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Abstract

This paper introduces formulations and an exact algorithm for the workforce
scheduling and routing problem with park-and-loop. This problem extends
the standard workforce scheduling and routing problem by allowing the use
of walking subtours in the routes. We introduce a compact arc-based for-
mulation as well as a path-based formulation with an exponential number
of variables. To efficiently solve the latter, we propose a branch-price-and-
cut algorithm that leverages state-of-the-art techniques, including a tailored
version of the pulse algorithm to solve the pricing problem and the separa-
tion of subset row inequalities to strengthen the lower bound. We report on
computational experiments carried out on a set of instances with up to 75
tasks adapted from the literature. The results show that our method system-
atically outperforms a standard MIP solver, proving optimality for 232 out
of 324 instances. We also report experiments on the closely-related service
technician routing and scheduling problem, where our method delivered 12
new best solutions on a 54-instance testbed from the literature.

Keywords: vehicle routing problem, branch-price-and-cut, column
generation, scheduling, park-and-loop

1. Introduction

In this paper, we study the workforce scheduling and routing problem
with park-and-loop (WSRP-PL). While our initial inspiration came from a
real-world application in France, similar problems are encountered by utility
and service companies around the world. In our problem, a company must
perform a set of on-site tasks (e.g., connection to utility grids, troubleshoot-
ing, meter reading). Each task has an associated duration and an associated
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time window. In addition, depending on its nature, a task may require one or
more skills, each at a potentially different level of proficiency. Tasks are exe-
cuted either by the company’s workforce or by a third party. Every worker in
the force masters a subset of skills, each at a given proficiency level. Workers
can work individually or in teams. To simplify the narrative, we assume that
workers always work in teams (but a team can comprise just one worker).
Teams depart from and must return to a single depot within working hours
driving a vehicle (i.e., a car). Because many customers are located in densely
populated areas, in which access to parking may be limited, workers can walk
between nearby locations (after safely parking the car). The WSRP-PL con-
sists in building a plan to execute all the tasks while minimizing the total
operational cost. The latter is composed of (i) the outsourcing cost of tasks
assigned to the third party and (ii) the cost of the total distance driven by
the internal teams. A plan is defined by the assignment of workers to teams
for the day and the routing of the vehicles driven by the teams.

Our problem is closely related to the park-and-loop routing problem
(PLRP) and the workforce scheduling and routing problem (WSRP), both of
which are NP-Hard. The PLRP is a variation of the vehicle routing problem
(VRP), where routes consist of a primary tour completed using a vehicle,
along with sub-tours performed on foot after parking the vehicle. In the
PLRP, and most of its variants, the route duration and total walking dis-
tance are bounded. Coindreau et al. (2019) introduced the vehicle routing
problem with transportable resources (VRPTR). In this variant of the PLRP,
workers are allowed to share a vehicle (i.e., carpool). To address this prob-
lem, the authors proposed a variable neighborhood search (VNS) algorithm.
They assessed their algorithm using a set of new instances containing up to
50 customers. The experiments showed that their VNS could provide solu-
tions for all instances within a computing time of 10 hours. It is worth noting
that, in contrast to our WSRP-PL, in the VRPTR, workers are considered
identical and capable of fulfilling all tasks.

Cabrera et al. (2022) introduced the doubly open park-and-loop rout-
ing problem (DOPLRP). In this variant of the PLRP workers initiate and
conclude their routes at customer locations. To address this problem, they
proposed a customized implementation of the multi-space sampling heuristic
(Mendoza & Villegas, 2013). They conducted experiments using a dataset
of real-world instances provided by a French utility, featuring up to 3,000
customers. Their findings demonstrated that their method consistently pro-
duced solutions that resulted in significant cost savings compared to those
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generated by the company’s routing software. Additionally, they applied
their method to instances introduced by Coindreau et al. (2019) and were
able to enhance 32 out of the 40 previously best-known solutions. There
are two key distinctions between our problem and their DOPLRP. First, in
DOPLRP, tasks do not have time windows or skill requirements. Conse-
quently, workers are not required to form teams. Second, in our WSRP-PL,
a fundamental requirement is that all routes must both start and end at the
depot.

In a similar vein, Le Colleter et al. (2023) conducted a study on the
park-and-loop routing problem with parking selection (PLRP-PS). In this
particular variant of the PLRP, the vehicle can only be parked at prede-
fined parking locations. The authors introduced a small and large neigh-
borhood search metaheuristic. To enhance the algorithm’s efficiency, they
implemented operators specifically designed for selecting parking spots. The
algorithm unveiled eight new best-known solutions for the Coindreau et al.
(2019) instances. These solutions were later improved or confirmed as opti-
mal by Cabrera et al. (2023), who introduced a branch-price-and-cut (BPC)
algorithm for the PLRP. Through their algorithm, they found optimal solu-
tions for 39 out of the 40 Coindreau et al. (2019) instances. The key com-
ponent of their method is the pulse algorithm (PA), employed for solving
the pricing problem. They improved the classical PA with problem-specific
pruning strategies that significantly accelerated the algorithm. It is worth
noting that their BPC is not equipped to handle task skill requirements,
team formation, or time windows.

The workforce scheduling and routing problem (WSRP) combines ele-
ments from both scheduling and routing problems. In the scheduling com-
ponent of this problem, the objective is to assign workers (e.g., technicians,
nurses, and security guards) to provide a service or complete tasks for cus-
tomers. When making these worker assignments, various features are taken
into account, including skills compatibility (Kovacs et al., 2012; Braekers
et al., 2016; Chen et al., 2016), team formation (Bredström & Rönnqvist,
2008; Zamorano et al., 2018), multiple time periods (Tricoire et al., 2013;
Guastaroba et al., 2021), and precedence constraints (Goel & Meisel, 2013;
Pereira et al., 2020), among others. On the other hand, the routing com-
ponent involves designing a set of routes that workers use to travel between
different locations. This routing process takes into consideration factors such
as customer time windows, the presence of multiple depots, and the potential
use of alternative transportation modes. For further exploration of applica-
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tions and variants of the WSRP, interested readers are referred to Castillo-
Salazar et al. (2016) and Paraskevopoulos et al. (2017) for a comprehensive
review.

Our problem is a generalization of the technician routing and scheduling
problem (STRSP) introduced by Kovacs et al. (2012), one of the most studied
WSRP variants. They solved two versions of the problem. The no-team
version in which routes are carried out by individual workers, and the team
version in which routes are designed for multiple workers. They proposed an
adaptive large neighborhood search (ALNS) heuristic that includes a set of
classical destroy and repair operators. Using this methodology, the authors
provided high-quality solutions to instances with up to 100 tasks in less
than two minutes. The authors also proposed a mathematical formulation
that they solve by means of a mixed integer problem solver (i.e., CPLEX).
They tested their exact method on instances with 25 tasks. As opposed to
the WSRP-PL, in the STRSP workers are only allowed to drive between
locations.

