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A fuel consumption prediction model for ships based on historical 

voyages and meteorological data 

Predicting the fuel consumption of a ship during a voyage is a challenging task, 

given the internal and external factors that influence it. This challenge has gained 

crucial importance in light of the regulations imposed by the International 

Maritime Organization, which aim to reduce greenhouse gas emissions from ships. 

The objective of this study is to develop a fuel consumption prediction model using 

data collected from bulk carriers. These predictions are to be used as input for a 

ship routing tool. We propose a predictive model of fuel consumption for these 

bulk carriers using a multiple linear regression model considering the propeller 

rotational speed and the speed loss due to wind, waves and currents. The results 

show that the estimated fuel consumption of the studied bulk carriers is strongly 

affected by the engine setting and the meteorological conditions. The developed 

model can predict fuel consumption accurately for more than 80% of the voyages 

of the dataset with a mean absolute error and a root of the mean squared error lower 

than 0.01 metric ton per nautical mile, and a mean absolute percentage error of less 

than 15%, making it useful for ship routing purposes. 

Keywords: green routing; ship energy efficiency; fuel consumption prediction; 

artificial intelligence; machine learning. 

1. Introduction 

Maritime transport is a key commercial area which accounts for more than 80 % of 

international freight transport. This sector is under high international pressure to reduce 

greenhouse gas emissions. As of April 2018, the International Maritime Organization 

(IMO) has adopted an initial strategy (Joung et al. 2020) regarding reducing greenhouse 

gas (GHG) emissions from vessels. This strategy aims, firstly, to reduce CO2 emissions 

per transport activity by at least 40% by 2030 compared to 2008, and secondly, to reduce 

the total volume of annual GHG emissions by at least 50% by 2050 compared to 2008. 

In the same perspective, and since January 2020, the IMO has imposed a new regulation 

that targets the reduction of sulfur oxide (SOx) emissions by lowering the limit of sulfur 
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content in fuel oil used by vessels from 3.5% to 0.5%. This and other future IMO 

regulations have a significant impact on shipping costs and further motivate the 

optimization of the performance of vessels. 

In order to control and optimize their performance, ships often rely on systems 

that provide weather routing. Zis et al. (2020) defined ship weather routing as the 

decision-making process that aims at selecting the optimal route in a given voyage. The 

optimality of the selected route depends on the chosen objectives, which can be the 

minimization of costs, voyage duration, or the reduction of potential delays and risks, all 

taking into account the forecasted meteorological conditions. Since fuel consumption 

represents about two-thirds of the cost of a voyage and more than a quarter of the overall 

operating costs of a vessel (Stopford 2008), its integration into the objectives to be 

optimized is crucial. 

In the existing literature, ship fuel consumption (SFC) models have been widely 

studied and classified into three distinct categories: the white box model (WBM), the 

black box model (BBM), and the gray box model (GBM). The WBM is based on the 

mechanism analysis, which includes the statics and dynamics of the vessel and can be 

divided into floating state and hydrodynamics analysis. It computes the resistances to 

which the ships are subjected during sailing and then converts them into fuel consumption 

according to the relationship between the ship and engine-propeller. For example, Tillig 

and Ringsberg (2019) presented a quasi-static simulation model based on empirical 

methods and standardized numerical hull and propeller series, which solves the force and 

moment balance for four degrees of freedom (surge, drift, yaw and heel). The article 

showcases the model's practicality through case studies involving two ships: a tanker and 

a PCTC, operating on a route in the Baltic Sea. Additionally, Fan et al. (2020) relied on 

the Monte Carlo simulation method to simulate the energy efficiency by using fuel 
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consumption data of the studied bulk carrier ship to verify the model. Constructing white 

box models requires a good knowledge in the field and access to technical details, which 

are frequently challenging to obtain. 

The second category concerns the BBM. This type of models is based on data 

analysis and uses different methodologies of statistical and machine learning models. For 

instance, Wang and Ji (2018) presented a novel ship fuel consumption prediction model, 

which utilizes the least absolute shrinkage and selection operator (LASSO) regression 

algorithm. This model incorporates 20 input variables, including main-engine status, 

cargo weight, ship draft, sea-states, weather conditions, and other relevant factors, 

sourced from data obtained from container ships. Hu et al. (2019) also employed machine 

learning techniques, namely the Back-Propagation Neural Network (BPNN) and 

Gaussian Process Regression (GPR), to predict fuel consumption using two datasets from 

one container ship. The inputs considered in their models include ship shaft, speed, 

average draft, trim, and weather data. Tarelko and Rudzki (2020) explored the application 

of artificial neural network (ANN) techniques to model ship speed and fuel consumption, 

considering a comprehensive set of inputs including speed, displacement, wind force, 

wind wave height, swell height, sea current factor, and trim. 

The last type of models is the GBM which combines aspects from the previously 

discussed WBM and BBM. The WBM and BBM can be combined either by introducing 

a WBM-based BBM for relationships that cannot be expressed as equations by the WBM 

or by introducing a BBM-based WBM model that can be used to check whether the output 

of the BBM is consistent. Many studies have been conducted on the optimization of ship 

fuel consumption using GBM as it is the case for Weiqiang and Honggui (2013), who 

used gray system theory to develop a model for predicting the diesel consumption of 

diesel generator sets. They analyzed the patterns in fuel consumption as running time 
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varies and compared the predicted diesel consumption obtained from the model with the 

actual measurements to assess the accuracy of the model. In the same context, Yuan and 

Nian (2018) developed a Gaussian process metamodel to predict the ship fuel 

consumption considering the effects of operational conditions such as speed and trim as 

well as the impacts of weather conditions such as wind and wave effects. By incorporating 

these factors into their predictive model, they aimed to accurately estimate ship fuel 

consumption under different scenarios. Coraddu et al. (2017) have also introduced two 

distinct Gray Box Models (GBMs) that effectively leverage both mechanistic knowledge 

of the underlying physical principles and available measurements. These GBMs served 

as predictive models for fuel consumption, employing data specifically obtained from a 

Handymax chemical/product tanker. Based on these models, the authors proposed a new 

strategy for optimizing the trim of a vessel. 

