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Abstract. Ultra-fast delivery revolutionizes food and grocery services, with sev-

eral companies advertising delivery times under 15 to 30 minutes. Motivated by the

multi-billion-dollar industry that has emerged in recent years within the delivery

business, we investigate the network design problem for ultra-fast delivery services.

This involves decisions on micro-depot locations and customer allocations, consid-

ering various service guarantee levels. We develop robust probabilistic envelope-

constrained (PEC) programs to handle uncertainties in travel times and customer

order arrivals, and jointly optimize the protection level to avoid both excessive risk

and conservatism. To enhance the tractability of PEC models, we derive their equiv-

alent semi-infinite linear programs and propose inner and outer approximations with

finite linear constraints. We validate the accuracy of these approximations through

extensive experiments using real-world data from Amazon and the Google API, along

with a comparative study of different formulations. Varying service levels in ultra-fast

delivery affect profitability and reliability, contingent on service level definitions and

compliance probabilities of these guaranteed service levels. We find that a daily ser-

vice level with multi-layer partial protection outperforms other policies investigated

in this paper, yielding higher profitability and mild violations of service level guaran-

tees. It represents an effective strategy for profitable and reliable ultra-fast delivery.

However, providing ultra-fast delivery in rural areas poses unique challenges com-

pared to urban settings.

Key words: ultra-fast delivery, network design, service level, probabilistic

envelope constraint, robust optimization

1. Introduction

Ultra-fast delivery is a new form of the fast and reliable delivery of food and groceries from micro-depots

to customers. For example, an ultra-fast delivery company, Getir, promises to deliver groceries to the cus-

tomer’s doorstep within 15 minutes (Kavuk et al. 2022). Investors and entrepreneurs (e.g., Getir, Gopuff,

Gorillas) invest heavily in such services and the projected market volume reaches up to $251.50 billions by

2028 (Statista 2023). They expect to attract a large market share by offering urgently needed items without

1
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customers having to leave the comfort of their homes, and aim to reduce waste by taking the role of the

traditional fridge and storage (Repko 2021).

Ultra-fast delivery has its roots in the 15-minute city concept proposed by Carlos Moreno in 2016

(Moreno et al. 2021). This concept suggests that cities could be designed with the intention of having

amenities and most services located within a 15-minute walking or driving distance, thereby fostering a

new neighborhood approach. To relieve or confront the climate crisis and potential future pandemics, the

15-minute city and other similar ideas such as the 20-minute neighborhood (Capasso Da Silva et al. 2019)

have recently gained popularity. The key idea is decentralization in city design, that is, developing different

services for each district, encouraging local shops, facilitating short commutes, and enabling access to key

services within proximity.

Similar to the 15-minute city, ultra-fast delivery promises to bring advantages of proximity, sustainabil-

ity, and accessibility, and therefore reduce car dependency, fuel consumption and pollution, and improve

customer satisfaction. However, the reality shows that many startups providing ultra-fast delivery services

are facing severe capital shortages or even go bankrupt (Chandler 2022) because of four main reasons:

costly infrastructure, high labor cost, low coverage, and unsafe driver behaviors (Zhang et al. 2022). Deliv-

ery companies have competed for customers in two main ways: being faster or offering large discounts.

That is, companies are eager to set up numerous micro-depots near customers and employ many drivers

to ensure fast and on-time deliveries. Because of the substantial investments and narrow profit margins,

those ultra-fast delivery companies struggle to survive once the venture capitalists stop pouring money into

them. Additionally, there still exist many regions that are not covered due to the shortage of micro-depot

locations. Last but not least, customers have a low tolerance for delivery delays, especially when they are

provided with an estimated time of arrival (ETA) at the moment of placing their orders. Usually, the ETA is

calculated based on historical expected travel times, which can sometimes be overly optimistic, as they do

not account for real-time traffic and weather conditions. Consequently, this can result in frequent delivery

delays and decreased customer satisfaction. In fact, many companies have begun to reconsider the neces-

sity of serving all customers within 15 minutes and attempt to backtrack on their initial delivery promise.

For instance, Getir, which initially operated in Turkey and recently expanded its services to Europe and

the United States, originally offered deliveries within 15 minutes but extended its delivery time to up to 45

minutes with customer approval (Kavuk et al. 2022). Meanwhile, Gorillas in Europe initially focused on

delivering within 10 minutes but later extended their delivery time to around 60 minutes (Fickenscher and

Wayt 2022). Marché Goodfood in Canada, which aimed to provide fast delivery services within 30 minutes,

is discontinuing its on-demand grocery delivery service due to financial struggles (Dufour 2022).

To help bridge the gap between the theory and practice, we aim to investigate how ultra-fast delivery

can be a profitable and reliable business while maintaining high customer service levels that are neither

overly optimistic nor pessimistic. In particular, we investigate how different measures of service can lead
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to distinct levels of cost and customer satisfaction. To maintain a high service level, the hope is to serve

customers within a target delivery time (defined as the duration taken for goods to be delivered) with high

reliability. Our purpose is to introduce models for the network design of ultra-fast delivery services in the

presence of uncertain travel time distributions and unknown time periods when customers place orders.

These models aim to maximize the profit while ensuring a certain service level by making the optimal

decisions of micro-depot location and customer order allocation. To reach this goal, our paper makes the

following contributions.

• We develop probabilistic envelope constrained (PEC) programs for the ultra-fast delivery problem with

various service measures, including “period” and “daily” service levels, which focus on equal performance

for each period and weighted-average daily performance, respectively. We solve the problem under “par-

tial” and “full” protection of the service level, compare the performance of these measures under different

guarantees, and identify the ones that yield a favorable trade-off between the profit and the violation of

service level constraints.

• To handle the practical issue of limited data, we develop robust programs when both the distribution

of travel time and the probability of customers placing orders in different time periods are not explicitly

known. We then derive equivalent semi-infinite linear programs and more tractable linear approximations

with a finite number of constraints.

• We carry out extensive experiments on a real-world dataset obtained from Amazon and the Google

API, and derive the following insights:

— There is a trade-off between the profitability and reliability of ultra-fast delivery. A shorter delivery

time promise results in higher demand and increased profit, but at the cost of more frequent violations of

on-time delivery.

— The robust formulation yields better out-of-sample performance, evident from its lower probability

of violating the target delivery time and smaller deviations from the target. This, in turn, promotes safer

decision-making in scenarios with limited data. Although it does entail a slight reduction in profits, this

trade-off could be deemed acceptable in light of the improved reliability of timely delivery.

— By optimizing the service level, we find that the daily service level with multi-layer partial pro-

tection on the promised delivery time outperforms other policies overall due to its higher profit and mild

out-of-sample violations, and therefore could be a promising trade-off strategy for an ultra-fast delivery

company to run a profitable business and maintain a good service level.

— Compared to urban areas, providing ultra-fast delivery services in rural areas, where customers are

more dispersed, is more challenging. This is due to the longer distances between delivery locations and the

necessity of setting up more micro-depots in rural regions.

The rest of the paper is organized as follows. We review the related work in Section 2, and then intro-

duce the ultra-fast delivery design problem in Section 3. Next, we present stochastic programming models
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and their equivalent reformulations in Section 4. In Section 5, we report the results of numerical studies

using real-world datasets to evaluate the effectiveness of our proposed models. Finally, we conclude with

managerial insights in Section 6.

2. Literature Review
In this section, we review the main studies relevant to our research from three points of view: facility

location, ultra-fast delivery, and robust chance constraint programming.

2.1. Facility Location

The network design of ultra-fast delivery services can be seen as a variant of the Facility Location Problem

(FLP), which is a well-known optimization problem in operations research and has been widely studied

(e.g. Aikens 1985, Verter 2011). The FLP aims to determine the optimal placement of facilities such as

stores, warehouses, factories, hospitals, and schools while satisfying the customer demand, in order to min-

imize the cost or maximize the profit. Numerous studies focusing on the FLP and its variants have taken

into account various forms of uncertainty in demand (e.g. Laporte et al. 1994), risk of facility failure (e.g.

Shen et al. 2011, Cheng et al. 2021), service times at facilities, or travel times between demand points and

facilities, leading to stochastic or robust location problems (e.g. Snyder 2006). The stochastic FLP is still

a prominent research topic, as researchers explore novel perspectives to model the problem and develop

efficient algorithms to improve solution procedures. For example, Li et al. (2022) study the reliable unca-

pacitated facility location problem, in which facilities are subject to uncertain and correlated disruptions.

They propose a cutting-plane algorithm that outperforms the best-known algorithm in the literature for the

stochastic problem under independent disruptions, specifically the search and cut algorithm proposed by

Aboolian et al. (2013). Liu et al. (2022) focus on a broad class of facility location problems in the context

of adaptive robust stochastic optimization under state-dependent demand uncertainty, and propose a nested

Benders decomposition algorithm to solve the model exactly. Shehadeh (2023) proposes two distribution-

ally robust optimization models for a mobile facility fleet-sizing, routing, and scheduling problem with

time-dependent and random demand, and solve the problem using a decomposition-based algorithm.

In contrast to existing studies on stochastic or robust location problems, our study focuses on ensuring

timely delivery service to customers under two sources of uncertainty: the travel time from facilities to

customers and the time period during which customers will place their orders.

2.2. Ultra-fast Delivery

Ultra-fast delivery is a special case of last-mile delivery and is popular in the food and grocery industry,

where it has extensively expanded in recent years with the rise of online ordering and delivery applications.

Some researchers, such as Chen et al. (2022a) and Feldman et al. (2023), investigate the revenue alloca-

tion between the restaurant and the food delivery platform and propose practical contracts to improve the
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profitability of food delivery services. Others propose novel ideas to enhance the efficiency of food delivery

services. For example, Cao and Qi (2023) propose the idea of selling grocery in public spaces with wheeled

stalls (i.e., self-driving mini grocery stores) to facilitate mobility, proximity, and flexibility of grocery deliv-

ery by avoiding the “last 100 meters”. We share the same goal of providing better service and generating

more benefits for food and grocery delivery. However, our perspective differs from theirs as we prioritize

providing ultra-fast service.