Most of the work on the no-team version of the STRSP has focused on
heuristic algorithms (Xie et al., 2017; Zhou et al., 2020; Gu et al., 2022). Xie
et al. (2017) proposed an iterated local search (ILS) algorithm that uses clev-
erly designed neighborhood structures. Their method was evaluated against
the ALNS of Kovacs et al. (2012), showing an improved performance in both
solution quality and speed. Building on the algorithm by Xie et al. (2017),
Zhou et al. (2020) presented an iterated local search with hybrid neighbor-
hood search (ILS-HNS) algorithm. This algorithm switches between small
and large neighborhoods, which allows the algorithm to escape local optima.
The proposed algorithm improved 12 of the best known solutions. Similarly,
Gu et al. (2022) presented a Lagrangian iterated local search (L-ILS) algo-
rithm which significantly outperforms ILS-HNS. Their study sets L-ILS as
the state-of-the-art algorithm. Note, however, that neither of these methods
is exact. Moreover, neither of these methods is capable of solving the team
version of the STRSP.

Our study contributes to the existing literature in several key ways. First,
we introduce the workforce scheduling and routing problem with park-and-
loop, a problem that arises at the intersection of two challenging combinato-
rial problems: the PLRP and the WSRP. Both of these problems have gained
increasing practical relevance due to concerns such as labor shortages and car-
bon emissions. Second, to tackle this challenging problem, we have developed
an exact Branch-Price-and-Cut (BPC) algorithm that leverages state-of-the-
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art techniques. Our computational experiments demonstrate the superior
efficiency of our BPC algorithm when compared to a standard mixed-integer
programming (MIP) solver. Third, we have applied our algorithm to pro-
vide optimality certificates for 24 instances on a standard testbed for the
no-team version of the STRSP. Out of these, 12 represent new best-known
solutions. Finally, we have created an online tool that enables researchers to
visualize and download all the solutions and instances reported in our paper,
enhancing accessibility and usability for the research community.

This paper is organized as follows. Section 2 formally introduces the
WSRP-PL. Section 3 presents a path-based formulation for the problem.
Section 4 describes the proposed branch-price-and-cut algorithm. Section
5 presents the computational experiments. Finally, Section 6 presents the
conclusions and outlines potential paths for future research.

2. Problem description and arc-based formulation

The WSRP-PL can be formally defined on a complete and directed graph
G = (N ,A), where N is the set of nodes and A is the set of directed arcs.
The set of nodes comprises a start depot 0, an end depot 0, and the set of
tasks C = {1, ..., n}. Note that, 0 and 0 can represent the same or distinct
geographical locations. Arcs in A represent the connections between two
tasks or between a task and the depot. To perform the tasks, a set of workers
W = {1, ...,m} are assigned to teams in the set T . Note that |T | must be
an upper bound on the maximum number of teams to form. A maximum of
ω workers can be assigned to a team. Each team t ∈ T departs from and
arrives to the depot after performing its route. Each route has a maximum
duration ϕ. Teams can drive or walk between locations. Accordingly, each
arc (i, j) ∈ A has four main attributes: the driving distance µij, the driving
time τij, the walking distance δij, and the walking time ηij. The maximum
distance that can be traveled on foot between two points is θ. Moreover, the
maximum distance that can be traveled by a team on foot in one day is ζ.
Driving the car involves a variable cost cv per unit of distance while walking
is assumed to be free of charge.

Each task i ∈ C has a duration si and an associated time window indi-
cating possible visit times. Let [ai, bi] be the earliest and latest starting time
of task i ∈ C. Also, let fi be the outsourcing cost of task i ∈ C. Skill re-
quirements are represented by νiql, an integer parameter stating the number
of workers with the skill q ∈ Q with at least a proficiency level l ∈ L that
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the task i ∈ C needs. Worker qualifications are represented by ξkql, which
is a binary parameter equal to 1 if worker k has at least a proficiency level
l for skill q. The objective of the WSRP-PL is to minimize the total cost
while ensuring that: each task is fulfilled precisely once; the total duration of
each route does not exceed the working day duration; and the total walking
distance of each team does not exceed the distance limit. Figure 1 shows an
example of a feasible solution to a toy WSRP-PL instance with nine tasks.
In this example, there are four workers (1 to 5) and four potential skills
(blue, yellow, green, and red), each with two proficiency levels (dark and
light tones). To complete the tasks, the workers are divided into two teams.
The green team is formed by workers 1 and 2 while the blue team is formed
by workers 4 and 5. Worker 3 is not assigned to a team and remains at the
depot for the day. The green team completes tasks 1, 2, and 4; the blue team
completes tasks 5 to 9; and task 3 is outsourced.

Not used
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1 2
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4 5
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2
4

Skills

Levels
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31 42
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Figure 1: WSRP-PL solution example.

6



To mathematically state theWSRP-PL, we start by defining an additional
set N+ = {n+ 1, n+ 2, . . . , 2n} ∪

{
0
∗}

that contains a copy of every node
i ∈ N\{0}. Any node (i+n) ∈ N+ represents the end of a subtour starting at
node i ∈ C. Node 0∗ represents the end of a subtour starting at 0. Let d(i) be
the copy of node i ∈ N \ {0}. We also define two sets of arcs. Arc set A1 =
{(i, j) : i ∈ (N ∪N+) \ {0} , j ∈ N} contains the arcs in which teams can
drive. Arc set A2 =

{
(i, j) : i ∈ N \ {0} , j ∈ (N ∪N+) \

{
0, 0

}
|δij ≤ θ

}
contains the arcs in which teams can walk. The reader should note that
some arcs belong to both A1 and A2. Building on top of the formulations
presented by Kovacs et al. (2012) and Cabrera et al. (2022), the arc-based
integer programming formulation (AF) of the WSRP-PL uses the following
binary variables:

• xt
ij = 1 if team t ∈ T drives from node i to node j, for (i, j) ∈ A1 and

0, otherwise,

• ht
ij = 1 if team t ∈ T walks from node i to node j, for (i, j) ∈ A2 and

0, otherwise,

• gti = 1 if team t ∈ T parks the vehicle at node i ∈ N \ {0} and 0,
otherwise,

• yti = 1 if team t ∈ T is assigned to complete task i ∈ C and 0, otherwise,

• vtk = 1 if worker k ∈ W is assigned to team t ∈ T and 0, otherwise,

• zi = 1 if task i ∈ C is outsourced and 0, otherwise,

• wt = 1 if team t ∈ T is selected and 0, otherwise.

We also define the following continuous variables:

• ut
i is the arrival time of team t ∈ T to node i ∈ N ∪N+.

