Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.

AILS-II: An Adaptive Iterated Local Search Heuristic for the Large-scale Capacitated Vehicle Routing Problem

Vinícius R. Máximo
Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP)
Av. Cesare M. G. Lattes, 1201, Eugênio de Mello, São José dos Campos-SP, CEP: 12247-014, Brazil, vinymax 10@gmail.com,
Jean-François Cordeau
HEC Montréal and GERAD, 3000 chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7, Canada, jean-francois.cordeau@ hec.ca,
Mariá C. V. Nascimento
Divisão de Ciência da Computação (IEC), Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos-SP, CEP 12228-900, Brazil, mariah@ita.br

Abstract

A recent study on the classical Capacitated Vehicle Routing Problem (CVRP) introduced an adaptive version of the widely used Iterated Local Search (ILS) paradigm, hybridized with a path-relinking (PR) strategy. The solution method, called AILS-PR, outperformed existing meta-heuristics for the CVRP on benchmark instances. However, tests on largescale instances suggest that PR is too slow, making AILS-PR less advantageous in this case. To overcome this challenge, this paper presents an Adaptive Iterated Local Search (AILS) combined with mechanisms to handle large CVRP instances, called AILS-II. The computational cost of this implementation is reduced while the algorithm also searches the solution space more efficiently. AILS-II is very competitive on smaller instances, outperforming the other methods from the literature with respect to the average gap to the best known solutions. Moreover, AILS-II consistently outperforms the state of the art on larger instances with up to 30,000 vertices.

Key words: Combinatorial Optimization, Capacitated Vehicle Routing Problem (CVRP), Adaptive Iterated Local
Search (AILS), Learning in Metaheuristics, Large-Scale Instances

1. Introduction

The Capacitated Vehicle Routing Problem (CVRP) is a widely studied combinatorial optimization problem first introduced by Dantzig and Ramser (1959). It consists in finding a set of routes that minimizes the cost of making deliveries to a set of customers with a homogeneous vehicle fleet based at a central depot. There is a great interest in providing efficient solutions to this problem, given its important role in many supply chains. Toth and Vigo (2001) carried out a study that reported potential savings of around 5 to 20% in total transportation costs with the use of computer
systems in real routing problems. Most of these problems are difficult to solve in reasonable time for large instances with hundreds or thousands of customers. In these cases, heuristic methods are often preferred as they provide high-quality feasible solutions in reasonable computing time.

A number of successful heuristic methods have been employed to tackle the CVRP, among which we highlight the recently proposed Hybrid Genetic Search (HGS) (Vidal 2022), Slack Induction by String Removals (SISRs) (Christiaens and Vanden Berghe 2020), Fast ILS Localized Optimization (FILO) (Accorsi and Vigo 2021) and Adaptive Iterated Local Search with PathRelinking (AILS-PR) (Máximo and Nascimento 2021). In particular, Máximo and Nascimento (2021) demonstrated that AILS-PR outperformed state-of-the-art metaheuristics published up to 2021 when considering small- and medium-sized instances, with up to 1000 vertices, proposed by Uchoa et al. (2017), Christofides et al. (1979) and Golden et al. (1998). However, recent experiments indicate that AILS-PR is too slow on large-scale instances. More specifically, the pathrelinking (PR) strategy shows poor performance in these cases. For large-scale CVRP instances, we highlight that FILO has achieved outstanding results.

This paper introduces a new version of AILS, called AILS-II, specially designed to efficiently solve large-scale CVRP instances. Several components were modified from the previous version of AILS to allow the processing of a large amount of data. Computational experiments with smalland medium-size instances show that AILS-II is very competitive with FILO and HGS. In addition, the experiments on large-scale instances with more than 336 customers indicate that AILS-II is consistently better than the other algorithms.

The rest of the paper is organized as follows. Section 2 presents the description of the CVRP and the main notations used throughout the paper. Section 3 introduces AILS-II and presents different approaches for controlling the perturbation degree and acceptance criteria. Section 4 shows a summary of the code organization and presents all parameters required to run the algorithm. Section 5 presents an example of how to solve a CVRP instance. Section 6 reports the results of computational experiments comparing AILS-II with other algorithms from the literature. Finally, in Section 7, we draw some conclusions and suggest future research directions.

2. Problem Description

The Capacitated Vehicle Routing Problem (CVRP) can be defined on an undirected graph $G=$ (V, E), where $V=\{0,1, \ldots, n\}$ is the set of $n+1$ vertices and E the set of edges. The depot is represented by the vertex 0 and the other vertices in the subset $V_{c}=V \backslash\{0\}$ represent the n customers.

Each edge $\{i, j\} \in E$ has a non-negative weight $d_{i j}$ that represents the cost associated with a vehicle moving between vertices i and j.

Each customer $i \in V_{c}$ has a non-negative demand q_{i} that must be satisfied (the depot has demand $q_{0}=0$). To meet the demands of the customers, m identical vehicles with a capacity of \bar{q} are used. To ensure the feasibility of the problem, the demand of each customer is assumed to be smaller than or equal to the vehicle capacity, that is, $q_{i} \leq \bar{q} \forall i \in V_{c}$. In the CVRP, each route takes the form of a closed loop with no node repetition. A closed loop is represented by a cyclic sequence of vertices where a pair of vertices is adjacent if they are consecutive in the sequence and not adjacent otherwise. The CVRP, therefore, consists in finding a set of m routes that minimize the sum of the edge weights. The routes of a solution s are described by $\mathscr{R}=\left\{R_{1}^{s}, R_{2}^{s}, \ldots, R_{m_{s}}^{s}\right\}$, where m_{s} represents the number of routes in the solution $s, R_{i}^{s}=\left\{v_{0}^{i}, v_{1}^{i}, \ldots, v_{t_{i}}^{i}\right\}, t_{i}+1$ is the length of route $R_{i}^{s}, v_{0}^{i}=v_{t_{i}}^{i}=0, R_{i}^{s} \cap R_{j}^{s}=\{0\}$, for $i \neq j$, and $\cup_{i=1}^{m_{s}} R_{i}^{s}=V$.

The CVRP is $\mathbb{N P}$-Hard (Lenstra and Rinnooy Kan 1981) since it generalizes the Traveling Salesman Problem (TSP), which seeks to minimize the length of a Hamiltonian tour.