Travel time is an important performance metric for ultra-fast delivery services. Mak (2022) emphasizes

the importance of improving efficiency in city operations and effectively managing fulfillment operations

under tight delivery time windows for omni-channel retailers. With a common goal of offering efficient

operations and on-time delivery, many researchers also consider delivery time as a key measure in their

work. Some researchers aim to estimate travel times accurately to improve the delivery service. Perakis

and Roels (2006) investigate the effect of congestion on travel time and derive an analytical travel-time

function that integrates traffic dynamics and shock effects. Hildebrandt and Ulmer (2022) present offline

and online-offline estimation approaches to estimate arrival times, and find that accurate arrival times not

only raise service perception but also improve the overall delivery system by guiding customer selections,

effectively resulting in faster deliveries. Other researchers investigate the impact of delivery time and uti-

lize optimization to facilitate fast deliveries. Deshpande and Pendem (2023) provide empirical evidence

to show that fast deliveries drive sales by analyzing a mechanism that connects delivery performance to

sales through logistics ratings. Fatehi and Wagner (2022) notice that customers demand faster and cheaper

delivery services, and propose a crowdsourcing optimization model to provide fast and guaranteed delivery

services utilizing independent crowd drivers. Reed et al. (2022) develop a capacitated autonomous vehicle

assisted delivery problem involving the vehicle driving time, person walking time, and package loading

time, and demonstrate that autonomous vehicles can help save time for last-mile deliveries. Liu et al. (2021)

investigate the impact of delivery data on the on-time performance of food delivery service, and develop an

order assignment problem with travel-time predictors. Motivated by a large grocery chain store that offers

fast on-demand delivery services, Liu and Luo (2023) present a finite-horizon stochastic dynamic program

for driver dispatching and routing problem where on-time performance is the main target. Among those

that utilize optimization theory to foster fast deliveries, some of them also apply stochastic or robust opti-

mization since there are many sources of uncertainty when offering last-mile delivery services (see Fatehi

and Wagner 2022, Chen et al. 2022b, Mousavi et al. 2022, Liu et al. 2021, Liu and Luo 2023). However,

to the best of our knowledge, the only paper that mentions ultra-fast delivery is Kavuk et al. (2022), who

propose a real-life application of deep reinforcement learning to address the order dispatching problem of

Getir, an ultra-fast delivery company whose goal is to deliver to as many customers as possible within 15

minutes. Their deep reinforcement learning models predict which orders to accept and reject based on the

order characteristics such as the estimated delivery time.
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Compared to these papers, our work shares the same purpose of facilitating fast deliveries. The difference

is that we model it as a network design problem and aim to provide reliable and flexible ultra-fast delivery

services by considering various service measures across different levels of protection, by accounting for

uncertainties in travel time and order placement periods, and by viewing demand as a variable linked to

travel time.

2.3. Robust Chance Constraints and Probabilistic Envelope Constraints

A robust chance constraint is a type of constraint in optimization models requiring that a specific condi-

tion should be satisfied with a certain probability, even when the underlying probability distribution of the

uncertain parameters is not fully known or might vary within certain bounds. Its goal is to create solutions

that are robust and reliable when faced with perturbations in the uncertain parameters. Calafiore and Ghaoui

(2006) introduce a distributionally robust formulation for chance-constrained linear programs, and propose

a model that considers the worst-case distribution of the uncertain parameters instead of assuming a specific

distribution. Hanasusanto et al. (2015) investigate joint chance constraints where uncertain parameter dis-

tributions are only known to belong to an ambiguity set defined by the mean and support or an upper bound

on dispersion, giving rise to pessimistic or optimistic ambiguous chance constraints. Postek et al. (2018)

consider a robust optimization problem with ambiguous stochastic constraints, where only the mean and

dispersion information of the distribution of the uncertain parameters are known. Ghosal and Wiesemann

(2020) study the distributionally robust chance-constrained vehicle routing problem, which assumes that

the customer demands follow a probability distribution that is only partially known, and impose chance

constraints on the vehicle capacities for all distributions that are deemed plausible in view of the available

information.

A robust probabilistic envelope constraint (PEC), also known as a robust first-order stochastic domi-

nance (FSD) constraint, is a generalization of the robust chance constraint. FSD allows a decision-maker to

manage risk in an optimization setting by requiring their decision to yield a random outcome which stochas-

tically dominates a reference outcome in the first order. This technique has been investigated in Dentcheva

and Ruszczyński (2004), Luedtke (2008), Armbruster and Delage (2015), and Dai et al. (2023). A PEC

compensates for a deficiency in chance constraints, which is that the violation magnitude of the bounds

can be very large. This is because chance constraints only control the probability of success but provide

no control in the event of a failure. Instead, A PEC is able to bound the uncertainty by restricting both

the violation magnitude and probability. Xu et al. (2012) consider the robust optimization problem under

probabilistic envelope constraints, show that the problem of requiring different probabilistic guarantees at

each level of constraint violation can be reformulated as a semi-infinite optimization problem, and provided

conditions that guarantee polynomial-time solvability of the resulting semi-infinite formulation. Peng et al.

(2020) provide a two-stage stochastic programming model for locating emergency medical service (EMS)
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stations, consider probabilistic envelope constraints to account for the uncertainty in the requests of EMS

services, and apply the model to a real-world EMS system to demonstrate its effectiveness in improving the

EMS response times. In contrast to these papers, we apply robust PEC to offer speedy and reliable delivery

services and jointly optimize the location and allocation decisions and the service level guarantees.

3. Network Design Problem for Ultra-fast Delivery
In this section, we define the network design problem for ultra-fast delivery services, derive the demand

function that depends on the delivery time, and introduce a deterministic formulation for the problem.

DEFINITION 1. The network design problem for ultra-fast delivery (NDP-UD) is a multi-period

problem that involves locating micro-depots and assigning customers to them. Its objective is to maximize

the profit and ensure reliable delivery services, while taking into account the relationship between demand

volume and travel time, as well as uncertainties in the distribution of travel times and the probability of

customers placing orders in different time periods.

3.1. Notation

Let (N ,A) represent a directed bipartite network, where the node set N includes the set of customer

locations I and the set of potential micro-depot locations J , and the edge set A models the travel distance

lij from micro-depot j to customer i. We consider a planning horizon of |T | time periods and assume that

the length of each period t ∈ T is long enough to travel between nodes. We use boldface letters to denote

column vectors. Row vectors are represented using the transpose (superscript T ) of the column vectors. To

distinguish between the uncertain and deterministic values, we use a superscript ∼ for the random variable

and a superscript ∧ for the expected value. The notation τ̃ ∼F indicates that τ̃ follows the distribution F ,

and F ∈D states that distribution F resides in an ambiguity setD. To simplify notation, we omit specifying

i∈ I, j ∈J , and t∈ T .

The nominal demand (i.e., the number of potential customers) at location i in period t is d̄it, and the

revenue obtained by fulfilling per unit demand at customer location i is ri. The setup cost to open micro-

depot j is oj , and the delivery cost per unit of distance is c. The cost of hiring a driver for one period is

h, and each driver serves an average of m customers in each period. The delivery time is defined as the

duration of delivering the goods. Let s̃ijt be the travel time from micro-depot j to customer i in period t,

and aijt be the order preparation time. The delivery time of serving customer i from micro-depot j in period

t is τ̃ijt = s̃ijt+aijt, and we let τ̂ijt =E[τ̃ijt]. The target delivery time is τ̄ . We use variable yj = 1 to denote

that micro-depot j is open, and yj = 0 otherwise. The variable xijt takes value 1 if the demand at location i

is served by micro-depot j in period t, and 0 otherwise. The variable zt is the number of drivers needed in

period t. A summary of notation is provided in Appendix A.
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3.2. Demand Function

Customers generally have several options when ordering groceries, and they make their choices by maxi-

mizing their utility. We use the Multinomial Logit (MNL) customer choice model to represent the customer

behavior and choice probability. The MNL choice model is defined by the following:

(1) The decision maker is a customer who chooses a mode of ordering groceries.

(2) The choice set contains three options, including the ultra-fast grocery delivery service, the best competi-

tor, and opting out.

(3) The attributes include the delivery time and an independent source of randomness. Other features, such

as prices, are assumed to be the same for all options, although this assumption can be relaxed if needed.

(4) The decision rule is based on the customer utility. The higher the customer utility of an option, the

greater the probability of choosing it. The deterministic utility obtained by a customer at location i from

placing an order with the ultra-fast grocery delivery service in period t is denoted as Vit, and it depends

on the ultra-fast delivery time τuit. The random part is εit and is assumed to be independent and identically

Gumbel distributed (Talluri et al. 2004). Likewise, the deterministic utility derived from placing an order

using the competitor’s delivery service is denoted as V c
it. This utility depends on the best competitor delivery

time τ cit, with the addition of a random component εcit. We thus have the total utilities Uit and U c
it as:

Uit = Vit + εit, where Vit = g(τuit) = β0 +β1τ
u
it,

U c
it = V c

it + εcit, where V c
it = g(τ cit) = β0 +β1τ

c
it.

The utility of opting out is zero (i.e., V o
it = 0). The probability of customers at location i choosing the

ultra-fast grocery delivery in period t is:

Pit(ultra-fast) =
eµVit

eµVit + eµV
c
it + 1

,

where µ is a strictly positive scaling parameter that affects the level of randomness, and is assumed to be the

same for all individuals and alternatives (Ben-Akiva and Bierlaire 1999). We assume that the independence

from irrelevant alternatives (IIA) property is satisfied. That is, the relative likelihood of choosing any two

options is independent of the presence of other alternatives. As stated by Wang (2021), to relax the IIA

assumption and allow more flexible substitution within the choice set, some generalizations such as the

nested logit model can be applied. We use the MNL model as a showcase to examine the effect of travel

time on the demand volume.

Let dijt be the captured demand volume at location i served by micro-depot j in period t. If customers at

location i are not served by micro-depot j in period t (i.e., xijt = 0), the captured demand volume is zero.

If customers at location i are served by micro-depot j in period t (i.e., xijt = 1), the probability of these

customers choosing the ultra-fast grocery delivery is:

Pijt(ultra-fast) =
eµg(τ̂ijt)

eµg(τ̂ijt) + eµg(τ
c
it) + 1

,
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where g(τ̂ijt) = β0 + β1τ̂ijt, and τ̂ijt = ŝijt + aijt,∀i, j, t. The demand function is always linear in the

allocation decision xijt:

dijt = Pijtd̄itxijt =
eµg(τ̂ijt)

eµg(τ̂ijt) + eµg(τ
c
it) + 1

d̄itxijt,∀i, j, t.