An arc-based formulation for the WSRP-PL can be stated as follows:

min
∑

(i,j)∈A1

∑
t∈T

xt
ijµijc

v +
∑
i∈C

zifi (1)

subject to
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∑
t∈T

vtk ≤ 1 ∀k ∈ W (2)∑
k∈W

vtk ≥ wt ∀t ∈ T (3)∑
k∈W

vtk ≤ wtω ∀t ∈ T (4)

wt ≥ wt+1 ∀t ∈ T |t < |T | (5)

wt −
∑
i∈C

yti ≤ 0 ∀t ∈ T (6)∑
t∈T

yti + fi = 1 ∀i ∈ C (7)∑
(0,j)∈A1

xt
0j +

∑
(0,j)∈A2

ht
0j = 1 ∀t ∈ T (8)

∑
(i,0)∈A1

xt
i0 = 1 ∀t ∈ T (9)

∑
(i,j)∈A1

xt
ij +

∑
(i,j)∈A2

ht
ij = ytj ∀j ∈ C, t ∈ T (10)

∑
(j,d(i))∈A2

ht
jd(i) = gti ∀i ∈ N \ {0} , t ∈ T (11)

∑
(i,j)∈A2

ht
ij −

∑
(j,i)∈A2

ht
ji = gti ∀i ∈ N \ {0} , t ∈ T (12)

∑
(j,i)∈A2

ht
ji +

∑
(j,i)∈A1

xt
ji

−
∑

(i,j)∈A2

ht
ij −

∑
(i,j)∈A1

xt
ij = 0 ∀j ∈ N ∪N+, t ∈ T (13)

∑
(j,i)∈A2

ht
ji +

∑
(j,i)∈A1

xt
ji ≤ 1 ∀j ∈ N ∪N+, t ∈ T (14)

∑
t∈T

ht
ij + xt

ij ≤ 1 ∀(i, j) ∈ A1 ∩ A2 (15)

xt
ijτij + ht

ijηij + ytisi + ut
i

−ϕ(1− ht
ij − xt

ij) ≤ ut
j ∀(i, j) ∈ A1 ∩ A2, t ∈ T (16)
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xt
ijτij + ytisi + ut

i

−ϕ(1− xt
ij) ≤ ut

j ∀(i, j) ∈ A1 \ (A1 ∩ A2), t ∈ T
(17)

ht
ijηij + ytisi + ut

i

−ϕ(1− ht
ij) ≤ ut

j ∀(i, j) ∈ A2 \ (A1 ∩ A2), t ∈ T
(18)

ut
i ≤ ut

d(i) ∀i ∈ N \ {0} , t ∈ T (19)

ut
i ≤ bi ∀i ∈ C, t ∈ T (20)

ut
i ≥ ai ∀i ∈ C, t ∈ T (21)∑

(i,j)∈A2

ht
ijδij ≤ ζ ∀t ∈ T (22)

ytiξiql −
∑
k∈W

vtkνkql ≤ 0 ∀t ∈ T , q ∈ Q, l ∈ L, i ∈ C (23)

xt
ij ∈ {0, 1} ∀t ∈ T , (i, j) ∈ A1 (24)

ht
ij ∈ {0, 1} ∀t ∈ T , (i, j) ∈ A2 (25)

gti ∈ {0, 1} ∀t ∈ T , i ∈ N \ {0} (26)

yti ∈ {0, 1} ∀t ∈ T , i ∈ C (27)

vtk ∈ {0, 1} ∀t ∈ T , k ∈ W (28)

zi ∈ {0, 1} ∀i ∈ C (29)

wt ∈ {0, 1} ∀t ∈ T (30)

ut
i ≥ 0 ∀t ∈ T , i ∈ N ∪N+. (31)

The objective function (1) minimizes the total cost comprised of the rout-
ing and outsourcing costs. Constraints (2) ensure that a worker is only
assigned to one team. Constraints (3) and (4) impose a minimum and a
maximum number of workers for each selected team. Constraints (5) remove
symmetric solutions with respect to the selection of teams. Constraints (6)
state that every selected team must complete at least one task. Constraints
(7) ensure that all tasks are either completed or outsourced. Constraints (8)
state that all teams must leave the start depot. Constraints (9) ensure that
all the teams arrive at the end depot.

Constraints (10) guarantee that all the tasks are executed by a team.
Constraints (11) ensure that the vehicle is recovered after performing a sub-
tour. Constraints (12) and (13) ensure flow conservation. Constraints (14)
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impose a limit on the number of arcs that can be used by a team depart-
ing from any location. Constraints (15) state that an arc can only be used
once. Constraints (16)-(19) define the time of arrival at every location. Con-
straints (20)-(21) ensure that the completion of each task starts within their
time windows. Constraints (22) impose a limit on the duration the overall
walking distance. Constraints (23) ensure that tasks are fulfilled by a team
with the appropriate skills.

The proposed arc-based formulation is compact (i.e., the number of vari-
ables and constraints is polynomial with respect to the dimension of a prob-
lem instance). However, as mentioned by Dellaert et al. (2019), arc-based
formulations suffer from poor performance caused by the bad quality of the
lower bound obtained by solving its LP relaxation. As a result, we propose
using a new path-based formulation which is the topic of the next section.

3. Path-based formulation

Let Ḡ = (N̄ , Ā) be a directed graph, henceforth referred to as themodified
network, where N̄ is the set of nodes and Ā is the set of directed arcs. The
set of nodes N̄ = N ∪ {s} ∪ W comprises the nodes in graph G, a source
node s, and one node for every worker k ∈ W . There are two types of arcs in
the modified network, namely, routing and scheduling arcs. Routing arcs in
A represent connections between tasks, as defined in Section 2. Scheduling
arcs represent the selection of workers. More precisely, let A′ = A′

1∪A′
2∪A′

3

be the scheduling arcs, where A′
1 = {(s, k) : k ∈ W} are arcs from the source

node to every worker node, A′
2 =

{
(k, 0) : k ∈ W

}
are arcs from every worker

node to the start depot node, and A′
3 = {(k, k′) : k, k′ ∈ W|k′ > k} are arcs

between workers nodes. A worker k ∈ W is said to be selected if an arc
ending at the corresponding node is used. Figure 2 shows an illustrative
example of the modified network on an instance that includes five workers
and four tasks. The maximum number of workers in a team is three. The
number of skills is set to four and each skill has two proficiency levels. For the
sake of simplicity, some routing arcs were omitted. Note that by using this
graph, both scheduling and routing decisions can be made simultaneously.
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Figure 2: Modified network example.

Let path p be an ordered set of directed arcs starting at the source node
s and ending at the end depot 0. Let also P be the set of all feasible paths.
The scheduling arcs in p are contained in subsets As

p. The driving and the
walking arcs in p are contained in subsets Ad

p and Aw
p , respectively. Let Wp

be the workers selected in the path. Also, let Cp be the tasks completed in
the path starting the service within their corresponding time windows. A
path p is feasible if the following conditions hold:

∑
(i,j)∈As

p

1 ≤ ω + 1 (32)

∑
(i,j)∈Aw

p

ηij +
∑

(i,j)∈Ad
p

τij +
∑
i∈Cp

si ≤ ϕ (33)
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∑
(i,j)∈Aw

p

δij ≤ ζ (34)

∑
k∈Wp

νkql ≥ ξiql ∀i ∈ Cp, q ∈ Q, l ∈ L. (35)

Condition (32) ensures that the maximum number of workers per team
is respected. Condition (33) states that the total duration of a path must be
less than the time limit. Condition (34) guarantees that the total walking
distance respects the limit. Conditions (35) state that all tasks completed
in the path must be fulfilled by a team with the appropriate skills. Figure
3 shows an example of a path carried out by a team composed of workers 1
and 2. This team fulfills tasks 1, 2, and 4 (in that order).

