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Network design problems constitute an important family of combinatorial optimization problems for which

numerous exact and heuristic algorithms have been developed over the last few decades. Two central problems

in this family are the multi-commodity, capacitated, fixed charge network design problem (MCFNDP) and

its stochastic counterpart, the two-stage stochastic MCFNDP with recourse. These are standard problems

that often serve as work benches for devising and testing models and algorithms in stylized but close-to-

realistic settings. The purpose of this paper is to introduce two flexible, high-speed generators capable of

simulating a wide range of settings for both the deterministic and stochastic MCFNDPs. We hope that, by

facilitating systematic experimentation with new and larger sets of instances, these generators will lead to

a more thorough assessment of the performance achieved by exact and heuristic solution methods in both

deterministic and stochastic settings. We also hope that making these generators available will promote the

reproducibility and comparability of published research.
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1. Introduction

Network design problems (Crainic et al. 2021a) are concerned with choosing which arcs to

open in a network and how to route flows from origins to destinations so as to satisfy a
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set of demands while respecting arc capacities. These flows can represent objects, people

or information, and may be finely or coarsely differentiated depending on the application.

Most variants of network design can be characterized by the following four attributes:

(i) the amounts of commodities demanded and supplied at the nodes of the network, (ii)

the fixed costs associated with the opening of arcs, (iii) the flow-dependent and commodity-

specific costs on the arcs, and (iv) the global and commodity-specific capacities on the

arcs.

NP-hard network design problems are ubiquitous and occur in many areas of human

activity such as supply chain management, transportation, and telecommunications. The

size and complexity of these networks tend to increase as economic processes grow and

become more integrated. Hence, the development of powerful exact and heuristic solution

methods for network design is a very active field of research in combinatorial optimiza-

tion. In this context, the linear, deterministic, multi-commodity, capacitated, fixed charge

network design problem (MCFNDP) (Gendron et al. 1999) and its stochastic counterpart,

the two-stage stochastic MCFNDP with recourse (Crainic et al. 2011), play a central role.

They often serve as work benches for the design and testing of new mathematical formula-

tions and solution algorithms. In addition, the successes achieved on these two fundamental

problems often carry over to other related problems such as facility location problems.

In this article, we introduce two flexible, high-speed generators capable of simulating a

wide range of settings for both deterministic and stochastic MCFNDPs. We hope that by

facilitating systematic experimentation with new and larger sets of instances, these gener-

ators will lead to more thorough assessments and comparisons of the performance achieved

by exact and heuristic solution methods in deterministic and stochastic settings. We also

hope that making these generators publicly available will advance the reproducibility and

comparability of published research.

To the best of our knowledge, only one generator for the deterministic MCFNDP is cur-

rently available (CommaLAB 2023b). This so-called “Mulgen” generator was conceived in

Fortran more than 25 years ago by Bernard Gendron and his collaborators at Université

de Montréal. The resulting instances (CommaLAB 2023a) have since been used in many

publications by several groups of authors (see, e.g., Chouman et al. 2016, Crainic et al.

2001, Hewitt et al. 2010). We hope that through our modernizing and extensive document-

ing of the code, current research on MCFNDPs will be facilitated by having access to a
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more usable set of instruments. The new version of the Mulgen generator is presented in

Section 2.

Also to the best of our knowledge, there does not exist a publicly available generator

for the two-stage stochastic MCFNDP. Papers published in this area have resorted to ad

hoc randomizations of linear deterministic instances that are often based on one of the

algorithms of Høyland et al. (2003) (see, e.g., Crainic et al. 2021b). In this context, ensuring

public availability of a new stochastic instance generator that would facilitate systematic

experimentation and foster reproducibility and comparability of published research appears

to be particularly useful. Accordingly, we devote the bulk of our attention to presenting

this generator in Section 3. Finally, Section 4 concludes the paper.

2. A generator of linear deterministic MCFNDPs

This section first introduces the linear deterministic MCFNDP (borrowing notation from

Crainic et al. 2021a) and follows with a description of the corresponding generator.