3.3. Deterministic Formulation

In practice, due to the real-time traffic congestion and variable weather conditions, the travel time from a

micro-depot to a customer location is uncertain. One way of handling this uncertainty is to measure the

average performance, leading to the following deterministic program (DP) for NDP-UD:

(DP) max
x,y,d,z

∑
i

∑
j

∑
t

(ri− c lij)dijt−
∑
j

(oj + c l0j)yj −
∑
t

hzt (1a)

s.t.
∑
j

xijt ≤ 1,∀i, t (1b)

xijt ≤ yj,∀i, j, t (1c)

dijt =
eµg(τ̂ijt)

eµg(τ̂ijt) + eµg(τ
c
it) + 1

d̄itxijt,∀i, j, t (1d)

x∈XAVG (1e)

zt ≥
1

m

∑
i

∑
j

dijt,∀t (1f)

x, y ∈ {0,1}, z ∈Z+. (1g)

The objective (1a) is to maximize the expected profit, taking into account the revenue generated from

all demands, the outbound cost for deliveries from micro-depots to customers, the opening cost of micro-

depots, the inbound cost for deliveries from a central depot to micro-depots, and the driver hiring costs

across all periods. We assume that one driver can on average serve m customers in each time period, and

that if the order is accepted, the duration between the order arrival and the successful assignment to a driver

is included in the preparation time. The constraints (1b) and (1c) require that each customer is served by at

most one micro-depot in each period, and that only open micro-depots serve customers. Using the findings

in Section 3.2, the constraints (1d) indicate that the demand is a function of customer utilities on different

delivery choices and is contingent upon average travel time.

DEFINITION 2. Average Service Level is a service policy that ensures on-time delivery for every cus-

tomer in each period by considering the average delivery time performance:

XAVG =

{
x∈R|I|×|J |×|T |

∣∣∣∣∣∑
j

τ̂ijtxijt ≤ τ̄ ,∀i, t

}
,

where XAVG contains all the allocation solutions that satisfy the average on-time delivery service.

The constraint (1e) conveys that the average delivery time of serving each customer in any period should be

no later than the target delivery time τ̄ . The constraints (1f) specify that the number of hired drivers in each

period should be enough to serve all the orders. The constraints (1g) are domain restrictions. We note that

DP is a mixed-integer linear program.
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4. Probabilistic Envelope Constrained Programs
Bounding only the expected travel time may be too lenient. Therefore, we now present a probabilistic

envelope constraint approach, which is an extension of chance constraint programming, to achieve different

on-time delivery service levels with different probabilities. We then derive tractable formulations when the

travel time distribution is explicitly known or unknown. We define and model the period service level with

an equal level at each period, and the daily service level by considering the average service level throughout

the entire day with uncertain frequency of customer orders. Finally, we present a stochastic program for the

NDP-UD, which can accommodate different service policies and handle various sources of uncertainty, and

also extend the program by jointly optimizing NDP-UD and the service level guarantees to avoid excessive

conservatism.

4.1. Chance Constraints

The delivery time τ̃ijt is a key performance measure of the service level and it is uncertain due to the uncer-

tain travel time. The chance constraint (CC) helps us model the condition that, for every customer served in

every period, the uncertain delivery time should be below the target delivery time τ̄ with probability at least

β ∈ [0,1]. This restriction is represented by the following constraints:

Pτ̃ (τ̃ijt ≤ τ̄)≥ β, ∀i, j, t∈
{
i∈ I, j ∈J , t∈ T

∣∣∣xijt = 1
}
.

Since we have x∈ {0,1} and τ̄ ≥ 0, the chance constraint is equivalent to

Pτ̃ (τ̃ijtxijt ≤ τ̄)≥ β,∀i, j, t.

Since
∑

j xijt ≤ 1, the chance constraint is also equivalent to

Pτ̃

(∑
j

τ̃ijtxijt ≤ τ̄

)
≥ β,∀i, t.

4.2. Probabilistic Envelope Constraints

A major downside of chance constraints is that they cannot avoid the long tail phenomenon. That is, for the

violated cases which might occur with probability 1−β, the magnitude of the violation could be very large.

To deal with this issue, we use the probabilistic envelope constraint (PEC) to bound the uncertain delivery

time by restricting both the probability and the degree of violation.

Compared to the chance constraint that guarantees a good delivery service at one specific level, the PEC

ensures that the customer satisfaction is protected at several levels under the uncertain delivery time. For

instance, to guarantee ultra-fast delivery, the retailer may require that any order should be delivered within

10 minutes with probability at least 70%, within 30 minutes with probability at least 80%, and within one

hour with probability at least 99%. Some violations are allowed on the initial target (i.e., 10 minutes), but
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for different magnitude (i.e., 20 minutes and 50 minutes), the probability of the violation (i.e., 20% and

1%) is bounded. Define the magnitude of the violation as v, and the probability of satisfying the new target

τ̄ + v as β(v). For each customer i served by any micro-depot in each period t, for any non-negative v, the

uncertain delivery time should be below τ̄ + v with probability at least β(v). The probabilistic envelope

constraint is

PEC: Pτ̃

(∑
j

τ̃ijtxijt ≤ τ̄ + v

)
≥ β(v),∀i, t,∀v≥ 0, (2)

where β :R+→ [0,1], and β(v) is a non-decreasing continuous function in v.

DEFINITION 3. Period Service Level is a service policy that ensures on-time delivery for every customer

in each period and guarantees a certain level of reliability for every possible delivery time:

XPEC :=

{
x∈R|I|×|J |×|T |

∣∣∣∣∣Pτ̃
{∑

j

τ̃ijtxijt ≤ τ̄ + v

}
≥ β(v),∀i, t,∀v≥ 0

}
. (3)

In other words, the set XPEC contains all the allocation solutions that satisfy PEC (2).

EXAMPLE 1. Suppose that β(v) := 1/( γ
v+α

+ 1), v ≥ 0 with nonnegative γ and strictly positive α. The

inverse function of β(·) is β−1(p) = γ/( 1
p
− 1)−α, for α

γ+α
< p< 1. See Figure 1 for an illustration of the

β(·) function for selected sample α and γ values.

Figure 1 β(v) envelope for selected sample α and γ values.

Given a specific value of v̄, the delivery time of any order should not exceed τ̄+ v̄ with probability at least

β(v̄). In this case, the constraint implies a single chance constraint. Therefore, PEC represents a stronger

constraint than CC.
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DEFINITION 4. Period Service Level with One-Layer Guarantee is a service policy that guarantees on-

time delivery for a specific delivery time:

XCC(v̄) :=

{
x∈R|I|×|J |×|T |

∣∣∣∣∣Pτ̃
(∑

j

τ̃ijtxijt ≤ τ̄ + v̄

)
≥ β(v̄),∀i, t

}
,

where v̄ is a given value. The set XCC contains all the allocation solutions that provide on-time delivery

service within τ̄ + v̄ minutes with probability at least β(v̄).

4.2.1. Reformulation with Known Distribution. One can assume that the randomness of the

travel time follows a known distribution F and obtain a tractable reformulation of XPEC .

PROPOSITION 1. If uncertainty τ̃ follows a known distribution F , XPEC can be reformulated as

XPEC =
{
x∈R|I|×|J |×|T |

∣∣xijt ≤Θijt,∀i, j, t
}
, (4)

where Θijt := I
{

supv≥0

(
Ψ−1
τ̃ijt

(β(v))− τ̄ − v
)
≤ 0
}

, I{·} is the indicator function, Ψτ̃ijt is the cumulative

probability function of τ̃ijt, and Ψ−1
τ̃ijt

(β) is its quantile at probability β.

The proof is presented in Appendix B.1.

REMARK 1. WhileXPEC only imposes an upper bound onx, calculating this bound requires evaluations

of a supremum over v ∈R+. Fortunately, one can exploit a piecewise constant approximation of β(·).

For any β(v), we can derive an outer and inner approximation of β(v):

βouter(v) =

|K|∑
k=1

β(vk+1)I
{
v ∈ [vk, vk+1[

}
(5a)

βinner(v) =

|K|∑
k=1

β(vk)I
{
v ∈ [vk, vk+1[

}
, (5b)

where {vk}k∈K is a discretization of [0,∞) and K= {1,2, ..., |K|}.

As shown in Figure 2, βouter(v) and βinner(v) are step functions under a finite number of steps k ∈ K.

A smaller step size represents a larger number of steps |K|, and leads to tighter approximations. Compared

to β(v), βouter(v) yields a smaller feasible set for x by requiring a higher probability of meeting the target,

while βinner(v) yields a larger feasible set by requiring a lower probability of meeting the target (i.e.,

βouter(v)≥ β(v)≥ βinner(v),∀v≥ 0).

COROLLARY 1. When β(v) is approximated by its outer and inner step functions (5), the value of the

indicator function on the right hand side is known, leading to the approximated reformulation of XPEC with

a finite number of linear constraints, as follows:

X outer
PEC ⊆XPEC ⊆X inner

PEC
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(a) |K|= 20 with the step size β = 0.05. (b) |K|= 100 with the step size β = 0.01.
Figure 2 Inner and outer approximations of β(v).

with

X inner
PEC :=

{
x∈R|I|×|J |×|T |

∣∣xijt ≤Θinner
ijt ,∀i, j, t

}
, (6)

X outer
PEC :=

{
x∈R|I|×|J |×|T |

∣∣xijt ≤Θouter
ijt ,∀i, j, t

}
, (7)

where Θinner
ijt := mink I

{
Ψ−1
τ̃ijt

(β(vk))− τ̄ − vk ≤ 0
}

, Θouter
ijt := mink I

{
Ψ−1
τ̃ijt

(β(vk+1))− τ̄ − vk+1 ≤ 0
}

.

4.2.2. Reformulation with Unknown Distribution. Under the case where the exact distribution

of travel time may not be explicitly known, we introduce the robust PEC:

Robust PEC: inf
F∈D

Pτ̃∼F

(∑
j

τ̃ijtxijt ≤ τ̄ + v

)
≥ β(v),∀i, t,∀v≥ 0, (8)

where D is the ambiguity set containing the true distribution.

ASSUMPTION 1. We consider that the distribution of travel times is unknown, but partial information

such as moments can be obtained from the dataset. In this case, the ambiguity set D represents a family of

distributions whose mean and covariance information are given:

D :=
{
F | τ̃ = τ̂ + δ̃, EF

[
δ̃t

]
= 0, EF

[
δ̃δ̃

T
]

= Σ
}
.

Let x∈XR−PEC be the solutions that satisfy the robust PEC (8). With the ambiguity set D,

XR−PEC :=

{
x∈R|I|×|J |×|T |

∣∣∣∣ inf
δ̃it∼(0,Σit)

P
{(
τ̂ it + δ̃it

)T
xit ≤ τ̄ + v

}
≥ β(v),∀i, t,∀v≥ 0

}
, (9)

where δ̃it ∼ (0,Σit) considers all the random vectors δ̃it ∈R|J | with mean 0 and covariance Σit such that

[Σit]j1,j2 = [Σ](i,j1,t)(i,j2,t).