The reader should note that the path shown in Figure 3 could alterna-
tively use worker 5 instead of worker 2. More generally, consider the case
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in which two workers k and k′ have the same qualifications ξkql = ξk′ql for
every skill q ∈ Q and proficiency level l ∈ L. Then, every path p ∈ P that
uses worker k can be replicated by using worker k′. To deal with this po-
tential source of inefficiency due to symmetry, we slightly modify graph Ḡ
as follows. First, we define a set of worker profiles O. All the workers with
the same skills qualifications are associated with one unique worker profile.
Let Γo be the number of available workers with profile o ∈ O. Then, we can
re-define node set N̄ as N̄ = N ∪ {s} ∪ O, in which instead of having one
node for every worker, the graph has one node per worker profile. Also, we
re-define the set of scheduling arcs A′ as A′ = A′

1 ∪ A′
2 ∪ A′

3, where A′
1 =

{(s, o)α : o ∈ O, α ∈ 1 . . .Γo|α ≤ ω} are arcs from the source to every worker
profile node, A′

2 =
{
(o, 0) : o ∈ O

}
are arcs from every profile node to the

start depot node, and A′
3 = {(o, o′)α : o, o′ ∈ O, α ∈ 1 . . .Γo′|o′ > o ∧ α ≤ ω}.

A worker profile o ∈ O is said to be selected if an arc (·, o)α ending at the
corresponding node is used. The number of workers used of the associated
worker profile is α.

Figure 4 shows how the graph presented in Figure 2 can be represented
using the updated modified network. Numbers next to the arcs represent the
number of workers selected if the arc is used. By convention, if no number
is shown along the arc, the number of workers is 1. Note that workers 2 and
5 are now represented by a single node. Moreover, note that there are two
arcs from the source node to the node corresponding to profile 2. Similarly,
there are two arcs between the nodes representing profile 1 and profile 2. As
a result, this alternative representation allows us to remove redundant paths
from the graph.
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Figure 4: Modified network example using worker profiles.

The cost cp of a path is equal to the driving cost, that is,

cp =
∑

(i,j)∈Ad
p

µijc
v. (36)

Let aip be a binary parameter that takes the value 1 if and only if path
p ∈ P completes task i ∈ C, and let bop be a parameter that takes the
value of the number of workers of profile o ∈ O in the team assigned to
path p ∈ P . Also, let ϑi be a binary variable equal to 1 if task i ∈ C is
outsourced and 0 otherwise. Finally, let λp be a binary variable equal to 1 if
path p ∈ P is selected and 0 otherwise. A set partitioning (SP) formulation
for the WSRP-PL can be stated as follows:

min
∑
p∈P

λpcp +
∑
i∈C

ϑifi (37)

subject to ∑
p∈P

aipλp + ϑi = 1 ∀i ∈ C (38)
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∑
p∈P

bopλp ≤ Γo ∀o ∈ O (39)

λp ∈ {0, 1} ∀p ∈ P (40)

ϑi ∈ {0, 1} ∀i ∈ C. (41)

The objective function (37) minimizes the total cost. Constraints (38)
ensure that all tasks are fulfilled or outsourced. Constraints (39) guarantee
that the number of workers used of each profile is less or equal than the
number available. The SP model has one variable for every possible feasible
path. However, the number of feasible paths |P| grows exponentially with
the number of tasks and workers. As a result, enumerating all the feasible
paths to solve SP is only possible for trivial instances. As an alternative, the
SP can be solved using a branch-price-and-cut algorithm, which is described
next.

4. Solution method

We propose a BPC algorithm for the above SP formulation. BPC is a
branch-and-bound procedure for solving mixed integer linear programming
models with a large number of variables. The algorithm’s objective is to
find the optimal solution without explicitly enumerating the complete set of
feasible variables (paths). Instead, the algorithm iteratively builds a subset
P ⊆ P of promising paths. To do so, the algorithm relies on two opti-
mization problems. A master problem that evaluates the performance of
the current subset of paths and a pricing problem that finds new promising
paths. Usually, the subset P is initialized using heuristic methods. We refer
the interested reader to Costa et al. (2019) for a review of techniques and
applications of BPC algorithms.

In our case, the master problem is the relaxed version of formulation (37)-
(41). The master problem is obtained by relaxing the integrality constraints
on the λp and ϑi variables. Let πi ∈ R and σo ≤ 0 be the dual variables
associated with constraints (38) and (39), respectively. Then, the pricing
problem, which aims to find paths with the most negative reduced cost is
formulated as follows:

min
p∈P

{
rp = cp −

∑
i∈C

aipπi −
∑
o∈O

bopσo

}
. (42)
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If the pricing problem finds a path with rp < 0, we add the corresponding
path p to the subset P . In the opposite case, the current master problem
is solved optimally. If the optimal solution to the master problem is frac-
tional, the algorithm uses a cut separator to generate valid inequalities and
strengthen the linear relaxation. Lastly, if the solution is still fractional, the
algorithm resorts to branching. In the following subsections, we present a
detailed description of the algorithm used to solve the pricing problem, the
initialization procedure, the cut separator, and the branching strategy.

4.1. Pricing problem

The pricing problem is an elementary shortest path problem with resource
constraints (ESPPRC) from the source node s to the end depot 0. A dis-
tinctive feature of our pricing problem is that paths have a park-and-loop
structure. Also, paths are constrained by three resources: the time ϕ, the
walking distance ζ, and the size of the team ω. To solve the pricing problem
we use the pulse algorithm (PA), which is a modification of the algorithm
originally proposed by Lozano et al. (2016) and later extended by Cabrera
et al. (2023) to handle the park-and-loop structure of the paths. The PA is
a recursive algorithm that performs a depth-first search exploration of the
network by propagating pulses (i.e., partial paths) from the source node s.
To avoid enumerating all the possible paths in the graph, the algorithm uses
pruning strategies that aggressively and effectively discard partial paths. In
particular, we use bounds, infeasibility, and rollback pruning strategies. Fol-
lowing the ideas of Cabrera et al. (2020) we do not solve the pricing problem
to optimality at every iteration. To achieve this, we allow the PA to heuris-
tically terminate the search if one of the following two conditions holds:

• The PA has found at least Υ paths with negative reduced cost;

• The PA has found at least one path with negative reduced cost and the
computational time spent during the search is higher than Λ.