2.1. The linear deterministic MCFNDP

Let G = (N ,A) denote a graph composed of arcs (i, j) ∈A and nodes i, j ∈N . With each

arc (i, j)∈A are associated a fixed cost fij and a capacity uij ≥ 0 limiting the total amount

of flow on the arc. Demands are associated with commodities k ∈ K and defined over

the nodes of the graph. Each commodity is characterized by an origin node O(k) ∈N , a

destination node D(k) ∈N , a quantity dk, and unit costs ckij for using any arc (i, j) ∈A.

The net outgoing flow of commodity k at node i is defined as

wk
i =


dk, if i=O(k),

−dk, if i=D(k),

0, otherwise.

The problem may also include commodity-specific capacities bkij ≥ 0 limiting the flow of

specific commodities on the arcs.

The linear deterministic MCFNDP comprises two sets of decision variables – binary

design variables yij, (i, j) ∈ A, and continuous multicommodity flow variables xk
ij ≥

0, (i, j)∈A, k ∈K. The problem can be defined as

min
y,x

{ ∑
(i,j)∈A

fijyij +
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij

}
(1)
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subject to
∑
j∈N+

i

xk
ij −

∑
j∈N−

i

xk
ji =wk

i , ∀i∈N ,∀k ∈K, (2)

∑
k∈K

xk
ij ≤ uijyij, ∀(i, j)∈A, (3)

xk
ij ≤ bkijyij, ∀(i, j)∈A,∀k ∈K, (4)

xk
ij ≥ 0, ∀(i, j)∈A,∀k ∈K, (5)

yij ∈ {0,1}, ∀(i, j)∈A. (6)

The objective function (1) minimizes the total costs expressed as a summation of fixed arc

opening costs and a summation of flow-dependent transportation costs. Constraints (2)

enforce flow conservation at each node i∈N , where N+
i and N−

i identify, respectively, the

successor and predecessor nodes of i. Constraints (3) enforce capacity limits and act as

linking constraints. Finally, (4) are commodity-specific capacity constraints restricting the

flow of commodity k ∈K on arc (i, j). The latter are optional in the generator.

2.2. The generator

The description of the generator is divided into three parts: first, we outline its design

and work flow, second, we list its functionalities, third, we describe its use and provide an

assessment of its performance.

2.2.1. Design and workflow. A modest difference between the original Fortran code

and our C++ version of the Mulgen generator consists in the use of a modern pseudo-

random number generation library. The PCG (i.e., “permuted congruential generator”)

C++ library (see O’Neill 2023, Lemire 2023) is faster, statistically more reliable and more

convenient (by making room for random streams that facilitate indexing and retrieval of a

series of generated network problems). A highly useful addition is the option to read and

write the graph G from and to a file. In contrast, the original generator only allowed to

specify the general topology of G (i.e., numbers of nodes and either grid-like, circular or

random connections). Both options are currently available whereas it is still possible to

add arcs randomly.

The generation proceeds through three main steps, each comprising options set by the

user (for additional details on the groups of options hereafter highlighted in bold, see the
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corresponding paragraph in Section 2.2.2): First, generate the structure of the problem

according to core-structure options. Second, if requested, adjust random arcs accord-

ing to tuning-random-arcs options in order to alter the overall complexity. Third, if

requested, adjust fixed costs upward and/or adjust arc capacities downward according to

tuning-design-and-flow-problems options in order to alter complexity of design and

flow problems. The generated instance can be saved using two MCFNDP-specific formats,

a generic human-readable LP format and the generic machine-readable Mathematical Pro-

gramming System (MPS) format.

2.2.2. Available functionalities. The generator offers the following options. Their set-

tings can be left at default values, specified in configuration files or overridden on the

command line.

Basic options:

• Sourcing of configuration parameters from specified file(s) and/or command line.

• Output file name and choice of machine- or human-readable output format(s).

• Name of file where graph of network is optionally read or saved.

• Seed and stream of pseudo-random number generator.

Core-structure options:

• Imposing either (i) random, (ii) grid-like, (iii) circular topology of G, or (iv) reading

G from file.