3. Adaptive Iterated Local Search (AILS) For Large-Scale Instances

AILS was initially proposed by Máximo and Nascimento (2021) to solve the CVRP, and has recently been adapted for the Heterogeneous Fleet Vehicle Routing Problem (HVRP) by Máximo et al. (2022). AILS is an adaptive metaheuristic that has two main steps: perturbation and local search. These two steps are performed iteratively until a stopping criterion is reached. At each iteration, a reference solution is perturbed to generate a potentially different solution. A local search step is then applied to improve the quality of the resulting solution through an exploration of the neighborhood formed by vertex and edge movements. Then, this solution is evaluated by the acceptance criterion. If it is accepted, it becomes the new reference solution. The solution obtained after the perturbation step may be infeasible. For this reason, we apply an algorithm that uses the same neighborhood as the local search but will guarantee the feasibility of the solution. The main difference between the local search and feasibility strategies is that the movements in the latter are chosen by prioritizing the reduction of capacity constraint violations. The adaptive behavior of AILS can be observed in the definition of the perturbation degree and in the acceptance criterion, described in more detail in Sections 3.1 and 3.2, respectively. These two conditions are responsible for the diversity control of the method, which means that controlling them is of utmost importance. A general pseudocode of AILS-II is presented in Algorithm 1.

```
Algorithm 1: Adaptive Iterated Local Search
    Data: Instance data
    Result: The best solution found \(s^{*}\)
    \(s \leftarrow\) Construct an initial solution
    \(s^{r}, s^{*} \leftarrow\) Local Search \((s)\)
    repeat
        \(s \leftarrow\) Perturbation Procedure ( \(s^{r}\) )
        \(s \leftarrow\) Local Search \((s)\)
        Update the diversity control parameters considering the distance between \(s\) and \(s^{r}\)
        \(s^{r} \leftarrow\) Apply acceptance criterion to \(s\)
        Update the acceptance criterion
        Assign \(s\) to \(s^{*}\) if \(f(s)<f\left(s^{*}\right)\)
    until stopping criterion is met;
```


3.1. Perturbation Degree

The perturbation degree establishes the number of changes applied to the reference solution s^{r} to obtain a different solution. The greater the perturbation degree, the larger the distance between these solutions. Thus, the control of the perturbation degree enables the method to manage the diversity of the search algorithm. For this reason, the perturbation degree control can be seen as a mechanism of great relevance for metaheuristics, considering that adequate control can allow the algorithm to escape from local optima. High diversity means that the algorithm will be able to escape from a local optimum more easily, but it might be costly to find the best solution in a given neighborhood (Lourenço et al. 2010). On the other hand, low diversity yields a higher chance that the algorithm will get stuck in a local optimum. To achieve an adequate balance between these two goals, AILS-II considers adaptive mechanisms to adjust such a parameter. The mechanism proposed in Máximo and Nascimento (2021) uses a fixed parameter, called d_{i}, that establishes the ideal distance between the solution s obtained by the local search and the reference solution s^{r}. For AILS-II, we introduce a convergent behavior to control the degree of perturbation. In this convergent mechanism, the value of d_{i} starts with the value of $d_{\max }$ and decreases throughout the execution of the algorithm until it reaches a value of $d_{\text {min }}$. For this, at each iteration of the algorithm, the value of d_{i} is adjusted as $d_{i} \leftarrow d_{i}\left(\frac{d_{\text {min }}}{d_{\text {max }}}\right)^{\frac{1}{t}}$, where $i t$ is the estimated maximum number of iterations performed by the algorithm.

3.2. Acceptance Criterion

The acceptance criterion establishes whether the current solution should become the reference solution and be used in the following iterations of the algorithm. The AILS introduced in this paper uses a convergent acceptance criterion with a more relaxed criterion at the beginning of the search and a more restrictive condition as it approaches the end of the search. This criterion was inspired by the Threshold Acceptance (TA) algorithm proposed by Dueck and Scheuer (1990). In line with this, the employed acceptance criterion restricts the quality of the accepted solutions to the threshold $\theta=\underline{f}+\eta(\bar{f}-\underline{f})$. This means that θ can assume values in the interval $[\underline{f}, \bar{f}]$, where \underline{f} is the best solution found in the last γ iterations, and \bar{f} is the average quality of the solutions obtained by the local search. The value of η establishes how far θ is from the lower and upper limits of the interval. If η takes a value close to 1 , then θ is more relaxed, with values closer to \bar{f}. Otherwise, values close to 0 for η make θ closer to \underline{f}. This threshold was proposed by Máximo and Nascimento (2021) and the η value was adjusted according to the flow of accepted solutions. In AILS-II, we propose a convergent variation for the value of η. Therefore, η starts at 1 and decreases until a minimum value $\epsilon=0.01$. Thus, at each iteration of the algorithm $\eta \leftarrow \eta \epsilon^{\frac{1}{i t}}$.

3.3. More Particularities of AILS-II

Besides the convergent criteria in the diversity control mechanisms, this version of AILS presents substantial changes from its previous versions. These were necessary to achieve a good performance on large instances. We enumerate next the key differences between AILS-II and previous versions of AILS:

- New combination of movements: The configuration of the local search and feasibility phases has the intra-route movements SHIFT, SWAP, 2-opt and the inter-route movements SHIFT, SWAP* (Vidal 2022) and 2-opt*. Therefore, a difference from the AILS-PR (Máximo and Nascimento 2021) is the replacement of SWAP by SWAP* in the inter-route movement. Moreover, to achieve a better efficiency, we restricted the neighborhood in the SWAP* by considering for each vertex its φ closest vertices and not the entire set of vertices that belong to its route. The motivation is that the larger the route size, the greater the computational cost. For large instances, the computational cost becomes prohibitive.
- Feasibility algorithm: AILS-PR uses two different criteria to assign values to rank the moves depending on whether the performed move will provide a better or worse quality solution. AILS-II considers the same criterion for both cases and ranks the moves according to the ratio of the difference in cost between the original solution and the solution after the move and the feasibility gain. The feasibility gain is the value of the infeasibility reduction considering the violated constraints.
- Limited neighborhood of the local search and feasibility procedures: To speed up the local search and the feasibility procedures, we imposed in AILS-II that their movements are applied only in modified routes, i.e., routes that were perturbed. In the case of the inter-route movements, one of the routes must necessarily be the one that has been perturbed.
- Different perturbation heuristics: The perturbation heuristics of AILS are composed of a set of addition and removal heuristics. Removal heuristics remove vertices from a given solution whereas addition heuristics add them back in positions that depend on the criterion of the method. Both AILS-PR and AILS-II follow the batch approach to remove and add them back to the solutions. This means that they first remove ω_{k} vertices from the solution through a removal heuristic R_{k} and, after that, the addition heuristic inserts the vertices back in the solution. The AILS for the HVRP follows an alternate call between removal and addition heuristics, where one of the ω_{k} vertices is removed and subsequently added to a position of the solution. The process repeats ω_{k} times, to allow all ω_{k} vertices to change position. On the one hand, AILS-II does allow the vertices to return to the same position. On the other hand, with the addition heuristics in AILS-PR and AILS for the HVRP, vertices can be inserted in the same position. Regarding the employed removal heuristics, all of them use the concentric and sequence removal strategies. However, AILS-PR considers two other removal heuristics, whereas AILS for the HVRP also employs the random removal. AILS-II considers two addition heuristics. The only addition heuristic common to AILS for the HVRP, AILS-PR and AILS-II is the one called insertion by cost. Besides, AILS-II uses the insertion by distance, also considered by AILS for the HVRP. We refer to Máximo and Nascimento (2021) and Máximo et al. (2022) for a better description of the perturbations approaches and methods. Table 1 presents the main heuristics used in the perturbation step of the three different AILS versions as well as the employed approaches.

AILS-II does not employ the so-called path-relinking (PR), present in AILS-PR (Máximo and Nascimento 2021). The reason for it is that the computational cost required by the hybridized version on large-scale CVRP instances is too high.

A diagram summarizing all the steps of AILS-II is presented in Figure 1.

4. Code Organization

AILS-II was developed in Java and the code is available at https://github.com/vinymax10/ AILS-CVRP. The code is divided into 8 packages containing 35 files and roughly 6000 lines. The main class is called AILSII, which is inside the SearchMethod package. The main method is

Table 1 Main characteristics of the perturbation step in the AILS-PR (Máximo and Nascimento 2021), AILS for the HVRP (Máximo et al. 2022) and AILS-II.

	Algorithm		
Perturbation approach/method	AILS-PR (CVRP)	AILS (HVRP)	AILS-II (This paper)
Batch approach	\checkmark		\checkmark
Alternate approach		\checkmark	
Concentric removal	\checkmark	\checkmark	\checkmark
Random removal	\checkmark	\checkmark	
Sequence removal	\checkmark	\checkmark	\checkmark
Proximity removal	\checkmark		
Insertion by proximity	\checkmark	\checkmark	\checkmark
Insertion by cost		\checkmark	\checkmark
Insertion by distance			

presented in Source Code 1. The user parameter values are input provided by the user. An instance of the problem is constructed and used to create the ailsII object from the AILSII class. This class receives in the constructor an instance of the problem and the configuration of the algorithm. The beginning of the search occurs with the call to the search method of the AILSII class.

```
public static void main(String[] args)
{
    InputParameters reader=new InputParameters();
    reader.readingInput(args);
    Instance instance=new Instance(reader);
    AILSII ailsII=new AILSII(instance, reader);
    ailsII.search();
}
```

A summary of the contents of each package is presented next.

- Auxiliary: This package contains the method that calculates the distance between two solutions and the dynamic average used in the diversity control.
- Evaluators: This package contains the cost and feasibility evaluators of the movements, and the execution process of the movements used by the local search and feasibility.
- DiversityControl: This package contains the source codes of the acceptance criterion and the control of the perturbation degree.

Figure 1 Flowchart of AILS-II

- Data: This package contains codes for reading instance data.
- Improvement: This package contains the implementation of the local search and feasibility methods.
- SearchMethod: This package contains the implementation of AILS-II.
- Perturbation: This package contains the addition and removal heuristics used in the perturbation step.
- Solution: This package contains the data structures of the solution, routes and graph vertices.

5. Example of Usage

To run the AILSII class it is necessary to define the following parameters:

- -file: the file name of the problem instance.
- -rounded: A flag that indicates whether the instance has rounded distances or not. The options are: [false, true]. The default value is true.
- -stoppingCriterion: It is possible to use two different stopping criteria:
-Time: The algorithm stops when a given time in seconds has elapsed.
- Iteration: The algorithm stops when the given number of iterations has been reached.
- -limit: Refers to the value that will be used in the stopping criterion. If the stopping criterion is a time limit, this parameter is the timeout in seconds. Otherwise, this parameter indicates the number of iterations. The default value is the maximum limit for a double precision number in the JAVA language.
- -best: Indicates the value of the optimal solution. The default value is 0 .
- -varphi: Parameter of the feasibility and local search methods that refers to the maximum cardinality of the set of nearest neighbors of the vertices. The default value is 40 . The larger it is, the greater the number of movements under consideration in the methods.
- -gamma: Number of iterations for AILS-II to perform a new adjustment of ω. The default value is 30 .
- -dMax: Initial reference distance between the reference solution and the solution obtained after the local search. The default value is 30 .
- -dMin: Final reference distance between the reference solution and the solution obtained after the local search. The default value is 15 .

An example of how to execute AILS-II would be:
java -jar AILSII.jar -file Instances/X-n214-k11.vrp -rounded true -best 10856 -limit 100 -stoppingCriterion Time

This command will run AILS-II to solve an instance whose parameters are in file "Instances/X-n214-k11.vrp", considering that the distance between the vertices is rounded to an integer value.

We also indicate that the optimal value for this instance is 10856 , therefore, if the algorithm finds a solution with this cost, it halts. The stopping criterion is a time limit of 100 seconds.

6. Computational Experiments

The computational experiments were performed on a cluster with 104 nodes, each of them with 2 Intel Xeon E5-2680v2 processors running at $2.8 \mathrm{GHz}, 10$ cores, and 128 GB DDR3 of 1866 MHz RAM. In the first experiment, we investigate the performance of the proposed algorithm using the set of benchmark instances presented in Uchoa et al. (2017). This set contains 100 CVRP instances whose size ranges from 100 to 1000 vertices. The second experiment assesses the performance of AILS-II on larger instances. We consider the 10 instances proposed in Arnold et al. (2019) which have between 3000 and 30,000 vertices. All experiments were carried out using as stopping criterion $3 n$ seconds, where n is the number of vertices in the instance.