REMARK 2. The NDP-UD with x ∈ XR−PEC is a semi-infinite program with an infinite number of

constraints, since the constraint has to be satisfied under any distribution in ambiguity set D and for any v.
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Similar to Calafiore and Ghaoui (2006) and Xu et al. (2012), who derived an equivalent and tractable

reformulation for the robust CC and PEC, respectively, we present the following result.

LEMMA 1. XR−PEC can be equivalently reformulated as follows:

XR−PEC =

{
x∈R|I|×|J |×|T |

∣∣∣∣∣τ̂ Titxit +

√
β(v)

1−β(v)

√
xTitΣitxit ≤ τ̄ + v,∀i, t,∀v≥ 0

}
. (10)

PROPOSITION 2. XR−PEC has an equivalent linear reformulation

XR−PEC =
{
x∈R|I|×|J |×|T |

∣∣xijt ≤Θijt,∀i, j, t
}
, (11)

where Θijt = I
{

supv≥0 τ̂ijt +
√

β(v)

1−β(v)
σijt− τ̄ − v≤ 0

}
. Specifically, in the case defined in Example 1 that

β(v) = 1
γ

v+α+1
, we have Θijt = I

{
τ̂ijt +α+

σ2ijt
4γ
− τ̄ ≤ 0

}
.

The proof is presented in Appendix B.2. The outer and inner approximations of XR−PEC with discretized

v are provided in Appendix C.1.

4.3. Probabilistic Envelope Constraints with Two Forms of Uncertainty

In practical scenarios, customers may order more frequently during lunchtime and dinnertime, and less

frequently in the early morning or late at night. Instead of providing an equal service level in each period, we

can evaluate the overall daily service level and prioritize those time periods with higher order frequencies.

Consequently, it becomes essential to consider the probability distribution of time periods during which

orders are placed and to ensure a certain service level across all periods within the entire day.

For each customer i served by any micro-depot j, the uncertain delivery time under uncertain period t̃

should be no more than τ̄ + v with probability at least β(v). The probabilistic envelope constraint with

period uncertainty (PECP) is

PECP: Pτ̃ ,t̃

(∑
j

τ̃ijt̃ xijt̃ ≤ τ̄ + v

∣∣∣∣∣∑
j

xijt̃ = 1

)
≥ β(v),∀i,∀v≥ 0. (12)

DEFINITION 5. Daily Service Level is a service policy that ensures on-time delivery service for each

customer throughout the entire day and guarantees a certain reliability for every possible delivery time:

XPECP :=

x∈R|I|×|J |×|T |
∣∣∣∣∣∣Pτ̃ ,t̃

(∑
j τ̃ijt̃ xijt̃ ≤ τ̄ + v

∣∣∣∑j xijt̃ = 1
)
≥ β(v),

∀i : P
(∑

j xijt̃ = 1
)
> 0,∀v≥ 0

 . (13)

The set XPECP contains all the allocation solutions that satisfy PECP (12).
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4.3.1. Reformulation with Known Distribution. Similar to Section 4.2.1, we assume full knowl-

edge of distribution of travel time from micro-depots to customers. Additionally, we consider a finite number

of periods in which each customer places orders with certain probabilities. We now reformulate XPECP into

a tractable formulation.

PROPOSITION 3. Consider a finite number of periods t ∈ T . In each period t, customer i places an

order with known probability qit. If the uncertainty τ̃ijt follows a known distribution F , we reformulate

XPECP into

XPECP =

{
x∈R|I|×|J |×|T |

∣∣∣∣∣∑
t

qit

(∑
j

[
Ψτ̃ijt(τ̄ + v)−β(v)

]
xijt

)
≥ 0,∀i,∀v≥ 0

}
, (14)

where Ψτ̃ijt is the cumulative probability function of τ̃ijt.

The proof is presented in Appendix B.3. This formulation states that for each customer i, the weighted-

average difference between the realized frequency and promised frequency is non-negative. The outer and

inner approximations of XPECP are provided in Appendix C.2.

4.3.2. Reformulation with Unknown Distribution. A second interesting case is when both the

travel time distribution and the probability of customers placing orders in each period are unknown. In this

case, we deal with the robust PECP.

Robust PECP: inf
qi∈Qi

inf
{δ̃it∼(0,Σit)}|T |

t=1

Pt̃∼q
{(
τ̂ it̃ + δ̃it̃

)T
xit̃ ≤ τ̄ + v

}
≥ β(v),∀i,∀v≥ 0, (15)

where Qi ⊆∆|T |, the probability simplex in R|T |.
Let XR−PECP be the set of solutions that satisfy the robust PECP, we have

XR−PECP :=

{
x∈R|I|×|J |×|T |

∣∣∣∣∣ inf
qi∈Qi

∑
t

qit

(∑
j

[Υijt(v)−β(v)]xijt

)
≥ 0,∀i,∀v≥ 0

}
,

where Υijt(v) = inf δ̃ijt∼(0,σ2ijt)
P
{
τ̂ijt + δ̃ijt ≤ τ̄ + v

}
. Now, the computational challenge comes from two

parts: the uncertainty set Qi and Υijt(v). To handle Qi, we make the following assumption.

ASSUMPTION 2. The uncertainty about qi is captured by

Qi :=
{
qi ∈R|T | | qTi e= 1, 0≤ qi ≤ 1,

∥∥∥Σ
− 1

2
qi (qi− q̂i)

∥∥∥
1
≤ Γ

}
,

where q̂i is the center of the uncertainty set, Σqi defines the shape of the set, and Γ is the radius.

PROPOSITION 4. If Assumption 1 and Assumption 2 are satisfied, XR−PECP has an equivalent semi-

infinite linear reformulation

XR−PECP =


x∈R|I|×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣

∀v≥ 0, ∃u1 ∈R|I|×|T |,θ1 ∈R|I|,θ2 ∈R|I|
q̂Ti u1i + Γθ1i + θ2i ≤ 0,∀i
u1it + θ2i ≥ β(v)xTitI −xTitΥit(v),∀i, t
θ1i ≥uT1i[Σ

1
2
qi ]t,∀i, t

θ1i ≥−uT1i[Σ
1
2
qi ]t,∀i, t


, (16a)
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where θ1,θ2,u1 are dependent on v, [Σ
1
2
qi ]t is the tth column of the matrix Σ

1
2
qi , and [Υit(v)]j =

(τ̄+v−τ̂ijt)2+
(τ̄+v−τ̂ijt)2++σ2ijt

with (y)+ = max(0, y).

Note that Υit(v) can be preprocessed and taken as a fixed value. The proof is presented in Appendix B.4.

The outer and inner approximations of XR−PECP are provided in Appendix C.3.

REMARK 3. When Γ = 0 and Σqi > 0, the last constraint in the uncertainty set Qi states that qi is

explicitly known and equal to q̂i (i.e., Qi := {q̂i}). In this case, XR−PECP is reduced to XR−PECP only

with uncertain travel time distribution:

XR−PECPT :=

{
x∈R|I|×|J |×|T |

∣∣∣∣∣∑
t

q̂it

(∑
j

[Υijt(v)−β(v)]xijt

)
≥ 0,∀i,∀v≥ 0

}
, (17)

where Υijt(v) =
(τ̄+v−τ̂ijt)2+

(τ̄+v−τ̂ijt)2++σ2ijt
.

REMARK 4. When Γ is a large value that makes the uncertainty set large enough to cover any possible

distribution of qi, the last constraint in uncertainty set Qi becomes redundant. For example, if Σqi is diag-

onal, the lowest upper bound of Γ is maxi
∑

tmax
{

[Σ
− 1

2
qi ]tt(1− q̂it), [Σ

− 1
2

qi ]ttq̂it

}
. Intuitively, if Γ is large

enough to cover the furthest node from the average value in terms of standard deviations, the robust PECP

is reduced to robust PEC.

REMARK 5. If the delivery time follows a known distribution, but the probability of placing orders in

each period is uncertain, XR−PECP is reduced to XR−PECPP only with uncertain period probability, which

has the following equivalent linear reformulation:

XR−PECPP :=


x∈R|I|×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣

∀v≥ 0, u1 ∈R|I|×|T |,θ1 ∈R|I|,θ2 ∈R|I|
q̂Ti u1i + Γθ1i + θ2i ≤ 0,∀i
u1it + θ2i ≥ β(v)xTitI −xTit Ψit(v),∀i, t
θ1i ≥uT1i[Σ

1
2
qi ]t,∀i, t

θ1i ≥−uT1i[Σ
1
2
qi ]t,∀i, t


,

where θ1,θ2,u1 are dependent on v, and [Ψit(v)]j is the cumulative probability function of δ̃ijt.

4.4. Stochastic Program and Linear Reformulation

If the daily service level is applied, the stochastic program under the uncertainty of the travel time distribu-

tion and period probability is

(SP1) max
x,y,d,z

∑
i

∑
j

∑
t

(ri− clij)dijt−
∑
j

(oj + cl0j)yj −
∑
t

hzt (18a)

s.t. (1b)− (1d), (1f)− (1g)

x∈X , (18b)

where X can be any one of the following sets: XCC , XPEC , XR−PEC , XPECP , or XR−PECP . The objec-

tive is the maximization of the expected profit. The location and allocation decisions are made to reach a
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certain service level that depends on X , including the period service level related to XPEC , daily service

level related to XPECP , and their variants. The computational challenge arises from the constraint (18b),

which can be reformulated as an equivalent semi-infinite linear program based on the linear reformulations

presented in Propositions 1 to 4. Furthermore, it can be approximated by a mixed-integer linear program

(MILP) with a finite number of constraints using the outer and inner approximations provided in Corollary 1

and Appendix C. To rephrase, X outer ⊆X ⊆X inner. Take XR−PECP as an example, we have the following

formulation SPR1 , which is an approximation of SP1:

(SPR1 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri− clij)dijt−
∑
j

(oj + cl0j)yj −
∑
t

hzt (19a)

s.t. (1b)− (1d), (1f)− (1g)∑
t

q̂itu
k
1it + Γθk1i + θk2i ≤ 0,∀i, k (19b)

uk1it + θk2i ≥
∑
j

[
β(vk+ε)−Υijt(v

k)
]
xijt,∀i, t, k (19c)

θk1i ≥
∑
t′

(uk1it′)(Σqi)
1
2
tt′ ,∀i, t, k (19d)

θk1i ≥−
∑
t′

(uk1it′)(Σqi)
1
2
tt′ ,∀i, t, k (19e)

Υijt(v
k) =

(τ̄ + vk− τ̂ijt)2
+

(τ̄ + vk− τ̂ijt)2
+ +σ2

ijt

,∀i, j, t, k. (19f)

SPR1 provides a relaxation or restriction of SP1 depending on whether ε= 0 or 1, respectively.