• Length of grid along X- and Y-axis if grid-like topology.

• Number of nodes |N | if not grid-like topology.

• Number of commodities |K|.
• Number of additional random arcs (beyond those required by grid-like or circular

connections when requested).

• Precluding (or not) parallel arcs.

• Minimum and maximum number of sources and sinks for each commodity.

• Imposing either (i) single source and single sink for each commodity k ∈ K, or (ii)

identical sources and identical sinks over all commodities, or (iii) sources and sinks

randomly selected from N for all commodities.

• Minimum and maximum value of dk, k ∈K.

• Minimum and maximum value of fij, (i, j)∈A, before tuning adjustments.

• Minimum and maximum value of ckij, (i, j)∈A, k ∈K, before tuning adjustments.
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• Minimum and maximum value of uij, (i, j)∈A, before tuning adjustments.

• Minimum and maximum value of bkij, (i, j)∈A, k ∈K, before tuning adjustments.

• Requiring or not uij, (i, j)∈A, to be integer.

• Requiring or not bkij, (i, j)∈A, k ∈K, to be integer.

• Imposing Constraints (4) or not.

Tuning-random-arcs options: Imposing specified ratios of random arcs whose

• fixed cost must be set to zero,

• capacity must be set to total volume,

• commodity-specific capacity must be set to zero,

• commodity-specific capacity must be set to maximum capacity.

Tuning-design-and-flow-problems options: Imposing specified

• uniform upward proportional adjustment of fixed costs over arcs,

• uniform downward proportional adjustment of capacities over arcs.

2.2.3. Use and performance. A fully functional version of the generator is available

in the depot located at https://bit.ly/49L957M. The included readme.md file supplies

detailed information about building and running the generator from the Linux command

line. Help is displayed on screen upon request or automatically in case of erroneous

command line statement. For example, the following command line instruction:

./exe +F newParamFile.txt -stream 1234 -seed 4567 -nbCom 10

would launch the generation of an MCFNDP instance according to options specified in

configuration file newParamFile.txt, except that the random stream, random seed and

number of commodities therein or their default values would respectively be superseded

by 1234, 4567 and 10.

The generator achieves high speed computations. For example, generating and saving

instances similar to the largest ones among the historical R and C series available at Com-

maLAB (2023a), that is r18 (20 nodes, 315 arcs, 200 commodities) and c64 (30 nodes, 700

arcs, 400 commodities), requires respectively less than 1 second and less than 4 seconds,

using a single core of an Intel(R) Xeon(R) E5-2637 v4 @ 3.50GHz CPU running on Alma-

Linux 9.2. The advanced user interested in the inner workings of the code will find useful

that it has been extensively commented and documented.
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3. A generator of linear two-stage stochastic MCFNDPs with recourse

The generator for the linear two-stage stochastic MCFNDP with recourse that we propose

operates based on a supplied instance of the linear deterministic MCFNDP. The gener-

ator synthesizes a joint probability distribution governing a set of parameters from this

base instance that are identified by the user as varying stochastically. In other words, the

generator randomizes a user-specified set of parameters of the base deterministic instance.

To ensure computational tractability, the synthesized probability distribution is atomic.

That is, it can be described by a finite set of realizations (i.e. “scenarios”) and respective

probabilities.

The synthesized distribution is shaped jointly (i) by primitive, easily interpretable

requirements that are specified by the user and (ii) by pseudo-random determinations.

Clearly, those requirements must be selected in order to promote the relevance and use-

fulness of assessments based on the generated problem instances. In turn, these qualities

depend on the theoretical questions or contexts of application that are judged of interest.

The instance of deterministic MCFNDP upon which the synthetic probability distribution

is grafted may also be synthetic: then, its structure and the values of its non-stochastic

parameters also result (i) from the requirements that are specified at creation in order

to promote relevance and usefulness in view of the tasks at hand, and (ii) possibly from

pseudo-random determinations. The generator presented in Section 2 can fulfill this role

in a precise way.

In the endeavour to synthesize the probability distribution, we are naturally drawn to

the scenario construction methods available in the abundant and growing literature inves-

tigating the computation of approximate solutions to stochastic programming problems.