6.1. First Experiment

This experiment contrasts the performance of AILS-II to HGS (Vidal 2022) and FILO (Accorsi and Vigo 2021) on the 100 instances proposed by Uchoa et al. (2017). We run 50 times each of them and report the average gap, defined as:

$$
\begin{equation*}
g a p=100 \times \frac{(A v g-\mathrm{BKS})}{\mathrm{BKS}}, \tag{1}
\end{equation*}
$$

where BKS is the objective function value of the best known solution of a given instance and Avg is the average objective function value of the solutions obtained in the independent executions.

Figure 2 shows the average gap of 10 classes of instances that were grouped by size. Considering instances with up to 331 vertices, we observed the following order of best performance: HGS, AILS-II and FILO. In instances with more than 336 vertices, AILS-II achieves the best results and for instances with more than 655 vertices, FILO has a better result than HGS. AILS-II presented a lower computational cost. In these experiments, AILS-II found a better best known solution for the ten following instances: X-n536-k96 = 94828, X-n701-k44=81919, X-n716-k35=43330, X-n766-k71=114416, X-n783-k48=72381, X-n837-k142=193734, X-n895-k37=53848, X-n916$\mathrm{k} 207=329178$, X-n957-k87=85464, X-n979-k58=118913. Appendix A displays the numerical results for each of the instances used in this experiment.

An experiment showing the convergence over time of all tested algorithms was performed for a better analysis of AILS-II regarding existing algorithms. In line with this, as in Vidal (2022), we divided the X instances into two groups. The first is referred to as Small and contains the first 50

Class of Instances
Figure 2 Comparison of the average gaps obtained by the AILS-II, HGS and FILO on the 100 instances proposed by Uchoa et al. (2017).
instances, with 100 to 330 customers. The second group is called Medium, with the second half of X instances, which include from 335 to 1000 customers. Figure 3 displays the average gap (Avg gap) when considering $10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 90 \%$ and 100% of the time imposed for all algorithms. Besides the average results for Small and Medium instances, we also present results for all instances. These plots show a clear behavior of the algorithms over time on the two groups of instances. AILS-II was the second best on Small instances when considering 30% to 100% of the CPU time. Despite being very competitive with FILO when considering a CPU time up to 30%, FILO and HGS were better than AILS-II. On the other hand, for Medium instances, AILS-II achieved the second best results when imposing 5% to 30% of the CPU time, but with a slight difference from FILO. However, when considering over 50% of the time, AILSII outperformed the other algorithms achieving half of their average gap in 100% of the CPU time. Regarding the average gap on all instances, AILS-II required over 40% of the CPU time to outperform the other algorithms.

6.2. Second Experiment

In this experiment, 10 independent executions of AILS-II and FILO were performed on the instances proposed by Arnold et al. (2019). HGS was not considered in this experiment because its
\rightarrow AILS-II \rightarrow HGS $\xlongequal{-}$ FILO

Figure 3 Convergence of the AILS-II, HGS and FILO over time for the X instances (Uchoa et al. 2017). The plots refer to, respectively, the average results on the 50 smallest instances (with up to 331 nodes), on the 50 largest instances (with more than $\mathbf{3 3 5}$ nodes) and on all instances.
author suggested not to use it (Vidal 2022). The reason is that these instances have very different characteristics from those for which the algorithm was designed.

Table 2 shows, for each instance, the instance name, the number of nodes (n), the best-known solution, followed by the results achieved by FILO and AILS-II. The results compiled in the table are the average solution value of the independent executions (Avg), the average gap (gap), the objective function value of the best solution obtained in the runs (Best); and the average time in minutes that the algorithm took to find the best solution in each run (T (min)). BKSs highlighted with '*' were found by AILS-II and improve previous BKSs.

Table 2 Results achieved by AILS-II and FILO on the instances introduced by Arnold et al. (2019).

Instance	n	BKS	FILO (Accorsi and Vigo 2021)			AILS-II		
			Avg (gap)	Best	T (min)	Avg (gap)	Best	T (min)
Antwerp1	6000	477277	478002.8 (0.1521)	477854	298.3	477526.5 (0.0523)	477466	289.0
Antwerp2	7000	291350	291776.6 (0.1464)	291511	348.0	291715.8 (0.1256)	291587	338.4
Brussels1	15000	501584*	502349.1 (0.1525)	502175	746.5	501883.5 (0.0597)	501735	737.8
Brussels2	16000	345057*	345940.4 (0.2560)	345691	798.3	345419.0 (0.1049)	345253	792.3
Flanders1	20000	7238970*	7249408.7 (0.1442)	7248487	996.3	7240768.8 (0.0248)	7239443	982.6
Flanders2	30000	4367291*	4384803.7 (0.4010)	4382783	1494.8	4370437.6 (0.0720)	4369014	1477.3
Ghent1	10000	469483**	469991.9 (0.1084)	469830	496.5	469684.0 (0.0428)	469476	488.5
Ghent2	11000	257563*	258173.0 (0.2368)	258052	546.9	257926.1 (0.1410)	257670	543.1
Leuven1	3000	192848	193119.1 (0.1406)	193014	146.0	193013.1 (0.0856)	192923	143.4
Leuven2	4000	111391	111706.2 (0.2830)	111618	197.7	111703.0 (0.2801)	111512	192.0
Average			(0.2021)		606.9	(0.0989)		598.4

AILS-II achieved the smallest average gap in all 10 instances. For one instance we did not find the best solution. These results confirm the better performance of AILS-II on large instances with respect to the state-of-the-art large scale heuristic method.

Figure 4 Convergence of the AILS-II and FILO over time for the large-scale instances. This plot refers to the average results on the instances introduced by Arnold et al. (2019).

Similar to the convergence plots presented in the previous experiment, Figure 4 displays the average gap when considering from 10% to 100% of the time with a step of 10%. The plot shows that AILS-II achieved the best gaps within all time limits, demonstrating its high performance on large-scale instances.

6.3. Performance of the main components of AILS-II

This section presents an experiment displaying the statistics of the time required in each of the primary components of AILS-II: perturbation, feasibility and local search. Figure 5 shows box plots of the amount of time required when testing X instances, divided on Small and Medium, and on the large-scale instances.

Figure 5 Box plots of the percentage of time spent by the different parts of AILS-II.