In our particular case, we improve the PA’s performance by taking ad-
vantage of the structure of the graph Ḡ. In the original PA, a one-time quick
pre-processing procedure is used to find conditional lower bounds r(i, t) on
the reduced cost that can be achieved from every node i ∈ C to the end depot
0 with a given amount of consumed resource t < ϕ. In a one-to-one implemen-
tation of the PA, this would lead to weak bounds, as information regarding
the team configuration would be ignored. Thus, we adapted the PA to run
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the pre-processing procedure every time the start depot 0 is reached by a
partial path P, using as an input the selected workers WP. This modification
has two main advantages. First, task nodes can be temporarily removed from
graph Ḡ, which significantly quickens the pre-processing procedure and the
pulse propagation. Second, the lower bounds found during the pre-processing
procedure are stronger, which increases the chance of pruning a partial path
earlier using the bounds pruning strategy. In addition, following the ideas
of Lozano & Medaglia (2013), our pulse algorithm propagates different par-
tial paths in parallel. In practice, we trigger multiple threads at the source
node s that begin to propagate partial paths starting from different outgoing
arcs. This allows the algorithm to test different team configurations almost
simultaneously. Similarly, once a partial path reaches the start depot 0, it
also triggers multiple threads that propagate partial paths using the current
team configuration.

4.2. Initial set of paths

The master problem is always feasible as it is always possible to outsource
all tasks. Thus, it is entirely possible to start the BPC algorithm with an
empty set of paths. However, it has been observed by multiple researchers
that the performance of BPC algorithms is largely affected by the initial set
of variables. Our algorithm follows a two-step approach to generate paths
carried out by single-worker teams. First, we run our own implementation of
the constructive heuristic proposed by Xie et al. (2017). Second, we apply a
modified version of the tabu search metaheuristic proposed by Lozano et al.
(2016) that considers the skills required by each task to quickly improve those
paths.

4.3. Cut separator

The optimal solution to the master problem can be fractional. In that
situation, the cut separator tries to generate valid subset row inequalities
(cuts). These cuts were proposed by Jepsen et al. (2008) and have since
then become essential in BPC algorithms for solving many vehicle routing
problems (Contardo & Martinelli, 2014; Costa et al., 2019; Marques et al.,
2020). The subset row inequalities with |S| = 3 can be defined as follows:

∑
p∈P

⌊
1/2

∑
i∈S

aip

⌋
λp ≤ 1, ∀S ⊆ C. (43)
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These inequalities guarantee that for every given subset S ⊆ C of tasks,
the number of paths that fulfill two or more of them is less than or equal to 1.
Adding these inequalities to the master problem changes the formulation of
the pricing problem. Let S be the subset of triplets of customers for which the
subset row inequality has been generated and added to the master problem.
Also, let βS ≤ 0 be the dual variable associated with subset S. Then, the
pricing problem is formulated as:

min
p∈P

{
rp = cp −

∑
i∈C

aipπi −
∑
o∈O

bopσo −
∑
S∈S

βS

⌊
1

2

∑
i∈S

aip

⌋}
. (44)

This formulation is usually more challenging to solve, particularly if the
number of subset row inequalities already added to the master problem is
high. As a consequence, the cut separator follows three steps. First, it enu-
merates all task triplets and checks if the current fractional solution violates
the associated inequality by at least ε units. If so, the inequality is added to
a list. After this step is completed, the list is sorted ensuring that inequalities
with greater violations remain on top. Finally, the cut separator adds the
first φ inequalities to the master problem. We set φ to 10 and ε to 0.1.

The PA used to solve the pricing problem handles these inequalities by
adding a new resource for each subset S ∈ S. These resources keep track of
the number of tasks in the subset that have been fulfilled. Every time that
one of these resources reaches a value of 2, the associated dual variable βS is
subtracted from the objective function.

4.4. Branching strategy

Even after adding inequalities, the optimal solution of the master problem
can remain fractional. In such a case, the algorithm uses a set of branching
rules. We implement a five-stage hierarchical branching. At all levels, we
branch on the variable for which the fractional value is closer to 0.5. The
first level branches on driving flow variables. We branch on the implicit
variable xij which equals 1 if any team drives through arc (i, j) ∈ A, and 0
otherwise. To enforce xij = 0 we remove all the paths that involve driving
between tasks i and j from the master problem and we also forbid the PA to
use the arc while solving the pricing problem. To enforce xij = 1 we remove
all the paths in the master problem that fulfill tasks i or j without using
arc (i, j). In addition, we forbid the PA to use any arc starting at node i
and ending at any node different than j. We also forbid the PA to use any
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arc ending at node j and starting at any node different than i. The second
level branches on walking flow variables. Similarly, we branch on the implicit
variable hij that takes the value of 1 if any team walks through arc (i, j) ∈ A,
and 0 otherwise. Decisions are enforced in the same manner as for the first
level.

The third level branches on the assignment of tasks to workers. More
specifically, we branch on the implicit variables yki which take 1 if worker
k ∈ W fulfills task i ∈ C. To enforce yki = 0 we remove all the paths that
fulfill task i and include worker k in the team. Also, we forbid the PA to fulfill
task i if the worker is currently in the team. To enforce yki = 1 we remove
all the paths that fulfill task i without including worker k in the team. In
addition, we remove the possibility of outsourcing task i and we forbid the
PA to fulfill task i using teams that do not include worker k. The fourth
level branches on the selection of workers. More specifically, we branch on the
implicit variables vk which equals 1 if worker k ∈ W is included in any path of
the current solution, and 0 otherwise. To guarantee that vk = 0, we remove
all the paths that include worker k in the team and remove the corresponding
node from the modified network. To enforce vk = 1, we add a constraint to
the master problem. The fifth level branches on the ϑi variables to either
forbid or enforce the outsourcing of task i ∈ C. To enforce this branching
rule, we add a constraint to the master problem. The algorithm explores the
enumeration branch-and-bound tree using a best-bound search strategy.

5. Computational experiments

The proposed BPC algorithm was implemented in Java using the jOR-
Lib1 library and compiled using Java 1.8.0 331. We rely on CPLEX 20.1 to
solve the master problem. All the experiments were conducted on the Bel-
uga cluster of the Digital Research Alliance of Canada using eight threads
and 20GB of RAM in a Linux environment. The time limit for all the ex-
periments is 2 hours. After fine tuning, we set the bound step size in the
PA to 10. The bounding time limits are set to 0.2ϕ and ϕ. The maximum
number of paths Υ is set to 10 and the time limit Λ to 5 seconds. All the
instances and solutions are available at https://chairelogistique.hec.

ca/en/scientific-data/.

1The latest version of jORLib can be downloaded at: http://coin-or.github.io/jorlib/.
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5.1. Set of instances

We created a set of instances based on the testbed designed by Kovacs
et al. (2012) for the STRSP. These instances were derived from the well-
known VRPTW instances proposed by Solomon (1987). There are three
classes of instances (D), denoted as random (R), clustered (C), and semi-
clustered (RC). For each class of instances, two types of planning horizons (T)
were considered, namely, short (1) and long (2). In addition, the percentage
of tasks that have a time window constraint (m) can take two values, where
01 is used to indicate 100% and 03 to specify 50%. To fulfill tasks, two sets of
workers (E) are considered: complete (C) and reduced (R). These sets differ
in the number of workers available. In the complete set, up to 130 workers
are available. In the reduced set, up to 25. The number of skills domains
(S) is selected in the set {5, 6, 7} and each skill may have different levels of
proficiency (L) selected from the set {4, 6}. Finally, the number of tasks (n)
is selected in the set {25, 50, 75}. A total of 162 instances are considered. An
instance is referred to as “DTm E S×L n”.