These methods fall in loosely demarcated classes called “scenario sampling”, “scenario

reduction” (a.k.a. “discrete scenario reduction”, when scenarios are selected among existing

ones) or “scenario generation” (a.k.a. “continuous scenario reduction”, when scenarios are

built freely). However, this inclination is tempered by an important caveat: In stochastic

programming, the objective pursued by constructing sets of scenarios is to approximate the

solution of problems whose underlying probability distribution is judged too complex to

ensure tractability, while still being known exactly or at least lending itself to sampling or

estimation from historical data. In contrast, our task is to synthesize an a priori unknown
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underlying distribution. The synthesized distribution is embodied in a set of scenarios con-

structed based on user specified distributional requirements coupled with pseudo-random

determinations.

The Appendix provides an overview of the methods proposed in the stochastic program-

ming literature for constructing scenarios and points to those among the latter that are

suited to our goal of synthesizing a distribution. It explains why we choose to construct

scenarios with the Høyland-Kaut-Wallace (HKW) algorithm of Høyland et al. (2003) by

matching targets for the first four moments and the linear correlations for all stochastic

parameters appearing in the base linear deterministic MCFNDP at hand. We shall see

momentarily how this information may be derived from a small set of assumptions and

supplied to the generator.

3.1. The linear two-stage stochastic MCFNDP with recourse

The linear two-stage stochastic MCFNDP with recourse can be defined as follows. In com-

parison with the linear deterministic MCFNDP of Section 2.1, ω, p(ω) and Ω respectively

identify a stochastic realization (i.e., a scenario), the probability of a realization and the

set of all stochastic realizations. The latter is assumed to be finite. We also assume that

parameters w, u, b, and c may all have been randomized. Decision variables y and x(ω)

are respectively selected before and after disclosure of the stochastic realization ω. The

formulation becomes the following:

min
y,x(ω),∀ω∈Ω

{ ∑
(i,j)∈A

fijyij +
∑
ω∈Ω

p(ω)
∑
k∈K

∑
(i,j)∈A

ckij(ω)x
k
ij(ω)

}
(7)

subject to
∑
j∈N+

i

xk
ij(ω)−

∑
j∈N−

i

xk
ji(ω) =wk

i (ω), ∀i∈N ,∀k ∈K,∀ω ∈Ω, (8)

∑
k∈K

xk
ij(ω)≤ uij(ω)yij, ∀(i, j)∈A,∀ω ∈Ω, (9)

xk
ij(ω)≤ bkij(ω)yij, ∀(i, j)∈A,∀k ∈K,∀ω ∈Ω, (10)

xk
ij(ω)≥ 0, ∀(i, j)∈A,∀k ∈K,∀ω ∈Ω, (11)

yij ∈ {0,1}, ∀(i, j)∈A, (12)
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where

wk
i (ω) =


dk(ω), if i=O(k),

−dk(ω), if i=D(k),

0, otherwise.

3.2. The generator

The description of the stochastic generator follows the same structure as in the previous

section: first, outline its design and work flow, second, list its functionalities, third, describe

its use and provide an assessment of its performance.

3.2.1. Design and workflow. The program initially reads the deterministic MCFNDP

instance based on which the stochastic MCFNDP instance will be generated. It also reads

which subsets of parameters among the following will be randomized (i.e., will vary between

scenarios): (i) demands, (ii) total capacities of arcs, (iii) commodity-specific capacities of

arcs, (iv) fixed costs over arcs, (v) variable costs over arcs and commodities. If requested by

the user, the program proceeds to generating target moments and correlations. Otherwise,

target moments and correlations are read from files.

When generating target moments with moment generation parameters α and β, if the

distributional characterization specified for the target moments is uniform, then each indi-

vidual randomized parameter is assumed to have first four moments equal to those of a

uniform(a, b) distribution where a=D− (α ·D), b=D+(β ·D). If the distributional char-

acterization is triangular, then each randomized individual parameter is assumed to have

first four moments equal to those of a triangular(a, b, c) distribution where, a=D− (α ·D),

b=D+(β ·D), c=D. Here, D is the value taken by the parameter in the base deterministic

MCFNDP instance and α ∈ [0,1), β ∈ [0,∞). The distributions are symmetric around D

when α= β.