4.5. Stochastic Program with Optimized PEC and Linear Reformulation

In the chance constraint Pτ̃
(∑

j

τ̃ijtxijt ≤ τ̄ + v̄

)
≥ β(v̄), target τ̄ + v̄ being reached with probability

at least β(v̄) may lead to a high degree of violation on target or lead to a low profit, depending on

the value of v̄ and the shape of the β(·) function. To obtain a better service level with a lower viola-

tion on target, we proposed model SP1, where the service level has been fully protected on any possible

violations. However, such restrictive requirements could be too conservative in practice, inspiring us to

jointly optimize the service level along with the decisions. This optimization aims to ensure not only a

good service level but also a decent profit. To be specific, any set X containing v (i.e., XPEC , XR−PEC ,

XPECP , or XR−PECP ) can be considered as a variant X (v) that depends on v. In particular, for any v ≥
0, XR−PECP (v) :=

{
x∈R|I|×|J |×|T |

∣∣∣infqi∈Qi
∑

t qit

(∑
j [Υijt(v)−β(v)]xijt

)
≥ 0,∀i,∀v≥ v

}
. Other

sets are similarly defined. In this case, protections are imposed on any v ≥ v instead of v ≥ 0, and v is

considered as a decision variable to find the optimal service level guarantees.

(SP2) max
x,y,d,z,v

∑
i

∑
j

∑
t

(ri− clij)dijt−
∑
j

(oj + cl0j)yj −
∑
t

hzt (20a)

s.t. (1b)− (1d), (1f)− (1g)

x∈X (v),∀v≥ 0, (20b)
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where X (v) can be XPEC(v), XR−PEC(v), XPECP (v), or XR−PECP (v). We then discretize v into finite

steps and find the optimal steps that yield the maximum profit while maintaining a certain service level.

Take XR−PECP (v) as an example, the stochastic program can be reformulated into

(SPR2 ) max
x,y,d,z,u,θ

∑
i

∑
j

∑
t

(ri− clij)dijt−
∑
j

(oj + cl0j)yj −
∑
t

hzt (21a)

s.t. (1b)− (1d), (1f)− (1g), (19c)− (19f)∑
t

q̂itu
k
1it + Γθk1i + θk2i ≤ 0,∀i,∀k ∈ [|K|+ 1−n, |K|], (21b)

where n∈ [0, |K|] is the number of the to-be-guaranteed service levels, and |K| is the total number of steps

in the step function of β(v). When n = |K|, the constraints (21b) are imposed for all service levels. If

n= 0, the constraints can be interpreted in the way that our objective is to serve all the customers without

restricting the delivery time. The constraints (21b) specify that the service level is implemented starting

from serving customers within a long delivery duration τ̄ + v|K|, which is defined as a low service level;

and ending with serving customers within a short duration τ̄ , which is defined as a high service level. If the

higher service level is achieved (e.g. k= |K|−1), the lower one has to be satisfied (e.g. k= |K|). The larger

the number of the guaranteed levels, the shorter the target delivery duration. Other formulations for SP1 and

SP2 under different scenarios for uncertainty are presented in Appendix D.

5. Numerical Study
In this section, we first introduce the real-world dataset, the performance metrics, and the implementation

details. We then evaluate the performance of β approximation functions and compare formulations under

different service levels and uncertainties, including the period and daily service levels, the full, partial and

one-layer protection, and the robust and non-robust models. We also investigate the impact of different

factors and finally analyze the trade-off between the profitability and reliability for urban and rural areas.

5.1. Dataset and Implementation Details

We use the customer location dataset from four regions in the US (Los Angeles, Seattle, Tacoma, and

Orange) provided by Amazon (Merchan et al. 2021). For example, the customer location and density in

Los Angeles are shown in Figure 3(a). The darker the point, the higher the demand volume. We obtain the

distance and real-time travel time from the Google API. Specifically, for each arc between customer and

micro-depot locations, we collected 500 travel time samples at different time points from Jan 05, 2023, to

Jan 19, 2023. For example, Figure 3(b) shows the travel time distribution from micro-depot #1 (MD1) to

customer location #1 (C1). To test the out-of-sample performance, for each arc in each period, we generate

300 travel time samples using the gamma distribution, which best fits the real-world dataset, with the same

moment information (i.e., mean, variance, skewness) obtained from the real-world dataset. We use 100

samples as training and 200 samples as testing datasets.
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We simulate the demand distribution, the probability of placing orders in each period, and other cost

parameters as follows. We generate the demand distribution for 100 customer locations over 100 days using

a normal distribution with a mean of (5, 16, 14, 22, 6) for five periods (morning, lunchtime, afternoon,

dinner time, and night) and a variance of 10. The demand distribution for each period is presented in Figure

3(c). The probability distribution of customers placing orders in each period is generated based on the

demand distribution. In other words, for each location and each day, the probability of placing orders in

each period is proportional to the demand for that period relative to the total demand. Figure 3(d) illustrates

the probability of placing orders in each period for C1. The revenue of each order r is set at $3, the delivery

cost per kilometer c is $1, and the hiring cost h of each driver serving per unit demand in each period is $1.

Each driver serves an average of 10 units of demand in each period. The setup cost oj for opening the micro-

depot j in all periods of one day is $100, and changes between 0 and $500 in our sensitivity analysis. The

initial target delivery time τ̄ is set to 6 minutes, and varies from 5 to 8 minutes in our sensitivity analysis.

Since the allowed violation fluctuates from 0 to 38 minutes, the potential target delivery time changes from

5 to 46 minutes. The competitor delivery time τ c is set to 15 minutes, and varies from 2 to 20 minutes in

our sensitivity analysis.

(a) Customer locations and their density (Los Angeles) (b) Travel time distribution from MD1 to C1

(c) Demand distribution (d) Probability distribution of C1 placing orders
Figure 3 Statistic description of simulation environment
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To evaluate the performance of different formulations under various service levels and protection, we

compare the profit (i.e., the optimal objective value), the customer coverage proportion (i.e.,
∑
i,j,t xijt

|I||T | ×

100%), the demand fulfillment proportion (i.e.,
∑
i,j,t d̂ijt∑
i,t d̄it

× 100%), the number of open micro-depots

(i.e.,
∑

j yj), the violation probability, and the violation degree. The violation probability V p is defined

as the average violation probability among all customers in all periods for all discretized chance con-

straints that correspond to each service level (i.e., V p = 1
|I||T ||K|

∑
i,t,k V

p
itk). Specifically, for each cus-

tomer i in each period t, if the chance constraint at level k is violated, the violation probability is the gap

between the target probability and the true probability of serving customers on time (i.e., V p
itk = β(vk)−

PFo

(∑
j τijtxijt ≤ τ̄ + vk

)
, where Fo is the out-of-sample distribution); otherwise, the violation probabil-

ity is zero (i.e., V p
itk = 0). The violation degree is defined as the maximum amount of time that is beyond

the target delivery time among all customers in all periods for all discretized chance constraints (i.e., V d =

maxi,t,k V
d
itk). Specifically, for each customer i in each period t, if chance constraint k is violated, the

delayed time V d
itk is the gap between the highest possible delivery time and the target delivery time (i.e.,

V d
itk = maxτ̃∼Fo

∑
j τ̃ijtxijt − τ̄ − vk, where Fo is the out-of-sample distribution). The profitability is the

proportion of the profit that can be achieved compared to the best case that all customers can be served by

ultra-fast delivery.

We implement our algorithms using Python 3.7 on a computer with one 2 GHz Quad-Core Intel Core i5

processor and 16GB of RAM. We use Gurobi 9.0.2 as the solver.

5.2. Benchmark

We compare the different formulations from three aspects: (1) Service measures: period and daily service

levels. (2) Service level guarantees: one-layer on the service level (i.e., n= 1), full protection with the all-

layer guarantee (i.e., n= |K|), and partial protection with the multi-layer guarantee (i.e., n= [2, |K| − 1]).

Specifically, we employ the inner and outer approximations of β(v) as illustrated in Figure 2(a), with |K|=

20 and a step size of β set to 0.05. In this case, we implement a 20-layer guarantee as the all-layer guarantee

and a 15-layer guarantee (determined to strike an optimal balance between profitability and reliability) as

the multi-layer guarantee. (3) Source of uncertainty: formulations with or without the uncertainty in travel

time distribution and period probability (see Table 1).

5.3. Performance of β Step Function

To derive a linear reformulation with a finite number of constraints, we use the β step function to approx-

imate the β function. The larger the number of steps, the higher the accuracy, but the lower the efficiency

of the solution procedure. Figure 4 illustrates the performance of the approximation for different numbers

of steps. In the PEC formulation, βouter(v) (i.e., lower bound) and βinner(v) (i.e., upper bound) converge

rapidly, resulting in a gap ratio of 6.63% and an average runtime of 6 seconds when the number of steps is

set to 20. In contrast, for the PECP formulation, convergence is slightly slower, with a gap ratio of 8.24%
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Table 1 Reformulations of different service level under different level of uncertainty

Service
level

Formulation Uncertainty Set Linear reformulation

Period
PEC None XPEC See Proposition 1
Robust PECT Travel time distribution XR−PEC See Proposition 2

Daily

PECP None XPECP See Proposition 3
Robust PECPT Travel time XR−PECPT See Remark 3
Robust PECPP Period probability XR−PECPP See Remark 5
Robust PECPTP Travel time distribution;

Period probability
XR−PECP See Proposition 4

Notes. The subscript is the uncertainty of the robust formulation. For example, Robust PECPTP can be

read as Robust Probabilistic Envelope Constraint when considering Period probability under uncertain

Travel time distribution and Period probability.

(a) Optimal objective value (b) Runtime
Figure 4 Performance of approximation for different numbers of steps

and an average runtime of 23 seconds at 20 steps. Moreover, the upper bound tends to stabilize when the

number of steps exceeds 20. In other words, using the approximation βinner(v) to approximate the original

formulation yields limited improvement when increasing the number of steps from 20 to larger values. The

gap ratio eventually converges to zero at 200 steps, but at the cost of a lengthy preprocessing time, averaging

20 minutes, and 1-3 minutes runtime for optimization.