For each instance, the skills requirements νiql, the time window [ai, bi],
the outsourcing cost fi, and service time associated with each task i ∈ C
are known. Similarly, information regarding the qualifications ξkql of each
worker k ∈ W is given. The driving distance (in kilometers) µij between
nodes (tasks and depot) is computed using the Euclidean distance. The
maximum duration of each route corresponds to the latest arrival time to
the depot b0. To extend this set of instances to the WSRP-PL, we compute
driving and walking times considering a driving speed of 60 km/h and a
walking speed of 4 km/h. We assume that driving and walking distances are
equal. The maximum number of workers per team can be either two or three
and we fixed |T | = m. In addition, we consider a maximum daily walking
distance ζ for each worker of 5 km. The maximum walking distance between
two nodes θ is set to 2.5 km. Finally, the variable cost cv is set to 1.

5.2. Experiment 1: assessing the BPC performance

To assess the effectiveness and efficiency of our BPC algorithm, we present
a comparison with the solution of the arc-based formulation described in
Section 2, which is the only other exact method available to solve the WSRP-
PL. This formulation was solved using CPLEX 20.1.

Tables 1 and 2 present the detailed results of the comparison between the
BPC algorithm and the arc-based formulation (AF) setting the maximum
number of workers in a team to 2 and 3, respectively. Column 1 denotes the
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set of workers. Column 2 provides information regarding the instance class
and the percentage of tasks having a time window. Column 3 gives the num-
ber of tasks. The remaining columns give the number of optimal solutions
found, the average optimality gap, and the computational time in seconds
used by each algorithm. To compute the optimality gap we use the best
lower bound known for each instance (i.e., the highest lower bound between
the bounds found by AF and BPC). Whenever AF ran out of memory, we
used the last integer solution found to compute the optimality gap.

Table 1: Comparison between AF and BPC on the WSRP-PL instances with ω = 2.

E Tm n
AF BPC

#Opt. Avg. ∆ CPU (s) #Opt. Avg. ∆ CPU (s)

C

101 25 8/9 0.67% 1122.25 9/9 0.00% 293.01
103 25 4/9 16.44% 7200.00 9/9 0.00% 254.34
201 25 7/9 1.89% 2469.41 9/9 0.00% 204.36
101 50 7/9 8.56% 3792.39 8/9 0.53% 1222.96
103 50 0/9 38.49% 7200.00 7/9 12.69% 2115.40
201 50 5/9 16.24% 5911.66 9/9 0.00% 1188.62
101 75 4/9 29.70% 6126.59 9/9 0.00% 1784.40
103 75 0/9 53.18% 7200.00 6/9 13.64% 3618.37
201 75 1/9 32.29% 6411.02 5/9 15.28% 3788.10

R

101 25 9/9 0.00% 199.75 9/9 0.00% 76.25
103 25 6/9 2.82% 6859.72 9/9 0.00% 834.51
201 25 9/9 0.00% 244.87 9/9 0.00% 172.01
101 50 8/9 0.37% 3134.59 9/9 0.00% 498.68
103 50 0/9 7.86% 7200.00 7/9 2.27% 2399.45
201 50 7/9 3.14% 2161.92 7/9 5.04% 1628.97
101 75 5/9 9.95% 4172.81 7/9 0.23% 1825.47
103 75 0/9 31.45% 7200.00 5/9 12.03% 3999.66
201 75 4/9 10.90% 5633.11 7/9 22.22% 2334.37

Total/Avg. 84/162 14.66% 4680.01 140/162 4.66% 1568.83

Table 1 shows that BPC can solve 140 out of 162 instances to optimality,
while AF can only solve 84. Remarkably, BPC can solve all the instances
with 25 tasks to optimality. As expected, instances in which the percentage
of tasks having a time window is lower (i.e., Tm = 103) are harder to solve.
This is especially the case for AF, as it can only solve 10 out of 54 instances
with this setting. A similar argument can be used for the subset of instances
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with wider time windows (i.e., Tm = 201). As routes are longer, BPC, a
column generation-based method, decreases its performance. With regard to
the number of workers available, it seems that AF better handles instances
with a lower number of workers (i.e., E = R), as it can solve 12 more instances
(48 vs 36) compared with the subset of instances with the complete set of
workers. One plausible explanation is that the reduction in the number of
variables has a strong positive impact on AF’s performance. With respect
to the computational times, on average BPC takes 1568.83 seconds to solve
the WSRP-PL, while AF takes 4680.01 seconds. BPC is particularly fast on
the subset of instances with 25 customers.

Table 2: Comparison between AF and BPC on the WSRP-PL instances with ω = 3.

E Tm n
AF BPC

#Opt. Avg. ∆ CPU (s) #Opt. Avg. ∆ CPU (s)

C

101 25 8/9 1.10% 1471.38 8/9 2.20% 2875.83
103 25 2/9 19.90% 7200.00 7/9 7.77% 3902.10
201 25 7/9 4.30% 2681.78 7/9 2.94% 3085.69
101 50 4/9 14.02% 5113.89 4/9 2.84% 5498.06
103 50 0/9 63.03% 7200.00 3/9 22.51% 6131.62
201 50 2/9 14.88% 5839.18 4/9 7.75% 4968.35
101 75 2/9 29.36% 6602.18 4/9 12.37% 6323.48
103 75 0/9 80.21% 7200.00 2/9 45.81% 6667.82
201 75 1/9 36.55% 6419.64 2/9 15.63% 6837.68

R

101 25 9/9 0.00% 396.73 9/9 0.00% 238.93
103 25 5/9 3.16% 7200.00 9/9 0.00% 495.01
201 25 9/9 0.00% 511.32 9/9 0.00% 518.86
101 50 6/9 1.20% 4192.70 8/9 1.81% 1835.20
103 50 0/9 14.40% 7200.00 5/9 7.80% 3668.69
201 50 4/9 1.61% 4191.36 5/9 3.89% 3310.46
101 75 2/9 14.51% 6424.36 3/9 4.22% 5163.17
103 75 0/9 54.11% 7200.00 1/9 26.65% 6814.85
201 75 3/9 14.63% 5429.80 2/9 13.78% 6033.96

Total/Avg. 64/162 20.39% 5137.46 92/162 9.89% 4131.65

Table 2 shows that BPC can solve 92 out of 162 instances to optimality,
while AF only solves 64. The average optimality gap of the solutions retrieved
by BPC is 9.89% while the average optimality gap of the solutions found
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by AF is 20.39%. With respect to the computational times, on average
BPC takes 4131.65 seconds to solve the WSRP-PL, while AF takes 5137.46
seconds. Note, that increasing the maximum number of workers per team
increases the difficulty of the problem. This is expected because the possible
number of teams that can be formed is significantly larger.

