55

G5 Low 60 60 50 50 30 0.49% 8 367.37 0.74% 11 25.77 572.46 0.73% 10 25.77 452.37 0.44% 10 31.43 441.10
High 60 60 50 50 30 0.11% 6 341.81 0.00% 0 19.43 78.56 0.00% 0 19.43 60.82 0.00% 0 20.63 65.27

G6 Low 60 60 50 50 30 0.16% 3 293.40 0.23% 3 27.30 315.08 0.00% 0 29.33 123.95 0.00% 0 34.07 94.21
High 60 60 50 50 30 3.04% 13 530.80 2.64% 19 25.27 855.64 1.66% 12 27.07 599.35 0.79% 10 34.97 510.79

G7 Low 60 60 50 50 30 0.60% 9 439.55 0.00% 0 16.17 48.09 0.00% 0 16.20 31.66 0.00% 0 17.87 41.04
High 60 60 50 50 30 0.01% 1 262.88 0.29% 9 29.60 431.39 0.21% 7 30.10 376.75 0.14% 3 35.33 314.90

Total � 60 60 50 50 390 0.62% 89 372.66 0.58% 88 24.43 388.82 0.24% 46 25.77 247.04 0.12% 27 29.87 195.17

�e LEBD method performs be�er than the benchmark algorithms for several reasons. First, the LVR
technique helps generate many optimality cuts quickly by reducing the size of the master problem in the
�rst phase. Second, unlike the TET and CET techniques that require solving integer programs for the
elimination tests, the LEBDmethod determines&2 by using the likelihood valuesL(I) that can be derived
without a heavy computational burden. �ird, the distribution of the likelihood values and its strong
correlation with the optimal solution values make it viable to eliminate a signi�cant portion of hubs from
� with a relatively low error ratio. To be�er understand the distribution of the likelihood values L(I), as
well as the correlation between L(I) and optimal solution values Î, we plot L(I) and Î in Figure 4 for all
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Table 8 Solution Comparison for SET2

Problem Size CPX TET CET LEBD
|# | |$ | |⇡ | | | |� | LB UB Gap TM LB UB Gap Y TM LB UB Gap Y TM LB UB Gap Y TM