Insight 1 The inner and outer approximations are tight when the number of steps exceeds the number of

samples in the travel time distribution, as also noted by Peng et al. (2020). The approximations with 20

steps and a step size of β set to 0.05 perform well, yielding good results in terms of both efficiency and

accuracy.

5.4. Comparison Under Different Service Levels and Uncertainties

We compare the daily and period service levels with various layers of protection under different uncertain-

ties, as described in Section 5.2. Figure 5 displays the profit, customer coverage proportion, and the average
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performance in terms of out-of-sample violation probability and degree. As shown in each sub-figure, the

robust formulation always yields a lower violation but at the cost of some loss in profit. For example, the

robust formulation with daily service level under partial protection yields a lower out-of-sample violation

probability (i.e., 1.64%), a lower out-of-sample violation degree (i.e., 1.25 minutes), but also a lower profit

(i.e., $6601) than the non-robust formulation (i.e., 2.32%, 1.89 minutes, and $6817, respectively). That is,

the violation probability and violation degree decrease by 30% and 34%, respectively, in a positive manner.

However, the profit decreases by approximately 3%.

(a) Profit (b) Customer coverage proportion

(c) Out-of-sample average violation probability (d) Out-of-sample maximum violation degree
Figure 5 Performance on profit, coverage proportion, and violation

Figure 6 illustrates the change in the optimal objective value and the out-of-sample violation probability

as the radius Γ of the uncertainty set for the period probability q varies. When considering PECP with daily

service level, increasing Γ leads to larger uncertainty sets, higher protection against uncertain probabilities

of order placement in each period, worse objective values, decreased customer coverage, and reduced viola-

tions. The best case for PECP occurs when the probability of placing orders in each period is given (Γ = 0),

while the worst case is observed with high uncertainty on the probability of placing orders (Γ≥ 60), which

reduces to PEC with period service level. This observation holds true regardless of whether the travel time

distribution is explicitly known or not (see Remark 4).
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(a) Profit (b) Out-of-sample average violation probability

Notes. The three dashed lines represent the cases with the explicitly known travel time distribution, and the

three solid lines represent the cases with the unknown travel time distribution.
Figure 6 The impact of the radius Γ of the uncertainty set Q for the period probability q.

Table 2 Results of different formulations

Formulation Optimal
profit ($)

Number
of open
micro-
depots

Unused
micro-depot
indices

Customer
coverage
proportion

Violation
probability

Violation
degree
(minutes)

PECP 6500 10 [1,4,7,8,14] 96% 4.41% 1.38
PEC 5846 11 [1,4,7,14] 88% 1.74% 1.38
Robust PECPT 5413 11 [1,6,7,14] 80% 0.31% 1.21
Robust PECT 5086 12 [1,7,14] 76% 0.27% 0.53

Notes. The number of potential micro-depot locations is 15 to serve 100 customers.

Table 2 displays the open micro-depots under period and daily service levels corresponding to different

Γ, ranging from the deterministic case to the most robust scenario. We observe that greater robustness leads

to lower profits, reduced customer coverage, decreased violation probabilities, and a higher number of open

micro-depots. In other words, the ultra-fast delivery company opens more micro-depots to mitigate risk,

yet the coverage of customer locations still diminishes. This suggests that the significant perturbations in

customer order frequency and travel time can result in high costs and low revenue.

Insight 2 Value of the robustness: There is a trade-off between high profit and low violation in serving

customers on time. The robust formulations can yield lower violation probability and degree, but at the cost

of a loss in profit, reaching up to 16.7% in the experimental study.

As illustrated in Figure 5(a) and (b), the formulation with one-layer protection yields the highest profit

due to the highest coverage proportion. However, Figure 5(c) indicates that the violation probability under

the one-layer protection is much higher than that under full protection. The profit of the formulation with

full protection is significantly lower than that of the formulation with one-layer protection. Generally, the
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formulation with partial protection exhibits the best performance, yielding a decent profit slightly lower

than the best case, an acceptable violation probability that is at least half as low as the worst case, and a

stable violation degree observed in Figure 5(d).

5.5. Sensitivity Analysis

In this section, we examine the influence of the initial target delivery time, competitor delivery time, setup

cost, and number of layers on the results. We also present the efficient frontiers concerning profitability and

violation probability for both period and daily service levels under various levels of service level protection.

(a) Profit & Number of open micro-depots (b) Customer coverage & Demand fulfillment proportion

(c) Average violation probability (d) Maximum violation degree
Figure 7 The impact of the initial target delivery time on PEC and PECP

5.5.1. The impact of the initial target delivery time. Figure 7 shows the changes in profit, num-

ber of open micro-depots, customer coverage proportion, demand fulfillment proportion, violation proba-

bility, and violation degree as the initial target delivery time changes. A higher initial target delivery time

implies less restriction on service levels, resulting in increased profit and greater demand fulfillment. This

leads to a trade-off between service levels and fulfillment. Compared to the period service level (PEC),

the daily service level (PECP) always yields a higher profit with higher demand fulfillment and coverage

proportion (see Figure 7(a) and (b)). This fact is on account of two reasons: (1) Compared to PEC, PECP

considers the weighted-average performance among all periods instead of the equivalent performance for
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each period, leading to a less restricted requirement on the delivery time. (2) Since customers have a higher

probability of placing orders at the dinner time and lunch time, given the allowed daily violation, more

allowance will be put on these two periods to cover more demand and to yield a higher profit in PECP. The

out-of-sample violation probability is at most 2.6% and the violation degree is at most 1.6, which should

be acceptable in practice (see Figure 7(c) and (d)). More detailed results related to the initial target delivery

time in each period are shown in Appendix E.

5.5.2. The impact of the competitor delivery time. Figure 8 shows how the profit, number of

open micro-depots, customer coverage proportion, and demand fulfillment proportion change as the com-

petitor delivery time changes. As the competitor delivery time increases, the profit of ultra-fast delivery

(with the initial target being 6 minutes) increases with an increasing captured demand. The value is overall

stable when the competitor delivery time exceeds 10 minutes. The coverage proportion and the number of

open micro-depots keep consistent, which means the allocation decisions remain unchanged no matter how

the competitor service level changes. In this case, both the violation probability and degree also remain

steady.

Insight 3 The competitor delivery time does not affect the operations of allocating micro-depots to serve

customers, but only impact the demand volume captured by the ultra-fast delivery company. The slower the

competitor delivery, the higher the demand captured by the ultra-fast delivery.

(a) Profit & Number of open micro-depots (b) Customer coverage & Demand fulfillment proportion
Figure 8 The impact of the competitor delivery time on PEC and PECP

5.5.3. The impact of the setup cost. Figure 9 shows the changes in profit, number of open micro-

depots, customer coverage proportion, demand fulfillment proportion, violation probability, and violation

degree as the setup cost varies. The higher the setup cost, the fewer the open micro-depots. In this case,

the profit decreases with decreasing demand fulfillment and customer coverage proportions. The violation

probability and degree remain overall stable.
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(a) Profit & Number of open micro-depots (b) Customer coverage & Demand fulfillment proportion
Figure 9 The impact of the setup cost on PEC and PECP

5.5.4. The impact of the layers of protection. Figure 10 demonstrates the changes in profit, num-

ber of open micro-depots, customer coverage proportion, demand fulfillment proportion, violation proba-

bility, and violation degree with variations in the layers of protection. The more the layers of protection, the

more reliable the ultra-fast delivery service. When the number of layers increases, the profit first remains

unchanged and then decreases, due to a lower captured demand and a lower coverage proportion (see Figure

10 (a) and (b)). Both the violation probability and degree decrease (see Figure 10 (c) and (d)).

(a) Profit & Number of open micro-depots (b) Customer coverage & demand fulfillment proportion

(c) Average violation probability (d) Maximum violation degree
Figure 10 The impact of protection layers
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Insight 4 Value of the daily service level: Regardless of changes in the initial target delivery time, com-

petitor delivery time, setup cost, or layers of protection, the daily service level consistently outperforms the

period service level in terms of higher profit, greater coverage, and milder violations.

5.6. Efficient Frontier of Four Regions for Varying Service Guarantees

Inevitably, there is trade-off between the profit and the service level. The more the protection on the service

level, the lower the profit. The trade-off changes for different regions with varying customer densities. In

Figure 11, we display customer distributions in four regions and plot their profitability and out-of-sample

violation probability under varying layers of service level protection. Connecting these points forms an

efficient frontier of solutions for Los Angeles (LA), Seattle, Tacoma, and Orange, respectively. According

to the density of customer locations per square kilometer, we classify LA (33 customers/km2) and Seat-

tle (42 customers/km2) as urban areas, while we consider Tacoma (18 customers/km2) and Orange (17

customers/km2) as rural areas.

Without any protection, each region achieves its 100% profitability by serving all customers, and the

violation probability of serving customers on time for rural areas is higher than that of urban areas. For all

cases, the steepest slope between points is that between the 10-layer and 15-layer points. By comparing

the slope between these two points of different regions, we find that the slope of urban areas is always

steeper than that of rural areas. That is, the violation probability is almost halved by only sacrificing 1−2%

profitability for urban areas, but by sacrificing 13−25% profitability for rural areas.

Insight 5 Compared to urban areas, where customers are more concentrated, maintaining a high service

level of on-time delivery is more challenging in rural areas, where customers are more dispersed. This is

due to the longer distances between delivery locations, necessitating the setup of more micro-depots in rural

regions.

Insight 6 Value of the multi-layer partial protection: Providing full protection with the lowest profitability

is too conservative, while offering no-layer protection with the highest probability of violating the promised

service level is too risky. A multi-layered partial protection strategy (e.g., using 15 layers) can strike a better

balance between the profitability and reliability.

In addition, the partial protection on the delivery time is reasonable in real-life, since the delivery com-

pany does not have to claim the on-time delivery service at all levels. For example, the company only needs

to claim that 75% of customers can be served in 11 minutes and that 99% of customers can be served in

43 minutes, instead of claiming the specific time it takes to serve each percentage of customers. Therefore,

applying the optimized service level with partial protection could be a good strategy for ultra-fast delivery

companies to run a profitable business and maintain a good service level.
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(a) LA (urban area, 100 customers, 33 customers/km2) (b) Efficient frontier of LA

(c) Seattle (urban area, 85 customers, 42 customers/km2) (d) Efficient frontier of Seattle

(e) Tacoma (rural area, 110 customers, 18 customers/km2) (f) Efficient frontier of Tacoma

(g) Orange (rural area, 135 customers, 17 customers/km2) (h) Efficient frontier of Orange

Notes. The colored numbers next to each point in the graphs represent the number of layers of protection.