5.3. Experiment 2: Analyzing the computational impact of park-and-looping

We set up an experiment to shed some light into the computational im-
pact of allowing park-and-loop routes. To accomplish this goal we ran our
BPC on the whole set of instances setting ζ = 0 (i.e., forbidding the walking
subtours). Next, we compared the results to those obtained when park-and-
looping is allowed (see Experiment 1). Table 3 summarizes the results deliv-
ered by BPC running with (BPC) and without (BPC-D) park-and-looping.
Each row corresponds to a combination of a set of workers, the maximum
number of workers per team, and the number of tasks. Columns 4 and 7 re-
port the number of optimal solutions found in each setting. Columns 5 and
8 show the average optimality gap. Columns 6 and 9 contain the average
CPU time in seconds.
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Table 3: Comparison of BPC performance on the WSRP-PL with and without allowing
park-and-loop routes.

E Tm n
BPC-D BPC

#Opt. Avg. ∆ CPU (s) #Opt. Avg. ∆ CPU (s)

C

101 25 18/18 0.00% 773.75 17/18 1.10% 1584.42
103 25 17/18 0.14% 733.82 16/18 3.89% 2078.22
201 25 18/18 0.00% 835.73 16/18 1.47% 1645.02
101 50 16/18 1.19% 2036.43 12/18 1.68% 3360.51
103 50 13/18 5.9% 3038.96 10/18 17.60% 4123.51
201 50 17/18 0.42% 1730.15 13/18 3.88% 3078.49
101 75 17/18 0.88% 2359.70 13/18 6.19% 4053.94
103 75 9/18 12.83% 4425.10 8/18 29.73% 5143.10
201 75 10/18 4.56% 4791.78 7/18 15.46% 5312.89

R

101 25 18/18 0.00% 91.39 18/18 0.00% 157.59
103 25 18/18 0.00% 270.48 18/18 0.00% 664.76
201 25 18/18 0.00% 60.89 18/18 0.00% 345.4
101 50 18/18 0.00% 850.00 17/18 0.90% 1166.94
103 50 15/18 1.15% 1908.46 12/18 5.04% 3034.07
201 50 14/18 3.27% 2108.47 12/18 4.46% 2469.72
101 75 11/18 2.27% 3822.91 10/18 2.23% 3494.32
103 75 8/18 19.27% 4624.48 6/18 19.34% 5407.26
201 75 12/18 8.35% 3335.90 9/18 18.00% 4184.16

Total/Avg. 267/324 3.35% 2099.91 232/324 7.28% 2850.24

The results indicate that allowing park-and-looping significantly increases
the difficulty of the problem. Out of the 324 instances, BPC-D proves op-
timality on 267, while BPC achieves it in 232. Moreover, BPC-D is able to
establish optimality in all 25-task instances and in 95 out of 108 of the 50-
task instances. A closer examination of the optimality gaps and CPU times
confirms the conclusion. While BPC-D reports an average gap of 3.35%,
BPC reports a nearly twofold average gap of 7.28%. The former also runs
(on average) nearly 30% faster (2099.91 vs. 2850.24 seconds).

5.4. Experiment 3: Measuring the impact of the subtour transportation mode

In this experiment, we aim to measure the impact of using a faster and
longer-range transportation mode (e.g., an electric bike or scooter) to perform
the subtours. More specifically, we compare the solutions we obtained in
Experiment 1 with those obtained for each instance while increasing the
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walking speed (10 km/h) and the maximum walking distance (10 km) to
mimic the behavior of an electric scooter.

Table 4 compares the solutions found by BPC for each instance when
considering both configurations. We denote the configuration that mimics
the e-scooter behavior as BPC-S. The first three columns provide information
regarding the set of workers, the instance series, and the number of customers.
Columns 4 and 9 report the number of optimal solutions found by BPC
under each configuration. Columns 5 and 10 present the average optimality
gap. The optimality gap is computed using the lower bound found by each
algorithm. Columns 6 and 11 report the average computational time in
seconds. Columns 7 and 12 present the average number of subtours in each
solution. Columns 8 and 13 report the average maximum walking distance.
Finally, Column 14 presents the average gap in the objective function when
both BPC and BPC-S solved the instance to optimality. More specifically,
for each instance in the set, the gap was computed as

f(BPC-S)− f(BPC)

f(BPC)
, (45)

where f(·) is the objective function found by BPC under each configuration.

Table 4: Comparison of BPC performance while varying the walking speed and the max-
imum walking distance.

E Tm n BPC BPC-S
∆ OF

#Opt. Avg. ∆ CPU (s) #S. WD #Opt. Avg. ∆ CPU (s) #S. WD

C

101 25 17/18 1.10% 1584.42 0.72 2.39 13/18 3.75% 2776.43 1.72 12.14 -0.49%
103 25 16/18 3.89% 2078.22 1.06 2.25 13/18 16.53% 3013.13 2.11 11.78 -0.72%
201 25 16/18 1.47% 1645.02 0.61 1.33 14/18 7.32% 2948.16 3.39 17.20 -2.66%
101 50 12/18 1.68% 3360.51 0.56 1.16 10/18 10.43% 4312.47 3.22 13.22 -0.54%
103 50 10/18 17.60% 4123.51 0.78 1.14 8/18 30.23% 4985.41 2.56 12.42 -0.69%
201 50 13/18 3.88% 3078.49 0.67 1.56 7/18 20.30% 4902.07 3.83 17.69 -1.83%
101 75 13/18 6.19% 4053.94 0.67 1.19 7/18 18.22% 5009.48 4.17 15.90 -0.85%
103 75 8/18 29.73% 5143.10 0.41 0.50 3/18 50.73% 6204.16 2.33 10.94 -0.19%
201 75 7/18 15.46% 5312.89 0.44 1.11 5/18 35.36% 6428.05 2.56 12.36 -0.59%

R

101 25 18/18 0.00% 157.59 0.78 2.61 17/18 0.03% 867.18 2.50 13.48 -1.12%
103 25 18/18 0.00% 664.76 1.11 2.27 17/18 0.27% 1101.10 2.61 12.57 -2.75%
201 25 18/18 0.00% 345.43 0.83 2.00 18/18 0.00% 461.03 3.83 19.35 -3.35%
101 50 17/18 0.90% 1166.94 0.72 1.39 14/18 1.35% 2229.40 3.67 14.94 -0.58%
103 50 12/18 5.04% 3034.07 1.11 1.80 12/18 12.80% 3786.36 3.89 16.69 -0.90%
201 50 12/18 4.46% 2469.72 0.72 1.78 11/18 15.92% 3484.28 4.39 17.86 -0.61%
101 75 10/18 2.23% 3494.32 0.78 1.39 10/18 4.85% 4084.56 4.22 12.58 -0.42%
103 75 6/18 19.34% 5407.26 0.67 0.72 5/18 23.72% 5514.21 2.28 9.91 -0.34%
201 75 9/18 18.00% 4184.16 0.69 1.25 5/18 19.26% 5611.14 3.17 15.73 -0.44%

Total/Avg. 232/324 7.28% 2850.24 0.74 1.55 189/324 15.06% 3762.15 3.14 14.26 -1.06%
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As the results show, increasing the speed and the range of the mode
employed for the subtours has a positive impact on the objective function.
On average, the objective function decreases by 1.06%, but the savings are
probably greater. Note that BPC-S only solves to optimality 189 out of
324 instances while BPC solves 232 out of 324. As a result, the average
optimality gap reported by BPC-S is 15.06%, while BPC solutions have an
average optimality gap of 7.28%. These figures also indicate that solving
an instance of the WSRP-PL under the second configuration is significantly
harder. A possible explanation for this behavior is given by the average
number of subtours performed in each route under both settings. Indeed,
while BPC finds solutions with an average of 0.74 subtours, BPC-S builds
solutions with 3.14 subtours on average.