In all tests, the most time-consuming part of AILS-II is the feasibility phase, which requires over 50% of the execution time regardless of the type of tested instances. One can also observe that the percentage of the time spent in the different parts of AILS-II on the X instances were very similar for small and medium size instances. On large-scale instances, the time required for the local search and the feasibility phases was more balanced. In all cases, as expected, the time for perturbation is marginal in comparison to the other two phases of AILS-II.

Finally, in Appendix B we also report the results of the sensitivity analysis on the four main parameters controlling the heuristic.

7. Final Remarks and Future Work

AILS is an adaptive ILS metaheuristic introduced by Máximo and Nascimento (2021) to solve the CVRP. The authors proposed a hybridization of the path-relinking strategy with AILS, called AILS-PR, to better explore the solution space of such a problem. As a result, AILS-PR achieved outstanding results on the tested instances, which consisted mostly of small- and medium-size
instances. However, preliminary experiments indicated that neither AILS-PR nor such a version of AILS without PR performed well on large-scale instances. On the one hand, AILS does not intensify the search much. On the other hand, AILS-PR is too slow on large instances.

Therefore, the main goal of this study was to present a version of AILS, called AILS-II, more efficient approach for large instances of the CVRP. For this, we were very thorough in implementing the different components of the metaheuristic. The local search, which is one of the most timeconsuming parts of the method, is composed of movements common to the other state-of-the-art algorithms. Therefore, our effort to achieve an efficient method was directed to (i) the adequate fine tuning of the main ingredients of ILS: the perturbation degree and the acceptance criterion; and (ii) developing efficient data structures and designing low-cost strategies. This fine tuning considered a combination of over a thousand forms in order for the AILS-II to make the right decisions to jump from a solution to another, avoid redundant processes, and decide which are the most promising solutions to intensify the search (to become the reference solution). AILS-II employed a convergent criterion for both the diversity control strategy and in the acceptance criterion. The results show that the adequate control of these two stages in the adaptive process is of great relevance to ensure good performance.

The computational experiments were performed using a benchmark dataset proposed by Uchoa et al. (2017) that contains 100 instances whose size ranges from 100 to 1000 vertices. We compared AILS-II with the HGS and FILO. Considering this dataset, AILS-II achieved the best average gap in all instances with more than 336 vertices. To evaluate the performance of AILS-II for larger instances, we carried out experiments with a dataset proposed by Arnold et al. (2019) that contains 10 large instances of CVRP. These instances have between 3000 and 30,000 vertices. The results of this experiment showed that AILS-II outperformed FILO on all instances.

As future work, we intend to continue investigating more efficient mechanisms for controlling diversity. We also want to explore other search strategies that are robust and simpler. Other areas of interest involve machine learning to optimize the performance of metaheuristics. Given that the code is fast and flexible (it was adapted to handle the heterogeneous fleet VRP by Máximo et al. (2022) and the maximal covering location problem by Máximo et al. (2023)), we recommend its use to researchers wishing to solve large-scale instances of the classical VRP or to adapt it to related problem variants.

Acknowledgments

We are thankful to two anonymous referees for their valuable comments on an earlier version of this paper. The authors are also grateful for the financial support provided by CNPq (403735/2021$1 ; 309385 / 2021-0)$ and FAPESP (2019/22067-6; 2022/05803-3); and the Center for Mathematical Sciences Applied to Industry (CeMEAI), funded by FAPESP by through the 2013/07375-0 project, for the availability of computer resources.

References

Accorsi L, Vigo D (2021) A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems. Transportation Science 55(4):832-856, URL http://dx.doi.org/10.1287/trsc.2021.1059.

Arnold F, Gendreau M, Sörensen K (2019) Efficiently solving very large-scale routing problems. Computers EG Operations Research 107:32-42, ISSN 0305-0548, URL http://dx.doi. org/10.1016/j.cor . 2019.03.006.

Christiaens J, Vanden Berghe G (2020) Slack induction by string removals for vehicle routing problems. Transportation Science 54(2):417-433.

Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. Christofides N, Mingozzi A, Toth P, Sandi C, eds., Combinatorial Optimization, 315-338 (Chichester: Wiley).

Dantzig GB, Ramser JH (1959) The truck dispatching problem. Management Science 6(1):80-91.
Dueck G, Scheuer T (1990) Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics 90(1):161-175, ISSN 0021-9991, URL http://dx. doi.org/10.1016/0021-9991(90)90201-B.

Golden BL, Wasil EA, Kelly JP, Chao IM (1998) The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results. Fleet Management and Logistics, 33-56 (Springer).

Lenstra JK, Rinnooy Kan AHG (1981) Complexity of vehicle routing and scheduling problems. Networks 11(2):221227.

Lourenço HR, Martin OC, Stützle T (2010) Iterated Local Search: Framework and Applications, 363-397 (Boston, MA: Springer US), ISBN 978-1-4419-1665-5, URL http://dx. doi.org/10. 1007/978-1-4419-1665-5_ 12.

Máximo VR, Cordeau JF, Nascimento MCV (2022) An adaptive iterated local search heuristic for the heterogeneous fleet vehicle routing problem. Computers \mathcal{E} Operations Research 148:105954, URL http://dx.doi . org/10. 1016/j.cor. 2022.105954.

Máximo VR, Nascimento MCV (2021) A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem. European Journal of Operational Research 294(3):1108-1119, ISSN 03772217, URL http://dx.doi.org/10.1016/j.ejor.2021.02.024.

Máximo VR, Cordeau JF, Nascimento MCV (2023) A hybrid adaptive iterated local search heuristic for the maximal covering location problem. International Transactions in Operational Research 0, URL http://dx.doi.org/ 10.1111/itor. 13387.

Toth P, Vigo D (2001) An overview of vehicle routing problems. Toth P, Vigo D, eds., The Vehicle Routing Problem, 1-26 (Philadelphia, PA, USA: Society for Industrial and Applied Mathematics), URL http://dx.doi.org/ 10.1137/1.9780898718515.ch1.

Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian A (2017) New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational Research 257(3):845-858, ISSN 0377-2217.

Vidal T (2022) Hybrid genetic search for the CVRP: Open-source implementation and swap* neighborhood. Computers \mathcal{E} Operations Research 140:105643, ISSN 0305-0548, URL http://dx.doi.org/10.1016/j.cor. 2021.105643.

Appendix. Other results

This appendix presents the numerical results on X instances and a brief parameter analysis of AILS-II.