100 40 40 40 20 9,091 9,091 0.00% 30 9,091 9,091 0.00% 14 22 9,091 9,091 0.00% 14 13 9,091 9,091 0.00% 17 9
125 50 50 50 25 12,070 12,070 0.00% 124 12,070 12,070 0.00% 18 98 12,070 12,070 0.00% 18 34 12,070 12,070 0.00% 23 31
150 60 60 60 30 13,146 13,146 0.00% 284 13,146 13,146 0.00% 20 623 13,146 13,146 0.00% 22 181 13,146 13,146 0.00% 24 64
175 70 70 70 35 14,759 14,759 0.00% 560 14,759 14,759 0.00% 27 2,466 14,759 14,759 0.00% 27 538 14,759 14,759 0.00% 29 143
200 80 80 80 40 17,787 17,787 0.00% 2,164 17,654 17,960 1.71% 17 3,600 17,685 17,839 0.87% 18 3,600 17,787 17,787 0.00% 35 959
225 90 90 90 45 20,360 20,381 0.11% 3,600 20,243 20,579 1.63% 17 3,600 20,277 20,579 1.46% 19 3,600 20,381 20,381 0.00% 29 1,094
250 100 100 100 50 21,135 21,906 3.52% 3,600 21,520 22,300 3.50% 16 3,600 21,520 22,300 3.50% 16 3,600 21,803 21,906 0.47% 52 3,600
275 110 110 110 55 23,525 24,465 3.84% 3,600 23,874 24,752 3.55% 16 3,600 23,874 24,752 3.55% 16 3,600 23,997 24,428 1.77% 56 3,600
300 120 120 120 60 24,700 26,507 6.82% 3,600 25,008 27,073 7.63% 10 3,600 25,008 27,073 7.63% 10 3,600 25,695 26,409 2.70% 51 3,600
325 130 130 130 65 26,553 28,614 7.20% 3,600 27,036 29,066 6.99% 11 3,600 27,036 29,066 6.99% 11 3,600 27,706 28,645 3.28% 43 3,600
350 140 140 140 70 28,912 31,188 7.30% 3,600 29,468 30,930 4.73% 12 3,600 29,468 30,930 4.73% 12 3,600 29,704 30,446 2.44% 44 3,600
375 150 150 150 75 30,291 32,691 7.34% 3,600 30,606 33,724 9.25% 10 3,600 30,606 33,724 9.25% 10 3,600 31,277 32,288 3.13% 46 3,600
400 160 160 160 80 31,788 35,080 9.38% 3,600 32,564 35,068 7.14% 10 3,600 32,564 35,068 7.14% 10 3,600 33,437 34,560 3.25% 48 3,600
425 170 170 170 85 33,224 43,196 23.08% 3,600 34,835 38,423 9.34% 11 3,600 34,835 38,423 9.34% 11 3,600 35,541 37,224 4.52% 42 3,600
450 180 180 180 90 34,717 43,521 20.23% 3,600 36,789 40,541 9.26% 10 3,600 36,789 40,541 9.26% 10 3,600 37,718 39,395 4.26% 43 3,600
475 190 190 190 95 35,457 45,504 22.08% 3,600 36,958 40,171 8.00% 10 3,600 36,958 40,171 8.00% 10 3,600 37,988 39,907 4.81% 43 3,600
500 200 200 200 100 37,345 48,019 22.23% 3,600 39,179 43,795 10.54% 8 3,600 39,179 43,795 10.54% 8 3,600 41,149 42,488 3.15% 42 3,600
525 210 210 210 105 40,410 53,190 24.03% 3,600 42,736 47,120 9.30% 9 3,600 42,736 47,120 9.30% 9 3,600 43,905 46,386 5.35% 39 3,600
550 220 220 220 110 41,659 53,420 22.02% 3,600 42,221 49,387 14.51% 7 3,600 42,221 49,387 14.51% 7 3,600 45,359 47,711 4.93% 39 3,600
575 230 230 230 115 42,268 56,719 25.48% 3,600 44,594 50,756 12.14% 9 3,600 44,594 50,756 12.14% 9 3,600 46,445 49,214 5.63% 36 3,600
600 240 240 240 120 44,772 60,197 25.62% 3,600 45,799 55,171 16.99% 7 3,600 45,799 55,171 16.99% 7 3,600 49,505 52,749 6.15% 34 3,600
625 250 250 250 125 46,715 59,920 22.04% 3,600 48,685 55,894 12.90% 8 3,600 48,685 55,894 12.90% 8 3,600 51,653 54,686 5.55% 33 3,600
650 260 260 260 130 48,358 64,708 25.27% 3,600 49,836 59,599 16.38% 7 3,600 49,836 59,599 16.38% 7 3,600 53,401 57,001 6.31% 31 3,600
675 270 270 270 135 49,182 66,814 26.39% 3,600 50,590 61,023 17.10% 7 3,600 50,590 61,023 17.10% 7 3,600 54,472 58,232 6.46% 30 3,600
700 280 280 280 140 51,011 66,055 22.78% 3,600 54,153 62,435 13.26% 8 3,600 54,153 62,435 13.27% 8 3,600 57,192 60,623 5.66% 28 3,600

Average 31,169 37,958 13.07% 3,006 32,137 35,793 7.83% 12 3,152 32,139 35,789 7.79% 12 3,055 33,407 34,861 3.19% 37 2,828

instances in SET1 that are solved to optimality, in a nondecreasing order of L(I). �e results show that
the likelihood values are strongly correlated with the optimal solution values, indicating the e�ectiveness
of using the likelihood values to eliminate hubs in the �rst phase of the LEBD method.

Figure 4 Likelihood Value L(I) VS Optimal Solution Value Î

�e e�ciencies of the TET and CET methods are contingent on problem characteristics. �eir elimi-
nation tests may be e�cient in speci�c situations where hub setup costs are high relative to the other
system costs, and an e�ective Benders process exists to close up the optimality gaps quickly for the elim-
ination tests to take e�ect. �e uncapacitated HLPs o�en possess these characteristics, so the TET and
CET methods can e�ciently reduce their hub size and quickly solve large-scale instances. However, the
FHLP may not have these characteristics. First, the e-commerce businesses tend to lease hubs, so the hub
setup costs are generally low. Second, the assignment costs may take a signi�cant portion of the overall
system cost, diluting the chance of hubs being eliminated from the elimination tests. �ird, the capacity
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constraints make the FHLPmore di�cult to solve, and it takes more iterations for the Benders algorithm to
close gaps for the elimination tests to take e�ect, which is especially true for large-size instances. Because
the elimination tests require solving integer programs, if the success rates of these tests are low or the
integer programs are di�cult to solve, the elimination tests could lead to a low e�ciency for the Benders
algorithm.