When the generation of target moments and correlations is requested, the values of

target correlations are specified on the command line for whole blocks of the correla-

tion matrix. For example, a value specified for the block of correlations between demands

and commodity-specific capacities will be shared by all correlations between parameters

describing demands and parameters describing commodity-specific capacities. Similarly, a

value specified for the correlations within demands will be shared by all correlations among

parameters describing demands. (Of course, all parameters will have a self-correlation equal
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to one.) By default, correlations within and between blocks of parameters are equated to

zero.

Once all target moments and correlations have been generated, the algorithm described

in Section 2.5 of Høyland et al. (2003) is supplied with the matrices of target moments and

correlations and with the values of the HKW-algorithm options (see next subsection

for details). From a starting set of scenarios (determined quasi-randomly or fedback from

a previous run), the algorithm iteratively applies cubic transformations (to alter moments)

and Cholesky factor transformations (to alter correlations) until a sufficiently close match

with target moments and correlations is attained. If the algorithm fails to achieve sufficient

convergence within the prescribed number of iterations, then a new attempt is made from

new starting scenarios.

The feasibility of each scenario returned by the HKW algorithm is tested by verifying

with the CPLEX solver if a solution to the second stage problem exists under the given

scenario when all arcs are open. Infeasible scenarios are rejected and the numbers of tested

and rejected scenarios are displayed on screen. This ensures that every retained scenario is

compatible with at least one set of admissible first stage values. The generator does not,

however, ensure relatively complete recourse of the generated problem instances (i.e., that

for every set of admissible first stage values, all scenarios be feasible).

Retained scenarios are written to the specified output file. In this file, complete

deterministic-like problem instances, one for each scenario, are superposed and written

under the same format as that used to supply the base deterministic input instance. Each

such instance associated to a scenario is preceded by a header stating the scenario num-

ber. Proceeding in this manner involves writing to file more information than strictly

necessary to describe the scenarios since the non-randomized parameters appearing in the

base instance are repeated for each superposed instance. However, the small inconvenience

caused by the additional volume and time that are required is outweighed by allowing the

user to easily grasp, read and retrieve in its entirety the first and second-stage information

associated with a scenario.

3.2.2. Available functionalities. The generator offers the following functionalities. Set-

tings can be left at default values or specified on the command line.
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Core options:

• Name and format of the input file supplying the deterministic MCFNDP instance

based on which scenarios are calculated.

• Name of output file containing calculated stochastic problem instance.

• Switch indicating if target moments and correlations are to be read from files or

generated.

• Name of file holding target moments (if target moments are generated they will be

written to this file; otherwise, they will be read from this file).

• Name of file holding target linear correlations (if target correlations are generated,

they will be written to this file; otherwise, they will be read from this file).

• The following options are active only when the generation of target moments and

correlations is specified:

—For which subsets of parameters target moments are to be generated (one or

more among the following: demand, total capacities of arcs, commodity-specific

capacities of arcs, fixed costs over arcs, variable costs over arcs and commodities).

—Distributional characterization of the first four target moments for the randomized

parameters (either uniform or triangular).

—Moment generation parameters α and β.

—Value of target linear correlation shared in each block of the matrix of linear

correlations.

HKW-algorithm options:

• Number of scenarios |Ω|.

• Maximum error allowed when matching moments (scaled to Variance= 1).

• Maximum error allowed when matching correlations (scaled to Variance= 1).

• Level of verbosity displayed by the program.

• Maximum number of attempts to generate scenarios from new starting values.

• Maximum number of iterations in each attempt of the algorithm.

• Seed and stream of the pseudo-random number generator.

• Name of input file containing probabilities (optional: if absent, scenarios are assumed

equiprobable).