A. Numerical results

Table 3 presents the results of FILO, HGS and AILS-II for the benchmark instances from (Uchoa et al. 2017). Column 'BKS' indicates best known solutions highlighted with an asterisk when their values were improved in experiments performed in this paper. Columns 'Avg (gap)', 'Best' and ' T (min)' display, respectively, the average solution and mean gap between parentheses, the best solution and average time of the independent executions.

Table 3: Results achieved by FILO (Accorsi and Vigo 2021), HGS (Vidal 2022) and AILS-II on the benchmark instances introduced by (Uchoa et al. 2017).

Instance	BKS	FILO (Accorsi and Vigo 2021)			HGS (Vidal 2022)			AILS-II		
		Avg (gap)	Best	T (min)	Avg (gap)	Best	$\mathrm{T}(\mathrm{min})$	Avg (gap)	Best	T (min)
X-n101-k25	27591*	27591 (0.0000)	27591	0.02	27591.00 (0.0000)	27591	0.02	27591.00 (0.0000)	27591	1.01
X-n106-k14	26362*	26375.76 (0.0522)	26362	1.13	26379.32 (0.0657)	26362	2.70	26362.16 (0.0006)	26362	2.55
X-n110-k13	14971*	14971 (0.0000)	14971	0.01	14971.00 (0.0000)	14971	0.01	14971.00 (0.0000)	14971	0.22
X-n115-k10	12747*	12747 (0.0000)	12747	0.03	12747.00 (0.0000)	12747	0.03	12747.00 (0.0000)	12747	0.27
X-n120-k6	13332*	13332 (0.0000)	13332	0.19	13332.00 (0.0000)	13332	0.16	13332.00 (0.0000)	13332	1.01
X-n125-k30	55539*	55542.74 (0.0067)	55539	0.56	55539.00 (0.0000)	55539	0.44	55539.00 (0.0000)	55539	3.49
X-n129-k18	28940*	28949.94 (0.0343)	28940	1.12	28940.00 (0.0000)	28940	0.16	28942.08 (0.0072)	28940	2.20
X-n134-k13	10916*	10924.3 (0.0760)	10916	0.85	10916.00 (0.0000)	10916	0.53	10916.04 (0.0004)	10916	1.73
X-n139-k10	13590**	13590 (0.0000)	13590	0.55	13590.00 (0.0000)	13590	0.03	13590.08 (0.0006)	13590	2.17
X-n143-k7	15700*	15723.84 (0.1518)	15700	1.93	15700.00 (0.0000)	15700	0.21	15710.84 (0.0690)	15700	3.03
X-n148-k46	43448*	43456.52 (0.0196)	43448	1.08	43448.00 (0.0000)	43448	0.10	43448.00 (0.0000)	43448	2.38
X-n153-k22	21220**	21237.5 (0.0825)	21225	1.70	21224.88 (0.0230)	21220	0.52	21224.62 (0.0218)	21220	3.16
X-n157-k13	16876*	16876 (0.0000)	16876	1.68	16876.00 (0.0000)	16876	0.10	16876.00 (0.0000)	16876	2.75
X-n162-k11	14138*	14156.62 (0.1317)	14138	2.40	14138.00 (0.0000)	14138	0.05	14138.00 (0.0000)	14138	1.79
X-n167-k10	20557*	20557.86 (0.0042)	20557	1.22	20557.00 (0.0000)	20557	0.36	20559.92 (0.0142)	20557	2.83
X-n172-k51	45607*	45607 (0.0000)	45607	2.56	45607.00 (0.0000)	45607	0.12	45609.62 (0.0057)	45607	4.44
X-n176-k26	47812*	47937.04 (0.2615)	47812	3.92	47812.00 (0.0000)	47812	0.41	47812.10 (0.0002)	47812	3.76
X-n181-k23	25569*	25569.54 (0.0021)	25569	3.60	25569.00 (0.0000)	25569	1.44	25570.92 (0.0075)	25569	4.13
X-n186-k15	24145*	24158.64 (0.0565)	24147	2.84	24145.00 (0.0000)	24145	0.48	24148.90 (0.0162)	24145	3.44
X-n190-k8	16980*	16985.72 (0.0337)	16980	4.61	16984.16 (0.0245)	16980	5.05	16981.18 (0.0069)	16980	4.87
X-n195-k51	44225*	44262.02 (0.0837)	44225	4.90	44225.72 (0.0016)	44225	2.62	44263.56 (0.0872)	44225	6.33
X-n200-k36	58578*	58824.86 (0.4214)	58619	4.38	58579.44 (0.0025)	58578	3.03	58589.42 (0.0195)	58578	5.68
X-n204-k19	19565*	19566.96 (0.0100)	19565	3.54	19565.00 (0.0000)	19565	1.42	19566.06 (0.0054)	19565	5.74
X-n209-k16	30656*	30677.96 (0.0716)	30656	5.47	30656.70 (0.0023)	30656	3.80	30661.60 (0.0183)	30656	5.59
X-n214-k11	10856*	10877.18 (0.1951)	10861	4.45	10863.88 (0.0726)	10856	5.91	10869.52 (0.1245)	10858	5.01
X-n219-k73	117595*	117595.14 (0.0001)	117595	1.85	117597.42 (0.0021)	117595	3.57	117595.00 (0.0000)	117595	1.79
X-n223-k34	40437*	40511.34 (0.1838)	40445	4.73	40438.74 (0.0043)	40437	4.15	40446.78 (0.0242)	40437	6.19
X-n228-k23	25742*	25785.5 (0.1690)	25743	5.47	25742.74 (0.0029)	25742	2.84	25752.16 (0.0395)	25742	5.69
X-n233-k16	19230*	19294.26 (0.3342)	19230	2.99	19230.62 (0.0032)	19230	3.45	19260.16 (0.1568)	19230	4.39
X-n237-k14	27042*	27046.34 (0.0160)	27042	3.23	27042.16 (0.0006)	27042	3.31	27052.06 (0.0372)	27042	5.62
X-n242-k48	82751*	82898.1 (0.1778)	82792	7.06	82808.32 (0.0693)	82751	5.29	82817.56 (0.0804)	82751	8.56
X-n247-k50	37274*	37480.2 (0.5532)	37274	7.23	37283.46 (0.0254)	37274	6.53	37274.32 (0.0009)	37274	8.46
X-n251-k28	38684*	38785.5 (0.2624)	38699	4.72	38693.10 (0.0235)	38684	6.45	38745.58 (0.1592)	38684	6.73
X-n256-k16	18839	18880 (0.2176)	18880	3.77	18841.00 (0.0106)	18839	5.61	18876.48 (0.1989)	18839	6.12
X-n261-k13	26558*	26649.02 (0.3427)	26561	4.80	26564.94 (0.0261)	26558	7.44	26575.22 (0.0648)	26558	6.73
X-n266-k58	75478*	75766.56 (0.3823)	75591	4.05	75609.68 (0.1745)	75529	7.10	75543.12 (0.0863)	75478	7.22