6. Conclusion and Future Research Directions
We propose a �ow hub location (FHL) problem motivated by recent trends in the network design for e-
commerce businesses. Speci�cally, the FHLPs extend the classical HLPs, and add the decisions for choosing
origins and destinations simultaneously as the hub leasing and commodity routing decisions are made.
Due to the �exibility of e-commerce companies in choosing their hub locations via the leasing option, the
size of the FHLPs under study can become quite large. As such, we develop an e�cient optimization algo-
rithm that combines machine learning, Lagrangian relaxation, and Benders decomposition to solve this
problem.�is algorithm applies the learning-empowered Benders decompositionmethod to a strong path-
based formulation.�e proposed learning-empowered Benders decomposition method improves from its
standard counterpart by exploring several problem-speci�c properties, including a clustering-empowered
multi-commodity Benders reformulation, learning-empowered elimination tests, variable reduction, and
the inclusion of the Lagrangian relaxation heuristic for generating good initial solutions.�e algorithm’s
e�ciency has been demonstrated via extensive computational tests, where the proposed optimization
algorithm outperforms the three benchmark algorithms.
One area of future research is to extend the FHLP by considering various features commonly applied to

the hub location problems. Particularly, we are interested in the FHLP combined with demand uncertainty,
reliability, or pro�t maximization with multiple assignments. We are also interested in extending the ori-
gin/destination node assignment decisions to the p-hub median problem, the intermodal hub location
problem, the cycle hub location problem, and the hub location problems with multiple periods. Further,
the FHLPs considered in this paper take deterministic inputs, while uncertainties may be observed in the
network design for e-commerce businesses. For example, by choosing di�erent suppliers as the origins and
di�erent customer zones as the destinations, the network could be subject to di�erent levels of demand
and supply uncertainties. It would be interesting to consider such uncertainties in the network design
process.
Another area of future research is to explore heuristics and exact solution approaches to solve vari-

ants of the FHLPs. Heuristics of interest include, but are not limited to, tabu search, greedy randomized
adaptive search, neighborhood search, and evolutionary-inspired algorithms. Exact methods of interest
include branch-and-cut and branch-and-price. We are particularly interested in implementing a machine
learning-based optimization framework (e.g., Zhang et al. (2020) and Wu et al. (2022a)) for solving the
capacitated FHLPs. �e machine learning-based optimization framework aims to build analytical models
to gain knowledge on the FHLPs and use this knowledge to �x decision variables (e.g., the hub-leasing
decisions) in order to create smaller-sized subproblems, which are then solved to improve solution quali-
ties for the FHLPs progressively.
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Online Supplement to
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for Flow Hub Location in E-Commerce

�is online supplement provides additional methods and results to the paper titled “Learning-empowered Benders
Decomposition for Flow Hub Location in E-Commerce”.

1. Pareto-optimal Cuts
In addition to the cu�ing planes proposed in Section 4.2 of the paper, we may further improve the
convergence of the Benders algorithm by constructing stronger, undominated cuts, known as Pareto-
optimal cuts (Magnanti and Wong 1981). A cut generated from the dual solution (U0,\0,W0,g0) is Pareto-
optimal if no other cuts generated from the dual solution (U1,\1,W1,g1) dominates it, and we say that
the cut (U0,\0,W0,g0) dominates the cut (U1,\1,W1,g1) if and only if
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point. Let Q be the polyhedron de�ned by constraints (31)–(33), 0  ~>:  1, 8 : 2  , > 2$: , 0  D3:  1,
8 : 2  , 3 2 ⇡: , and 0  /⌘  1, 8 ⌘ 2 � , and let A8 (Q) denote the relative interior of Q. To determine a
Pareto-optimal cut at iteration Y, we need to solve the following Pareto-optimal subproblem (POY ):
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where (Ĩ0, ~̃0, D̃0) 2 A8 (Q). Constraint (1) enforces that the optimal solution of POY is chosen from the set
of optimal solutions of dual subproblems DSY . We note that POY can be separated to | | independent
subproblems (PO:Y ), one for each : 2  . We thus have
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\⌘: � 0, 8 ⌘ 2� ,

W>: � 0, g3: � 0, 8 > 2$: , 3 2 ⇡: ,

To generate a Pateto-optimal cut, any core point (Ĩ0, ~̃0, D̃0) 2 A8 (Q) can be taken. We use the technique
proposed in Papadakos (2008) to identify a core point that lies within the relative interior of the master
problem polyhedron.