• Name of output file where resulting matrix of scenarios are written in HKW format.
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• Name of input file where to read a matrix of scenarios saved in HKW format in a

previous run (optional: if present, content will be used as starting values, otherwise,

starting values will be sampled).

3.2.3. Use and performance. A fully functional version of the generator is available

in the depot located at https://bit.ly/49LMiZy. The included readme.md file supplies

detailed information about building and running the generator from the Linux command

line. Help is displayed on screen upon request or automatically in case of erroneous

command line statement. For example, the following command line instruction:

/exe -I instB.std -F S -S 3 -G -T U -A 0.25 -B 0.3 -XDD 0.5 -XDA -0.3 -XAA 0.7

specifies that (i) the base deterministic MCFNDP instance is stored in file instB.std, (ii)

under format STD, (iii) parameters describing demands and total capacities of arcs must

be randomized through scenarios, (iv) target moments and correlations must be generated

rather than read from files, (v) distributional characteristic of target moments is uniform,

(vi) target moment generation parameters α and β are equal to 0.25 and 0.3, (vii) target

correlations within demand parameters are all equal to 0.5, between parameters describing

respectively demands and total capacities of arcs are all equal to -0.3, and within parame-

ters describing total capacities of arcs are all equal to 0.7. All other options are set to their

default values.

The computing speed achieved by the generator is high in view of its intended low-

repetitions use. Table 1 reports scenario generation and feasibility verification times

(columns gener. and check, respectively) when requesting specified numbers of scenar-

ios (col. requ.scen.) for particular instances of the historical R series of MCFNDPs (col.

instance) (CommaLAB 2023a). The latter range from a small r05.3 (10 nodes, 60 arcs,

25 commodities) to the largest r18.3 (20 nodes, 315 arcs, 200 commodities). Demands

and overall arc capacities are randomized between scenarios. Target correlations among

demands, among capacities and between capacities and demands are as specified in columns

corr. DD, corr. CC and corr. CD respectively. Target moments are those of a uniform

distributions with α= β = 0.25. Hence, each randomized parameter is assumed to obey a

uniform distribution whose bounds are respectively 25% below and 25% above the values

taken by the corresponding parameters in the base deterministic problem. Column feas.

scen. reports the number of scenarios that are feasible. Column rand. elems indicates the

number of parameters that are randomized between scenarios. Notice that the number of
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requested scenarios cannot exceed the latter if target moments and correlations must be

satisfied.

instance rand. elems requ. scen. corr. DD corr. AA corr. AD gener. (sec) check (sec) feas. scen.

r05.3 85 10000 0.0 0.0 0.0 2.0 13.0 10000
r05.3 85 5000 0.0 0.0 0.0 0.5 7.7 5000
r05.3 85 1000 0.0 0.0 0.0 0.1 1.6 1000
r05.3 85 500 0.0 0.0 0.0 0.1 0.7 500
r05.3 85 200 0.0 0.0 0.0 0.1 0.3 200
r05.3 85 100 0.0 0.0 0.0 0.2 0.2 100
r05.3 85 10000 0.5 0.5 -0.2 8.0 6.0 10000
r05.3 85 5000 0.5 0.5 -0.2 0.9 7.6 5000
r05.3 85 1000 0.5 0.5 -0.2 0.2 1.4 1000
r05.3 85 500 0.5 0.5 -0.2 0.1 0.8 500
r05.3 85 200 0.5 0.5 -0.2 0.1 0.3 200
r05.3 85 100 0.5 0.5 -0.2 0.7 0.2 100

r09.3 133 10000 0.0 0.0 0.0 3.0 16.0 10000
r09.3 133 5000 0.0 0.0 0.0 0.7 17.8 5000
r09.3 133 1000 0.0 0.0 0.0 0.2 3.5 1000
r09.3 133 500 0.0 0.0 0.0 0.2 1.7 500
r09.3 133 200 0.0 0.0 0.0 0.2 0.7 200
r09.3 133 10000 0.5 0.5 -0.2 9.0 18.0 10000
r09.3 133 5000 0.5 0.5 -0.2 1.5 17.9 5000
r09.3 133 1000 0.5 0.5 -0.2 0.3 3.5 1000
r09.3 133 500 0.5 0.5 -0.2 0.2 1.7 500
r09.3 133 200 0.5 0.5 -0.2 0.2 0.7 200