X-n270-k35	35291*	35355.46 (0.1827)	35309	6.10	35303.00 (0.0340)	35291	3.58	35344.92 (0.1528)	35303	7.39
X-n275-k28	21245*	21251.76 (0.0318)	21245	3.90	21245.00 (0.0000)	21245	0.60	21248.76 (0.0177)	21245	6.14
X-n280-k17	33503	33633.2 (0.3886)	33507	9.85	33544.48 (0.1238)	33503	8.96	33559.62 (0.1690)	33505	9.09
X-n284-k15	20215*	20269.86 (0.2714)	20226	7.98	20249.30 (0.1697)	20227	7.55	20259.22 (0.2187)	20225	8.46
X-n289-k60	95151*	95542.14 (0.4111)	95440	6.88	95299.00 (0.1555)	95187	8.79	95250.44 (0.1045)	95157	8.65
X-n294-k50	47161	47264.18 (0.2188)	47169	6.49	47191.46 (0.0646)	47161	6.80	47215.84 (0.1163)	47168	9.59
X-n298-k31	$34231 *$	34290.3 (0.1732)	34234	7.07	34234.14 (0.0092)	34231	5.84	34267.06 (0.1053)	34231	9.43
X-n303-k21	21736	21809.78 (0.3394)	21762	9.68	21746.98 (0.0505)	21738	7.77	21764.66 (0.1319)	21736	9.07
X-n308-k13	25859	25917.76 (0.2272)	25866	7.72	25873.44 (0.0558)	25861	7.96	25879.48 (0.0792)	25861	9.24
X-n313-k71	94043	94327.5 (0.3025)	94203	9.79	94107.84 (0.0689)	94044	8.55	94112.38 (0.0738)	94044	10.25
X-n317-k53	78355*	78357.26 (0.0029)	78355	10.03	78357.56 (0.0033)	78355	7.15	78356.66 (0.0021)	78355	8.91
X-n322-k28	29834*	29937.48 (0.3469)	29854	7.57	29850.82 (0.0564)	29834	7.22	29858.78 (0.0831)	29844	8.97
X-n327-k20	27532	27609.92 (0.2830)	27553	7.49	27545.76 (0.0500)	27532	8.22	27588.60 (0.2056)	27532	9.00
X-n331-k15	31102^{*}	31103.74 (0.0056)	31103	8.13	31103.82 (0.0059)	31102	7.63	31104.52 (0.0081)	31103	9.73
X-n336-k84	139111	139646.86 (0.3852)	139406	10.54	139346.04 (0.1690)	139210	10.05	139261.64 (0.1083)	139140	12.41
X-n344-k43	42050	42204.74 (0.3680)	42089	10.59	42075.56 (0.0608)	42050	9.00	42106.28 (0.1338)	42056	10.02
X-n351-k40	25896	26004.68 (0.4197)	25958	11.04	25955.08 (0.2281)	25934	10.03	25952.10 (0.2166)	25905	12.12
X-n359-k29	51505	51624.12 (0.2313)	51510	10.85	51661.66 (0.3042)	51512	11.97	51553.12 (0.0934)	51505	13.07
X-n367-k17	22814	22819.4 (0.0237)	22814	10.57	22814.02 (0.0001)	22814	4.46	22824.74 (0.0471)	22814	11.13
X-n376-k94	147713*	147721.78 (0.0059)	147713	8.72	147718.10 (0.0035)	147713	9.06	147714.82 (0.0012)	147713	8.80
X-n384-k52	65928	66114.66 (0.2831)	66004	11.49	66083.22 (0.2354)	66017	12.02	66026.56 (0.1495)	65938	11.56
X-n393-k38	38260^{*}	38307.78 (0.1249)	38274	10.82	38260.74 (0.0019)	38260	9.37	38285.08 (0.0656)	38260	13.05
X-n401-k29	66154	66265.74 (0.1689)	66208	12.28	66253.22 (0.1500)	66181	13.49	66217.14 (0.0954)	66170	15.38
X-n411-k19	19712	19785.9 (0.3749)	19751	15.93	19724.04 (0.0611)	19712	12.75	19736.96 (0.1266)	19716	14.48
X-n420-k130	107798*	107933.82 (0.1260)	107831	14.56	107844.12 (0.0428)	107798	11.20	107830.74 (0.0304)	107798	16.02
X-n429-k61	65449	65589.8 (0.2151)	65489	13.79	65501.72 (0.0806)	65455	10.88	65519.26 (0.1074)	65459	13.19
X-n439-k37	36391*	36401.04 (0.0276)	36395	12.92	36397.66 (0.0183)	36395	10.36	36403.08 (0.0332)	36395	13.13
X-n449-k29	55233	55417.22 (0.3335)	55326	15.83	55403.38 (0.3085)	55272	15.35	55307.80 (0.1354)	55252	17.41
X-n459-k26	24139	24192.04 (0.2197)	24141	15.36	24163.60 (0.1019)	24139	12.99	24173.20 (0.1417)	24141	13.93
X-n469-k138	221824*	223116.1 (0.5825)	222641	15.94	222211.08 (0.1745)	221992	16.48	222026.92 (0.0915)	221834	16.28
X-n480-k70	89449	89617 (0.1878)	89467	17.47	89546.38 (0.1089)	89465	14.59	89467.82 (0.0210)	89457	19.28
X-n491-k59	66483	66698.44 (0.3241)	66581	18.42	66664.16 (0.2725)	66553	14.94	66574.48 (0.1376)	66487	20.59
X-n502-k39	69226	69244.26 (0.0264)	69227	20.60	69249.14 (0.0334)	69231	16.00	69233.82 (0.0113)	69226	17.95
X-n513-k21	24201	24227.38 (0.1090)	24201	15.52	24202.62 (0.0067)	24201	10.18	24232.20 (0.1289)	24201	17.38
X-n524-k153	154593*	154908.66 (0.2042)	154611	22.19	154765.42 (0.1115)	154610	15.21	154631.20 (0.0247)	154601	23.39
X-n536-k96	94828	95532.1 (0.7425)	95367	20.74	95089.34 (0.2756)	94992	18.34	94939.66 (0.1178)	94878	22.53
X-n548-k50	86700*	86738.1 (0.0439)	86700	20.19	86781.26 (0.0937)	86708	15.97	86745.88 (0.0529)	86700	17.68
X-n561-k42	42717	42827.5 (0.2587)	42751	20.17	42746.98 (0.0702)	42719	16.16	42761.98 (0.1053)	42723	20.93
X-n573-k30	50673	50802.14 (0.2548)	50753	24.39	50805.24 (0.2610)	50743	25.88	50735.52 (0.1234)	50721	23.41
X-n586-k159	190316	190968.62 (0.3429)	190716	22.86	190589.98 (0.1440)	190447	19.20	190399.76 (0.0440)	190318	24.87
X-n599-k92	108451	108744.02 (0.2702)	108645	23.11	108697.96 (0.2277)	108551	19.44	108589.12 (0.1274)	108484	23.89
X-n613-k62	59535	59714.54 (0.3016)	59585	24.10	59697.26 (0.2725)	59585	16.31	59611.80 (0.1290)	59545	24.40