5.5. Experiment 4: solving the no-team STRSP

In Experiment 1, we demonstrated that our BPC can optimally solve
WSRP-PL instances with up to 75 nodes. The most closely related prob-
lem, featuring publicly available instances of comparable size, is the no-team
version of the STRSP. Note that our WSRP-PL reduces to that problem
when ω = 1 and ζ = 0. We, therefore, ran our AF and BPC on the set
of large 100-task instances proposed by Kovacs et al. (2012), available at
http://prolog.univie.ac.at/research/STRSP/ and compared our results
to the state of the art.

Table 5 and 6 compare the performance of BPC and AF on the no-
team STRSP instances when the set of workers is complete and reduced,
respectively. Columns 1 and 2 denote the class of the instance and the
instance series. Column 3 presents the average number of workers available.
Columns 4 and 7 report the number of optimal solutions found by each
algorithm. Columns 5 and 8 show the average optimality gap. Columns 6
and 9 contain the average CPU time employed by each algorithm in seconds.
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Table 5: Comparison between AF and BPC on the Kovacs et al. (2012) 100-task complete
instances of the no-team STRSP.

D Tm |W| AF BPC
#Opt. Avg. ∆ CPU (s) #Opt. Avg. ∆ CPU (s)

C 101 16.7 0/3 29.10% 7200.0 3/3 0.00% 929.9
R 101 26.3 0/3 6.87% 7200.0 3/3 0.00% 717.9
RC 101 23 0/3 40.68% 7200.0 3/3 0.00% 1027.5
C 103 16.7 0/3 33.16% 7200.0 0/3 4.74% 7200.0
R 103 26.3 0/3 96.59% 7200.0 1/3 0.36% 4929.0
RC 103 23 0/3 32.85% 7200.0 0/3 4.97% 7200.0
C 201 7.67 0/3 8.06% 7200.0 2/3 5.29% 2425.5
R 201 8 0/3 0.40% 7200.0 1/3 17.79% 4855.9
RC 201 8.67 0/3 0.63% 7200.0 0/3 6.37% 7200.0

Total/Avg. 0/27 27.6% 7200.0 13/27 4.39% 4054.0

Table 6: Comparison between AF and BPC on the Kovacs et al. (2012) 100-task reduced
instances of the no-team STRSP.

D Tm |W| AF BPC
#Opt. Avg. ∆ CPU (s) #Opt. Avg. ∆ CPU (s)

C 101 4.67 0/3 16.47% 7200.0 3/3 0.00% 102.7
R 101 4.67 0/3 33.43% 7200.0 3/3 0.00% 398.1
RC 101 4.67 0/3 53.65% 7200.0 3/3 0.00% 3514.4
C 103 4.67 0/3 0.95% 7200.0 1/3 14.84% 6750.8
R 103 4.67 0/3 94.01% 7200.0 1/3 3.62% 4835.2
RC 103 4.67 0/3 62.99% 7200.0 0/3 16.52% 7200.0
C 201 4.67 2/3 0.05% 2716.8 0/3 18.38% 7200.0
R 201 4.67 0/3 0.41% 7200.0 0/3 40.75% 7200.0
RC 201 4.67 0/3 0.48% 7200.0 0/3 29.66% 7200.0

Total/Avg. 2/27 29.16% 6701.9 11/27 13.75% 4933.5

Tables 5 and 6 clearly indicate that in this problem our BPC also outper-
forms AF. In the subset of instances in which the complete set of workers is
available, BPC solves 13 out of 27 instances to optimality, while AF solves
none. The solution found by BPC improves the best known solution reported
by Gu et al. (2022) in 3 of these 13 instances. Moreover, the average optimal-
ity gap of the solutions found by BPC is 4.39% while AF reports solutions
with an average optimality gap of 27.6%. With respect to the computational
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times, AF always reached the time limit. In contrast, BPC uses on average
4054 seconds. A similar situation is observed in the subset of instances with
a reduced set of workers. AF solves 2 out of 27 instances to optimality, while
BPC solves 11. The solution found by BPC is the new best known solution
for 9 of these instances. On average the optimality gap of the solutions pro-
vided by AF is 29.16% while BPC finds solutions with an average optimality
gap of 13.75%. The objective function of the new best known solutions found
by BPC is available in Appendix A.

6. Concluding remarks

In this paper, we introduced the workforce scheduling and routing prob-
lem with park-and-loop. Routing decisions can be particularly challenging
as routes can include one or more subtours that are covered on foot. To solve
this problem we presented a branch-price-and-cut algorithm that is capable
of solving instances with up to 75 tasks and 130 workers in less than two
hours. The algorithm also provided optimal solutions for the closely related
technician routing and scheduling problem.

Extensive computational experiments carried out on instances derived
from a popular benchmark in the literature suggest that the proposed al-
gorithm can outperform a standard arc-based formulation both in terms of
solution quality and running times. Indeed, our algorithm solved 232 out of
324 instances to optimality while the arc-based formulation only solved 148.
This performance gap comes as a result of using state-of-the-art techniques
and exploiting problem-specific features to enhance the pricing problem al-
gorithm.

To encourage further research on the WSRP-PL we designed an online
tool where all the instances and solutions are available. Further research
will focus on a more challenging variant of the problem in which teams can
partially split (i.e., workers can fulfill a task on their own and then rejoin the
team). In some cases, splitting a team may be beneficial to the company’s
efficiency. However, it can easily disrupt the structure of the routes, that do
not longer follow a regular park-and-loop structure.
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Appendix A. New best known solutions for the no-team STRSP

Table A.7 compares the solution found by BPC and the best solution
reported in the literature. Column 1 shows the instance identifier. Column
2 shows the objective function of the best known solution reported by Gu
et al. (2022). Column 3 reports the objective function of the solution found
by BPC.

Table A.7: New best known solutions for the no-team STRSP 100-task instances.

Instance L-ILS BPC
RC101 C 5x4 100 1658.37 1654.80
RC101 C 6x6 100 1654.98 1644.32
R103 C 7x4 100 1335.65 1325.31
C101 R 5x4 100 5587.52 5572.99
RC101 R 5x4 100 4829.37 4764.44
C103 R 6x6 100 4804.61 4799.01
R101 R 6x6 100 5945.14 5944.91
RC101 R 6x6 100 4903.70 4835.20
C101 R 7x4 100 5241.93 5208.30
C103 R 7x4 100 1980.72 1940.21
R103 R 7x4 100 2104.89 2104.17
RC103 R 7x4 100 2585.95 2568.25
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