r14.3 320 10000 0.0 0.0 0.0 20.0 184.0 10000
r14.3 320 5000 0.0 0.0 0.0 2.4 95.8 5000
r14.3 320 1000 0.0 0.0 0.0 1.3 18.8 1000
r14.3 320 500 0.0 0.0 0.0 1.4 9.4 500
r14.3 320 10000 0.5 0.5 -0.2 82.0 162.0 10000
r14.3 320 5000 0.5 0.5 -0.2 5.4 92.1 5000
r14.3 320 1000 0.5 0.5 -0.2 1.6 18.5 1000
r14.3 320 500 0.5 0.5 -0.2 1.8 9.0 500

r18.3 515 10000 0.0 0.0 0.0 51 529 10000
r18.3 515 5000 0.0 0.0 0.0 6.3 270.7 5000
r18.3 515 1000 0.0 0.0 0.0 4.0 57.8 1000
r18.3 515 10000 0.5 0.5 -0.2 160.0 470.0 10000
r18.3 515 5000 0.5 0.5 -0.2 13.2 274.0 5000
r18.3 515 1000 0.5 0.5 -0.2 5.0 54.0 1000

Table 1 Scenario computation and verification times

4. Conclusion

We introduced two flexible, high-speed generators capable of simulating wide ranges of

deterministic and stochastic MCFNDP instances. We believe that they constitute highly

effective and usable instruments and hope that they may in the future facilitate systematic

experimentation and foster reproducibility and comparability of published research. The

generator of deterministic MCFNDPs modernizes and extensively documents the existing
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Mulgen generator so as to turn it into a readily usable instrument. The generator of

stochastic MCFNDPs is new. It synthesizes the joint probability distribution governing a

set of parameters that are identified by the user as varying stochastically, using a moment-

matching algorithm and based on primitive, easily interpretable requirements specified

by the user. As a natural extension of this strand of research, we envision the creation

of similar generators simulating instances of other standardized problem families of high

interest. In terms of relevance and reliability, the advantages of collecting evidence from

a range of problem families when assessing and comparing the performance achieved by

exact and heuristic solution methods are manifest.
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Appendix. Existing Methods for the Construction of Scenarios

We overview the methods proposed in the literature on linear two-stage stochastic pro-

gramming for constructing scenarios. We aim to identify those that are suited for the

purpose of synthesizing a distribution and, among the latter, discuss usability in our par-

ticular context of application. Detailed reviews of the literature on scenario construction

for the purposes of stochastic programming are available in Löhndorf (2016), Bounitsis

et al. (2022), Kaut (2021), Keutchayan et al. (2023), Rujeerapaiboon et al. (2022), Bert-

simas and Mundru (2022). We distinguish the following operating principles and classify

the existing methods accordingly.

Sampling scenarios Surveys of the literature on random and quasi-random sampling of sce-

narios are available in Shapiro (2003), Glasserman (2004), Bayraksan and Morton (2011),

de Mello and Bayraksan (2014). Later advances are available in Leövey and Römisch

(2015), Löhndorf (2016) (with stratification through Voronoi sampling). Methods in this

class sample among existing scenarios included in an assumed known probability distribu-

tion. They are therefore inadequate for the purpose of synthesizing a distribution based

on primitive requirements.
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Clustering scenarios Existing scenarios included in an assumed known probability dis-

tribution are clustered with k-means, k-medians, k-medoids, either based on values of

parameters appearing in scenarios or on values of second stage outcomes associated to

individual scenarios (Keutchayan et al. 2023, Hewitt et al. 2022, Abouelrous et al. 2022).

These methods are inadequate for our purposes as they operate on scenarios of an assumed

known probability distribution.

Minimization of probabilistic distance This area of research is substantial and currently

the most active. It also extends to multistage stochastic programming and scenario trees.