X-n627-k43	62164	62279.3 (0.1855)	62188	26.06	62380.94 (0.3490)	62234	27.27	62222.80 (0.0946)	62179	25.93
X-n641-k35	63682	63822.38 (0.2204)	63734	25.73	63893.24 (0.3317)	63750	24.07	63777.22 (0.1495)	63734	23.41
X-n655-k131	106780*	106807.04 (0.0253)	106780	22.48	106813.18 (0.0311)	106785	19.06	106793.58 (0.0127)	106780	20.87
X-n670-k130	146332	147001.6 (0.4576)	146839	31.70	146913.28 (0.3972)	146517	23.27	146831.38 (0.3413)	146419	31.21
X-n685-k75	68205	68466.92 (0.3840)	68310	27.56	68394.94 (0.2785)	68293	22.45	68304.10 (0.1453)	68228	28.92
X-n701-k44	81919	82116.36 (0.2409)	81965	30.64	82267.08 (0.4249)	82040	27.18	81985.30 (0.0809)	81923	30.39
X-n716-k35	43356	43491.7 (0.3130)	43430	31.45	43513.22 (0.3626)	43451	25.91	43401.94 (0.1060)	43338	30.84
X-n733-k159	136187	136428.9 (0.1776)	136310	31.17	136454.62 (0.1965)	136322	25.24	136301.84 (0.0843)	136231	30.47
X-n749-k98	77269	77583.86 (0.4075)	77478	30.10	77697.62 (0.5547)	77527	29.63	77420.64 (0.1962)	77337	33.77
X-n766-k71	114416	114757.88 (0.2988)	114642	34.54	114779.78 (0.3179)	114648	30.48	114473.72 (0.0504)	114423	35.17
X-n783-k48	72381	72601.54 (0.3047)	72471	30.58	72832.96 (0.6244)	72641	32.90	72481.30 (0.1386)	72400	33.16
X-n801-k40	73305	73400.48 (0.1303)	73320	31.22	73487.62 (0.2491)	73345	32.07	73366.04 (0.0833)	73308	31.26
X-n819-k171	158121	158925.12 (0.5085)	158740	36.11	158498.82 (0.2389)	158320	29.36	158254.84 (0.0846)	158187	36.28
X-n837-k142	193734	194225.32 (0.2536)	194059	33.78	194278.88 (0.2813)	194045	38.02	193832.18 (0.0507)	193748	36.95
X-n856-k95	88965*	89030.32 (0.0734)	88973	34.97	89038.14 (0.0822)	88983	24.47	89019.78 (0.0616)	88966	31.93
X-n876-k59	99299	99514.72 (0.2172)	99407	39.52	99731.38 (0.4354)	99501	42.90	99427.90 (0.1298)	99352	41.12
X-n895-k37	53848	54037.02 (0.3510)	53901	35.62	54134.80 (0.5326)	53975	30.30	53956.02 (0.2006)	53881	34.35
X-n916-k207	329178	330184.72 (0.3058)	329942	41.53	329966.70 (0.2396)	329719	44.54	329316.82 (0.0422)	329205	42.51
X-n936-k151	132715	133430.2 (0.5389)	133047	45.21	133416.98 (0.5289)	133118	30.29	132991.78 (0.2086)	132909	43.08
X-n957-k87	85464	85527.7 (0.0745)	85474	37.83	85564.24 (0.1173)	85494	30.96	85511.52 (0.0556)	85473	35.06
X-n979-k58	118954	119289.54 (0.2821)	119195	43.91	119368.28 (0.3483)	119202	48.55	119010.64 (0.0476)	118951	46.57
X-n1001-k43	72355	72547.88 (0.2666)	72441	44.88	72757.08 (0.5557)	72598	46.65	72455.22 (0.1385)	72375	44.50
Average		(0.2049)	14.11		(0.1268)		12.49	(0.0782)		14.87

B. Parameter analysis

This section shows a summarized analysis of four parameters of AILS-II: $d_{\max }, d_{\min }, \gamma$ and φ. In this experiment, we evaluated these parameters considering the following sets of values:

- $d_{\max } \in\{10,20,30,40,50,60,70,80\}$;
- $d_{\text {min }} \in\{5,10,15,20,25,30\} ;$
- $\gamma \in\{10,20,30,40,50,60\}$;
- $\varphi \in\{10,20,30,40,50,60,70,80\}$.

For this sensitivity analysis, we employed the values of $d_{\max }=30, d_{\min }=15, \gamma=30$ and $\varphi=40$ when varying one of the parameters. Figure 6 shows the average gaps on the large-scale instances.

Figure 6 Average results achieved by varying the parameters of AILS-II considering the instances of Arnold et al. (2019).

It is noteworthy that, except for γ, the other parameters were sensitive to variations, with abrupt changes in the average gap. The final values reported in the experiment were achieved when $d_{\max }=30, d_{\min }=15, \gamma=30$ and $\varphi=40$. Lower values of φ were responsible for much poorer results. This parameter refers to the number of investigated neighbors of a given node during the search process. This particular result demonstrates the importance of limiting the search to achieve a better performance.