2. Training and Outputs for Logistic Regression Models
Recall that in Section 4.4 of the paper, learning-empowered elimination tests and variable reduction are
introduced to reduce the size of the master problem and subproblems. In this section, we provide details on
the training sample generation and the machine learning model outputs that were used in the numerical
experiments reported in Section 5 of the paper.
More speci�cally, we generated three sets (S1, S2, and S3) of small-sized instances for training machine

learning (i.e., logistic regression) models. �e sizes of ( |$ |, |⇡ |, | |, |� |) for sets S1, S2, and S3 were
set to (15, 10, 25, 15), (20, 20, 20, 20), and (25, 25, 30, 25), respectively. �ere are 100 instances gen-
erated for each se�ing, leading to 300 instances for each set. �e solution values of these small-sized
instances produce 6,000, 22,636, and 22,576 records of (Î,I2A ,IYA2A ,I!% ,I!06,IY⌫⇡ ), (~̂,~2A ,~

Y
A2A ,~!% ,~!06,~

Y
⌫⇡ ),

and (D̂,D2A ,DYA2A ,D!% ,D!06,D
Y
⌫⇡ ) for itertion Y, respectively, which were used to build the logistic regression

models for computing L(I), L(~), and L(D). �e models were ��ed using the statsmodels.logit module
in Python, with 70% data used for training and 30% data used for testing.
Figures 1–3 illustrate the relationships between (Î0E6, ~̂0E6, D̂0E6) and ((IA2 ,IA2A ,I⌫⇡ ,I18=!% ,I

18=
!06), (~A2 ,~A2A ,

~⌫⇡ , ~18=!% ,~
18=
!06), (DA2 ,DA2A ,D⌫⇡ ,D

18=
!% ,D

18=
!06)) for the 5C⌘ iteration, respectively. �e values (Î0E6, ~̂0E6, D̂0E6)

are the average of the optimal solution values (Î, ~̂, D̂) corresponding to the independent variables.
From the �gures, we observe that there is a strong negative correlation between (Î0E6, ~̂0E6, D̂0E6) and
((IA2 ,IA2A ), (~A2 ,~A2A ), (DA2 ,DA2A )) and a positive correlation between (Î0E6, ~̂0E6, D̂0E6) and ((I⌫⇡ ,I18=!% ,I

18=
!06),

(~⌫⇡ ,~18=!% ,~
18=
!06), (D⌫⇡ ,D

18=
!% ,D

18=
!06)). Further, Figure 4 displays the values of Î0E6 over the �rst 20 iterations of

the Benders algorithm for each ranking of IA2A .�e plots show that the correlation between Î0E6 and IA2A
is signi�cant and consistent over iterations of the Benders algorithm.�ese pa�erns are also observed for
the correlation between Î0E6 and solution values of subproblems for the Benders algorithm and Lagrangian
relaxation. Because the sizes of ranks (IA2 ,IA2A ) are di�erent for problems with di�erent hub numbers, we
transform (IA2 ,IA2A ) to percentiles denoted by (I?2A , I

?
A2A ), with (I?2A , I

?
A2A ) = (round( I2A

|� |
), round(IA2A

|� |
)). Note

that since the relationship between Î0E6 and (I?2A , I
?
A2A ) is nonlinear, we set (I

?
2A , I

?
A2A ) to 0.5 when they are

bigger than 0.5.
We use variables (I?A2 ,I

?
A2A ,I⌫⇡ ,I!% ,I!06), (~A2 ,~A2A , ~⌫⇡ , ~!% ,~!06), and (DA2 ,DA2A ,D⌫⇡ ,D!% ,D!06) to build

the logistic regressionmodels for obtaining the classi�ers for Î = 1, ~̂ = 1, and D̂ = 1, respectively.�emodel
outputs are presented in Tables 1–3, along with their ROC (receiver operating characteristic) curves and
confusion matrices displayed in Figure 5 and Table 4, respectively. From these results, we observe that
the problem size is not a statistically signi�cant independent variable, implying that we can potentially
transfer the knowledge learned from small instances to larger ones. When the size of the FHLP becomes
bigger, obtaining the LP-relaxed solution values may become more challenging. For such cases, we should
re�t the logistic regression models by removing (I!% , ~!% , D!% ) and update the model coe�cients for the
other independent variables.
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Table 1 Model Outputs for Î = 1 Classifier

⇠2 Variable coef std err z % > |I | [0.025 0.975]

0.7

Intercept -7.0512 0.758 -9.299 0 -8.537 -5.565
C(I⌫⇡ , Treatment(reference=0))[T.1] 0.6022 0.21 2.866 0.004 0.19 1.014
I!% 11.4837 0.735 15.624 0 10.043 12.924
I!06 4.2078 0.935 4.499 0 2.375 6.041
I?2A -6.0689 0.716 -8.475 0 -7.472 -4.665

1.0
Intercept -7.6978 0.965 -7.978 0 -9.589 -5.807
I!% 6.611 0.35 18.863 0 5.924 7.298
I!06 6.2654 1.122 5.586 0 4.067 8.464
I?A2A -6.0057 0.823 -7.296 0 -7.619 -4.392