Figure 11 Customer distributions and efficient frontiers under varying service guarantees
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6. Conclusion
The ultra-fast delivery service industry has emerged suddenly and expanded rapidly, but it also scales down

quickly, often due to business failures or bankruptcies. This prompts us to consider its profitability while

maintaining on-time and fast deliveries. To find an effective strategy for operating ultra-fast delivery ser-

vices, we model and solve a network design problem using probabilistic envelope constrained programs

under uncertainty in travel time distribution and period probability. We investigate both period and daily

service levels of ultra-fast delivery, considering various layers of service level protection. While the period

service level emphasizes equal service across periods, the daily service level prioritizes high-order fre-

quency periods and guarantees a certain service level for the entire day. The probabilistic envelope con-

strained programs are computationally challenging when the distribution of travel time and the probability

of customers placing orders in different time periods are not explicitly known. To address this, we derive

equivalent linear constrained programs with an infinite number of constraints and then propose outer and

inner approximations with finite linear constraints. We conduct a numerical study using a real-world dataset

provided by Amazon and obtained through the Google API.

The results reveal that the outer and inner approximations converge rapidly as the number of steps

increases. Additionally, the approximations becomes tight when the number of steps surpasses that of the

training samples. Notably, the approximation using 20 steps demonstrates good performance in terms of

both efficiency and accuracy. By comparing the out-of-sample performance, we observe that the robust

formulation can yield a lower probability of violating the target delivery time, and a reduced degree of

exceeding the bound in case of violation. However, this comes at the expense of a lower profit. When we

compare the performance of period and daily service levels under different layers of protection and inves-

tigate the impact of various factors on the results, we obtain the following managerial insights: (1) The

daily service level has an overall better performance than the period service level with higher profitability,

higher coverage, and mild violation. (2) Full protection provides low profitability and is overly conserva-

tive. On the other hand, offering either one-layer or no-layer protection with a high probability of violating

the promised service level is overly risky. Implementing multi-layered protection by optimizing the service

level guarantee could be a good strategy for an ultra-fast delivery company to run a profitable and reliable

business. (3) The competitor delivery time may not affect the allocation operations, but only impact the

demand volume captured by the ultra-fast delivery company. (4) Compared to urban areas, maintaining a

high service level is more challenging in rural areas where customers are more dispersed.

Our work has some limitations that could be addressed in future research. Specifically, we assume that

an unlimited number of drivers are available and that each customer can be served instantly upon placing an

order. However, real-world scenarios often involve batch processing, where one driver can serve multiple

customers located close to each other and who order within a short time frame. To account for this, it would

be necessary to determine the optimal batch size, the composition of orders within each batch, and the

assignment of batches to drivers.
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Appendix A: Summary of Notation

The notation is presented in Table 3.

Table 3 Notation

Index Description

I set of customer locations
J set of potential micro-depot locations
T set of time periods
K set of steps in �(v) step functions
X set of allocation decisions
Parameters Description

oj setup cost of micro-depot j
c delivery cost per unit of distance
r average revenue per order
d̄it nominal demand at location i in period t
lij distance between customer i and micro-depot j
s̃ijt uncertain travel time from micro-depot j to customer i in period t
⌧̃ijt uncertain delivery time from micro-depot j to customer i in period t
�̃ijt random part of uncertain delivery time from micro-depot j to customer i in period t,

i.e., �̃ijt = ⌧̃ijt � ⌧̂ijt
⌃ covariance matrix of �̃
⌧u
it delivery time from the assigned micro-depot to customer i in period t
⌧ c
it delivery time of the best competitor to serve customer i in period t
aijt order preparation time for customer i served by micro-depot j in period t
h hiring cost of one driver per period
m average units of demand served by each driver in each period
⌧̄ target delivery time
v maximum violation
� probability of meeting the target delivery time
qit probability of customer i placing an order in period t
⌃q covariance matrix of the observations of the period probability q
� radius of the uncertainty set of the period probability q
Decisions Description

xijt binary variable taking value 1 if customer i is covered by micro-depot j in period t,
and 0 otherwise

yj binary variable taking value 1 if micro-depot j is open, and 0 otherwise
dijt captured demand at location i served by micro-depot j in period t
zt number of drivers needed in period t

Appendix B: Detailed Proofs of Propositions

B.1: Proof of Proposition 1

Proof. We rewrite the PEC (2) as

inf
v�0

P⌧̃

(
X

j

⌧̃ijtxijt  ⌧̄ + v

)
��(v)� 0,8i, t. (A)

Since xijt 2 {0,1} and
P

j xijt  1, the above equation is equivalent to

xijt  I
⇢
inf
v�0

P⌧̃ {⌧̃ijt  ⌧̄ + v}��(v)� 0

�
,8i, j, t, (B)
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where I{·} is the indicator function. To show that (A), (B), we investigate two cases:

(1) When
P

j xijt = 0, we have xijt = 0. In this case, the left-hand side of equation (A) is equal to 1� �(v) since

{0 ⌧̄ + v} is always satisfied with probability 1. Thus, the equation (A) being 1 � �(v) � 0 is always feasible.

Additionally, the equation (B) is also feasible with the left hand side being equal to 0.

(2) When
P

j xijt = 1, let xij0t = 1 and xijt = 0 when j 6= j0. In this case, we have

(B) , inf
v�0

P⌧̃ {⌧̃ij0t  ⌧̄ + v}��(v)� 0,8i, t , (A).

Our next step is to assume that ⌧̃ follows a continuous distribution. We define  ⌧̃ijt as the cumulative probability

function of ⌧̃ijt, and  �1
⌧̃ijt

(�) as its quantile at probability �. We have

xijt  I
⇢
sup
v�0

 �1
⌧̃ijt

(�(v))� ⌧̄ � v 0

�
,8i, j, t.

B.2: Proof of Proposition 2

Proof. To simplify the robust PEC (8) even more, we can rewrite it as

I
⇢

inf
v�0,�̃it⇠(0,⌃it)

P
⇢⇣

⌧̂ it + �̃it

⌘T

xit  ⌧̄ + v

�
��(v)� 0

�
� 1,8i, t,

where I{·} is the indicator function. Exploiting that xijt 2 {0,1} and
P

j xijt  1, we get

X

j

I
(

inf
v�0,�̃ijt⇠(0,�2

ijt)
P
n
⌧̂ijt + �̃ijt  ⌧̄ + v

o
��(v)� 0

)
xijt �

X

j

xijt,8i, t,

which is equivalent to

xijt  I
(

inf
v�0,�̃ijt⇠(0,�2

ijt)
P
n
⌧̂ijt + �̃ijt  ⌧̄ + v

o
��(v)� 0

)
,8i, j, t.

Exploiting the reformulation (10) presented in Lemma 1, for each i, j, t, instead of verifying

inf
�̃ijt⇠(0,�2

ijt)
P
n
⌧̂ijt + �̃ijt  ⌧̄ + v

o
��(v)� 0,8v� 0,

one can simply verify whether

sup
v�0

⌧̂ijt +

s
�(v)

1��(v)
�ijt � ⌧̄ � v 0.

Hence, the robust PEC is equivalent to

xijt  I
(
sup
v�0

⌧̂ijt +

s
�(v)

1��(v)
�ijt � ⌧̄ � v 0

)
,8i, j, t,

which is linear in xijt, leading to a linear program.

In the case that �(v) := 1
�

v+↵+1
, the robust PEC is equivalent to xijt  I

n
⌧̂ijt +↵+

�2
ijt

4�
� ⌧̄  0

o
,8i, j, t. This

is because we can optimize v out of the equation and derive the optimal v⇤ =
�2
ijt

4�
� ↵. This optimal v⇤ exists and

is unique since F (v) = ⌧̂ijt +
q

�(v)

1��(v)
�ijt � ⌧̄ � v is concave with its second derivative (i.e., �1

4�
( v+↵

�
)�

3
2 ) being

negative.
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B.3: Proof of Proposition 3

Proof. Suppose that there is a finite number of periods t 2 T . For any customer i in each period t such that

P
⇣P

j xijt̃ = 1
⌘
> 0, the PECP (12) can be reformulated as

P⌧̃ ,t̃

 
X

j

⌧̃ijt̃xijt̃  ⌧̄ + v

�����
X

j

xijt̃ = 1

!
� �(v),8i,8v� 0 (22a)

⌘
P⌧̃ ,t̃

⇣P
j ⌧̃ijt̃xijt̃  ⌧̄ + v&

P
j xijt̃ = 1

⌘

Pt̃

⇣P
j xijt̃ = 1

⌘ � �(v),8i,8v� 0 (22b)

⌘

P
t qitP⌧̃

⇣P
j ⌧̃ijtxijt  ⌧̄ + v

⌘
P
⇣P

j xijt = 1
⌘

P
t qitP

⇣P
j xijt = 1

⌘ � �(v),8i,8v� 0 (22c)

⌘
X

t

qit

"
P⌧̃

 
X

j

⌧̃ijtxijt  ⌧̄ + v

!
I
 
X

j

xijt = 1

!#
� �(v)

X

t

qitI
 
X

j

xijt = 1

!
,8i,8v� 0 (22d)

⌘
X

t

qit

" 
X

j

xijt

!
P⌧̃

 
X

j

⌧̃ijtxijt  ⌧̄ + v

!#
� �(v)

X

t

qit

 
X

j

xijt

!
,8i,8v� 0 (22e)

⌘
X

t

qit

"
X

j

P⌧̃ {⌧̃ijt  ⌧̄ + v}xijt

#
� �(v)

X

t

X

j

qitxijt,8i,8v� 0, (22f)

⌘
X

t

qit

"
X

j

[ ⌧̃ (⌧̄ + v)��(v)]xijt

#
� 0,8i,8v� 0. (22g)

In the case that P
⇣P

j xijt̃ = 1
⌘
= 0, the constraint is redundant since it is always satisfied.