Those topics exceed our scope. Surveys are available in Löhndorf (2016), Rujeerapaiboon

et al. (2022), Bertsimas and Mundru (2022). Theoretical advances and methodological

overviews are available from Dupačová et al. (2003), Heitsch and Römisch (2003), Heitsch

and Römisch (2007), Henrion et al. (2008, 2009), Pflug and Pichler (2015), Henrion and

Römisch (2022), Rujeerapaiboon et al. (2022). Large scale, industrial applications are

presented in Li and Floudas (2014, 2016), Rujeerapaiboon et al. (2022), Bertsimas and

Mundru (2022), Abouelrous et al. (2022). Methods in this class aim to minimize or show

convergence of the Wasserstein (a.k.a. Kantorovich-Rubinstein) or Fortret-Mourier prob-

abilistic distances or an upper bound thereof between a known, exact distribution and a

new, approximate distribution resulting from a constructed set of scenarios. There is a

partial overlap between this class and the preceding ones as sampling and clustering may

be involved in building the sets of scenarios aimed at controlling the probabilistic distance

(see for instance Dupačová et al. 2003, Heitsch and Römisch 2003, Heitsch and Römisch

2007, Henrion et al. 2008, 2009, Henrion and Römisch 2022, Rujeerapaiboon et al. 2022,

Bertsimas and Mundru 2022, Abouelrous et al. 2022). Methods in this class control the

probabilistic distance either (i) between the exact and approximate distributions of the

second stage parameters while relying on stability analysis to characterize the probabilistic

distance between the resulting outputs, or (ii) directly between the distributions of the out-

puts achieved under the exact and approximate distributions of the parameters. Whereas

it would be conceivable to devise constructive methods based on primitive requirements

aiming to minimize probabilistic distances, this would exceed the scope of our proposition.

Matching moments, correlations and distribution functions Methods in this class build sce-

narios by matching target moments and correlations or matching target distributions for

the stochastic parameters (see Fleishman 1978, Høyland and Wallace 2001, Høyland et al.
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2003, Mehrotra and Papp 2013). This type of method is applicable for our purposes as

it is conceivable to state target moments and correlations for the stochastic parameters

of the MCFNDP. A large capacity, high-speed computational application has been made

available by one of the authors of Høyland et al. (2003) and the latter has been used suc-

cessfully to build scenarios for MCFNDPs in a number of publications (see, e.g., Crainic

et al. 2011, 2021b). This application requires supplying targets about first four moments

and linear correlations for all stochastic parameters in the MCFNDP at hand. We saw

in Section 3.2.1 how this information may be derived from a small set of assumptions.

Using the more general method proposed in Mehrotra and Papp (2013) is also conceiv-

able. In contrast with Høyland et al. (2003), Mehrotra and Papp (2013) can match the

distribution function rather than only first four moments and linear correlations. However,

its greater informational prerequisites are difficult to postulate convincingly in practice

and its computational tractability stands at a prototypical stage. These reasons lead us to

prefer the method of Høyland et al. (2003) to that of Mehrotra and Papp (2013). Kaut

(2021) proposes a MILP solution to the moment-matching problem that might be viewed

as an alternative to the iterative NLP algorithm of Høyland et al. (2003). However, we

prefer the latter as the former is prototypical. Moment-matching methods can also be

joined with clustering methods (Li and Zhu 2016), principal component analysis (Chopra

and Selvamuthu 2020), distribution matching (Calfa et al. 2014, Bounitsis et al. 2022).

These variants require a detailed knowledge of underlying scenarios and distribution that

is unavailable in our context of application.

Copula sampling A number of scenario selection methods account for dependencies in the

assumed available underlying joint distribution through copula sampling and may combine

it with matching of moments, matching of marginal distributions or clustering to account

for marginal distributions (see Sutiene and Pranevicius 2007, Kaut and Wallace 2011, Kaut

2014, 2015, Qiu et al. 2019). In our context of application, while it would be conceivable to

select a copula based on primitive assumptions and conduct sampling from it, this would

presuppose a level of knowledge about the dependencies among the stochastic parameters

of the MCFNDP that may be difficult to justify in practice.
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