1.1
Intercept -5.2515 0.553 -9.492 0 -6.336 -4.167
C(I⌫⇡ , Treatment(reference=0))[T.1] 1.3408 0.447 2.999 0.003 0.465 2.217
I!% 11.7333 0.945 12.421 0 9.882 13.585
I?2A -4.2983 1.362 -3.157 0.002 -6.967 -1.629

Table 2 Model Outputs for ~̂ = 1 Classifier

⇠2 Variable coef std err z % > |I | [0.025 0.975]

0.7

Intercept -2.1082 0.152 -13.875 0 -2.406 -1.81
C(~⌫⇡ , Treatment(reference=0))[T.1] 0.9726 0.07 13.845 0 0.835 1.11
~!% 4.21 0.137 30.747 0 3.942 4.478
~!06 2.9547 0.091 32.536 0 2.777 3.133
~A2A -0.1164 0.044 -2.618 0.009 -0.203 -0.029
~2A -0.229 0.036 -6.449 0 -0.299 -0.159

Intercept -3.8608 0.06 -63.833 0 -3.979 -3.742
1.0 ~!% 3.2268 0.065 49.424 0 3.099 3.355

~!06 4.7146 0.093 50.787 0 4.533 4.897

Intercept -5.1002 0.195 -26.15 0 -5.482 -4.718
C(~⌫⇡ , Treatment(reference=0))[T.1] 1.4316 0.119 12.034 0 1.198 1.665

1.1 ~!% 7.2304 0.146 49.528 0 6.944 7.516
~!06 3.5245 0.19 18.557 0 3.152 3.897
~A2A -0.1682 0.067 -2.516 0.012 -0.299 -0.037

Table 3 Model Output for D̂ = 1 Classifier

⇠2 Variable coef std err z % > |I | [0.025 0.975]

0.7

Intercept -2.3378 0.163 -14.355 0 -2.657 -2.019
C(D⌫⇡ , Treatment(reference=0))[T.1] 1.1195 0.073 15.402 0 0.977 1.262
D!% 4.3046 0.14 30.737 0 4.03 4.579
D!06 2.9716 0.094 31.452 0 2.786 3.157
DA2A -0.1575 0.047 -3.373 0.001 -0.249 -0.066
D2A -0.1369 0.038 -3.646 0 -0.21 -0.063

Intercept -3.9274 0.062 -63.311 0 -4.049 -3.806
1.0 D!% 3.2192 0.065 49.433 0 3.092 3.347

D!06 4.7532 0.094 50.74 0 4.57 4.937

1.1
Intercept -5.6457 0.123 -45.942 0 -5.887 -5.405
C(D⌫⇡ , Treatment(reference=0))[T.1] 1.4398 0.112 12.887 0 1.221 1.659
D!% 7.3576 0.149 49.527 0 7.066 7.649
D!06 3.8466 0.186 20.634 0 3.481 4.212

Table 4 Confusion Matrix

⇠2

Î = 1 classi�er ~̂ = 1 classi�er D̂ = 1 classi�er
n=1800 Predicted: 0 Predicted: 1 n=6791 Predicted: 0 Predicted: 1 n=6773 Predicted: 0 Predicted: 1

0.7
Actual: 0 1,622 20 Actual: 0 1,944 348 Actual: 0 1,884 3731,642 2,292 2,257
Actual: 1 43 115 Actual: 1 313 4,186 Actual: 1 339 4,177158 4,499 4,516

1.0
Actual: 0 1,647 14 Actual: 0 3,991 357 Actual: 0 3,950 3381,661 4,348 4,288
Actual: 1 19 120 Actual: 1 324 2,119 Actual: 1 332 2,153139 2,443 2,485

1.1
Actual: 0 1,654 8 Actual: 0 4,461 111 Actual: 0 4,394 1001,662 4,572 4,494
Actual: 1 6 132 Actual: 1 111 2,108 Actual: 1 111 2,168138 2,219 2,279
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Figure 1 Relationships between Î0E6 and (IA2 ,IA2A ,I⌫⇡ ,I18=!% ,I18=!06)
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Figure 2 Relationships between ~̂0E6 and (~A2 , ~A2A , ~⌫⇡ , ~18=!% , ~18=!06)
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Figure 3 Relationships between D̂0E6 and (DA2 ,DA2A ,D⌫⇡ ,D18=!% ,D18=!06)
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Figure 4 Relationships between D̂0E6 and DA2A over Iterations of the Benders Algorithm
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Figure 5 ROC Curve
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