B.4: Proof of Proposition 4

Proof. According to the strong duality, we obtain the robust counterpart of (15) under the uncertainty set Qi =n
qi 2R|T | | qT

i e= 1, 0 qi  1,
���⌃� 1

2
qi (qi � q̂i)

���
1
 �

o
as follows:

infqi2Qi

P
t qit

⇣P
j [⌥ijt(v)��(v)]xijt

⌘
� 0,8i,8v� 0

⌘ supqi2Qi

P
t qit (�(v)x

T
itI �xT

it⌥it(v))  0,8i,8v� 0

⌘ supq �
⇣P

t etx
T
it (�(v)I �⌥it(v))

���Qi

⌘
 0,8i,8v� 0

⌘ infu1,u2,✓1
q̂T
i u1i +�

���⌃
1
2
qiu1i

���
1
+ ✓2i  0,8i,8v� 0

s.t. u1i +u2i =
P

t etx
T
it (�(v)I �⌥it(v)) ,8i

✓2i � u2it,8i, t
⌘ infu1,✓1,✓2

q̂T
i u1i +�✓1i + ✓2i  0,8i,8v� 0

s.t. u1it + ✓2i � �(v)xT
itI �xT

it⌥it(v),8i, t
✓1i �uT

1i[⌃
1
2
qi ]t,8i, t

✓1i ��uT
1i[⌃

1
2
qi ]t,8i, t,

where et 2 R|T | is the tth column of the identity matrix, �(⌫|Qi) = supqi2Qi
qT
i ⌫ is the support function of Qi,

and [⌃
1
2
qi ]t is the tth column of the matrix ⌃

1
2
qi . Note that u1,✓1,✓2 are dependent on v. Additionally, ⌥ijt(v) =

inf �̃ijt⇠(0,�2
ijt)
 �̃ijt

{⌧̄ + v� ⌧̂ijt}, and can be reformulated as:

⌥ijt(v) =
(⌧̄ + v� ⌧̂ijt)2+

(⌧̄ + v� ⌧̂ijt)2+ +�2
ijt

,
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where (y)+ :=max(0, y). This is because

⌥ijt(v) = inf
�̃ijt⇠(0,�2

ijt)
P
n
⌧̂ijt + �̃ijt  ⌧̄ + v

o
= sup

"
� : inf

�̃ijt⇠(0,�2
ijt)

P
n
⌧̂ijt + �̃ijt  ⌧̄ + v

o
� �

#

= sup[� : ⌧̂ijt +�ijt

p
�/(1��) ⌧̄ + v] = sup

"
� : �

(
(⌧̄+v�⌧̂ijt)

2

(⌧̄+v�⌧̂ijt)2+�2
ijt

if ⌧̄ + v� ⌧̂ijt � 0

0 otherwise

#
.

=
(⌧̄ + v� ⌧̂ijt)2+

(⌧̄ + v� ⌧̂ijt)2+ +�2
ijt

Appendix C: Linear Program Representation of Outer and Inner Approximations

The feasible sets of x, including XPEC , XR�PEC , XPECP , and XR�PECP , can be reformulated into a finite set of

linear constraints using their respective outer and inner approximations. This section covers the presentation of these

approximations, with the exception of the approximations for XPEC , which are discussed in the main text.

C.1: Outer and Inner Approximations of XR�PEC

COROLLARY 2. When �(v) is approximated by its outer and inner step functions (5), the approximated reformu-

lation of XR�PEC(v) is

X outer
PEC

�
{vk}k2K

�
✓XPEC(v)✓X inner

PEC

�
{vk}k2K

�

with

X inner
R�PEC

�
{vk}k2K

�
:=

�
x2R|I|⇥|J |⇥|T |

��xijt ⇥inner
ijt ,8i, j, t

 
, (23)

X outer
R�PEC

�
{vk}k2K

�
:=

�
x2R|I|⇥|J |⇥|T |

��xijt ⇥outer
ijt ,8i, j, t

 
, (24)

where ⇥inner
ijt :=mink I

n
⌧̂ijt +

q
�(vk)

1��(vk)
�ijt � ⌧̄ � vk  0

o
and

⇥outer
ijt :=mink I

n
⌧̂ijt +

q
�(vk+1)

1��(vk+1)
�ijt � ⌧̄ � vk+1  0

o
.

C.2: Outer and Inner Approximations of XPECP

COROLLARY 3. When �(v) is approximated by its outer and inner step functions (5), the approximated reformu-

lation of XPECP (v) is

X outer
PECP

�
{vk}k2K

�
✓XPECP (v)✓X inner

PECP

�
{vk}k2K

�

with

X inner
PECP

�
{vk}k2K

�
:=

(
x2R|I|⇥|J |⇥|T |

�����
X

t

qit

 
X

j

⇥
 ⌧̃ (⌧̄ + vk)��(vk)

⇤
xijt

!
� 0,8i, k

)
, (25)

X outer
PECP

�
{vk}k2K

�
:=

(
x2R|I|⇥|J |⇥|T |

�����
X

t

qit

 
X

j

⇥
 ⌧̃ (⌧̄ + vk+1)��(vk+1)

⇤
xijt

!
� 0,8i, k

)
. (26)

C.3: Outer and Inner Approximations of XR�PECP

COROLLARY 4. When �(v) is approximated by its outer and inner step functions (5), the approximated reformu-

lation of XR�PECP (v) is

X outer
R�PECP

�
{vk}k2K

�
✓XR�PECP (v)✓X inner

R�PECP

�
{vk}k2K

�
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with

X inner
R�PECP

�
{vk}k2K

�
:=

8
>>>>><

>>>>>:

x2R|I|⇥|J |⇥|T |

�����������

9
�
uk

1 ,✓
k
1 ,✓

k
2

 |K|
k=1

q̂T
i u

k
1i +�✓

k
1i + ✓k2i  0,8i, k

uk
1it + ✓k2i � �(vk)xT

itI �xT
it⌥it(vk),8i, t, k

✓k1i � (uk
1i)

T [⌃
1
2
qi ]t,8i, t, k

✓k1i ��(uk
1i)

T [⌃
1
2
qi ]t,8i, t, k

9
>>>>>=

>>>>>;

. (27)

X outer
R�PECP

�
{vk}k2K

�
:=

8
>>>>><

>>>>>:

x2R|I|⇥|J |⇥|T |

�����������

9
�
uk

1 ,✓
k
1 ,✓

k
2

 |K|
k=1

q̂T
i u

k
1i +�✓

k
1i + ✓k2i  0,8i, k

uk
1it + ✓k2i � �(vk+1)xT

itI �xT
it⌥it(vk+1),8i, t, k

✓k1i � (uk
1i)

T [⌃
1
2
qi ]t,8i, t, k

✓k1i ��(uk
1i)

T [⌃
1
2
qi ]t,8i, t, k

9
>>>>>=

>>>>>;

. (28)

Appendix D: Linear Reformulation of Stochastic Program

The probabilistic envelope constrained program can be reformulated into linear programs with Corollary 1, 2, 3, and 4

for different scenarios. In this section, we present linear programs for each scenario, except the one presented in main

text (see Section 4.4 and 4.5).

D.1: Linear Reformulation of Stochastic Program with Proposition 1

When the travel time distribution is explicitly known, the probabilistic envelope constrained program SP1 and SP2 can

be reformulated as

(SPR
1 ) max

x,y,d,z,u,✓

X

i

X

j

X

t

(ri � clij) d̂ijt �
X

j

(oj + cl0j)yj �
X

t

hẑt

s.t. (1b)� (1d), (1f)� (1g),

xijt  I
n
max

k
 �1

⌧̃ijt
(�(vk+✏))� ⌧̄ � vk  0

o
,8i, j, t.

(SPR
2 ) max

x,y,d,z,u,✓

X

i

X

j

X

t

(ri � clij) d̂ijt �
X

j

(oj + cl0j)yj �
X

t

hẑt

s.t. (1b)� (1d), (1f)� (1g)

xijt  I
n
 �1

⌧̃ijt
(�(vk+✏))� ⌧̄ � vk  0

o
,8i, j, t, k 2 [|K|+1�n, |K|].

Note that ✏= 0 for relaxation and ✏= 1 for restriction.

D.2: Linear Reformulation of Stochastic Program with Proposition 2

When the travel time distribution is unknown, the SP1 and SP2 can be reformulated as

(SPR
1 ) max

x,y,d,z,u,✓

X

i

X

j

X

t

(ri � clij) d̂ijt �
X

j

(oj + cl0j)yj �
X

t

hẑt

s.t. (1b)� (1d), (1f)� (1g)

xijt  I
(
max

k
⌧̂ijt +

s
�(vk+✏)

1��(vk)
�ijt � ⌧̄ � vk  0

)
,8i, j, t.

(SPR
2 ) max

x,y,d,z,u,✓

X

i

X

j

X

t

(ri � clij) d̂ijt �
X

j

(oj + cl0j)yj �
X

t

hẑt

s.t. (1b)� (1d), (1f)� (1g)

xijt  I
(
⌧̂ijt +

s
�(vk+✏)

1��(vk)
�ijt � ⌧̄ � vk  0

)
,8i, j, t, k 2 [|K|+1�n, |K|].

Note that ✏= 0 for relaxation and ✏= 1 for restriction.
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D.3: Linear Reformulation of Stochastic Program with Proposition 3

When the travel time distribution is explicitly known but the period probability distribution is unknown, the SP1 and

SP2 can be reformulated as

(SPR
1 ) max

x,y,d,z,u,✓

X

i

X

j

X

t

(ri � clij) d̂ijt �
X

j

(oj + cl0j)yj �
X

t

hẑt

s.t. (1b)� (1d), (1f)� (1g)
X

t

qit

 
X

j

⇥
 (⌧̄ + vk � ⌧̂ijt)��(vk+✏)

⇤
xijt

!
� 0,8i, k.

(SPR
2 ) max

x,y,d,z,u,✓

X

i

X

j

X

t

(ri � clij) d̂ijt �
X

j

(oj + cl0j)yj �
X

t

hẑt

s.t. (1b)� (1d), (1f)� (1g)
X

t

qit

 
X

j

⇥
 (⌧̄ + vk � ⌧̂ijt)��(vk+✏)

⇤
xijt

!
� 0,8i, k 2 [|K|+1�n, |K|].

Note that ✏= 0 for relaxation and ✏= 1 for restriction.

Appendix E: The Detailed Impact of Target Delivery Time

(a) Coverage proportion, PEC (b) Total fulfilled demand, PEC (c) Maximal distance, PEC

(d) Coverage proportion, PECP (e) Total fulfilled demand, PECP (f) Maximal distance, PECP
Figure 12 The impact of initial target delivery time on PEC and PECP under different periods

Figure 12 illustrates how the initial target delivery time influences the results in each period. Across different time

periods, the coverage proportion changes in similar trends, with captured demand being proportional to the nominal

demand in each period. Additionally, there is a small variation in the maximal distance to travel from micro-depots to

customers.
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