A recent literature review conducted by Fan et al. (2022) studied articles published 

between 2001 and 2021 that investigated ship fuel consumption (SFC) models. The 

review identified a gap in the generalizability of existing SFC models, which are often 

tailored to the specific characteristics and voyage data of individual ships, limiting their 

applicability to other vessels. Among the 24 articles analyzed, only Tran (2021), Işıklı et 

al. (2020), and Fan et al. (2020) focused on bulk carriers, which account for 

approximately 34.4% of the world's merchant fleet in terms of gross tonnage according 

to Equasis (2020). The majority of the remaining articles primarily addressed container 

ships, representing about 18 % of the world's merchant fleet in terms of gross tonnage. 

Furthermore, out of the three articles that considered bulk carriers, only Fan et al. (2020) 

incorporated meteorological factors, known to have a significant impact on fuel 

consumption. In the same literature review, various studies exploring fuel consumption 

prediction models which are based on regression analysis were examined. Gkerekos et al. 
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(2019) employed a diverse set of machine learning regression algorithms, relying on 

various measurements such as the propeller rotational speed, sea state, wind speed, 

propeller slip, draft, sea current, wind direction, and sea direction for daily fuel 

consumption prediction. Simonsen et al. (2018) estimated the hourly fuel consumption of 

cruise ships navigating Norwegian waters, based on Automatic Identification System 

(AIS) data and technical ship particulars, including service speed, total power, and the 

number of engines. Kim et al. (2021) developed models based on Artificial Neural 

Network (ANN) and Multiple Linear Regression (MLR), utilizing an extensive set of 

features such as the speed over the ground, speed through water, relative wind speed and 

direction, mean draught, trim, displacement for fuel consumption prediction. Farag and 

Ölçer (2020) introduces a model combining Artificial Neural Network (ANN) and Multi-

regression (M.R) to predict ship fuel consumption across varying sea environments, 

utilizing inputs like ship's speed, seawater depth, wave parameters, swell parameters, and 

current. 

In the present study, we develop an SFC model based on data from nine sister 

bulk carriers, sharing the same design and construction features, which presents an 

opportunity to address this gap in the generalizability of SFC models. Utilizing data from 

multiple sister bulk carriers, with a focus on the to the propeller rotational speed and the 

weather factors, significantly enhances the generalizability of the proposed SFC model 

and proves advantageous in cases where detailed travel information is limited. By 

capturing the common characteristics and operational patterns among these vessels, the 

model can effectively encompass a broader range of ships, thereby offering greater 

generalizability, particularly for a type of ship that has received limited research attention. 

Additionally, the inclusion of multiple sister ships ensures a representative sample, 

enhancing the robustness of the model. The derived knowledge and insights from this 
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approach can transcend individual vessels, facilitating the application of the model to 

similar ships, even those that were not originally part of the dataset. This broader 

applicability increases the practical utility of the developed SFC model and promotes its 

adoption in the maritime industry. 

Furthermore, it is important to underline that our study goes beyond the 

conventional consideration of the impact of weather conditions on ship fuel consumption. 

Our study integrates meteorological factors contributing to ship speed loss, particularly 

those resulting from wind waves and currents, which therefore takes into account the 

magnitude/speed of each component, as well as their respective directions, enabling a 

more comprehensive understanding of the influences on fuel consumption. The scope of 

our study provides valuable information to the marine industry, offering a comprehensive 

perspective that goes beyond the usual focus on the magnitude/speed, and direction of 

weather components. 

 For this purpose, a large dataset has been prepared, analyzed and used into a 

multiple linear regression (MLR) model for fuel consumption prediction. These 

predictions take into account the meteorological forecasts and the historical routes to 

ensure practical applicability and yield a high accuracy. The results show that the 

proposed model is able to predict the fuel consumption based on the propeller rotational 

speed, and the weather conditions of more than 80% of the voyages of the studied bulk 

carriers with a MAE and a RMSE lower than 10-2  metric ton per nautical mile. 

The rest of the paper is structured as follows. Section 2 describes the materials 

and methods employed in this study, including the problem formulation, data 

preprocessing, and the prediction model. The results obtained from applying this 

methodology to our dataset are presented in Section 3, followed by a discussion of these 

results in Section 4. Finally, the conclusion of the study is provided in Section 5. 
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2. Materials and methods 

This section first introduces a general formulation of the problem and then provides the 

details of the data acquisition, the preprocessing of the data, and the selection of variables 

for the modeling. Then, details are provided on the model and the solution proposed for 

this study. A graphical representation of the developed methodology is presented in 

Figure 1. 

 

Figure 1: The research methodology overview. 

2.1. Problem formulation 

This study aims to estimate the fuel consumption of bulk carriers, which is affected 

by several external and internal factors, including main and auxiliary engines, geometry 

of ship hull, propeller design, and other parameters. There is a classical relationship 

between the sailing speed and the fuel consumption per time unit which is: 

 F(v) = λ vn (1) 

λ > 0, n > 0, 
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where F represents the daily fuel consumption as a function of the speed v of the ship and 

λ is a positive scalar constant. The value of n in the formula is usually 3, but in practice, 

its value depends on the ship type and the speed (Bialystocki and Konovessis 2016). A 

recent study (Psaraftis and Lagouvardou 2023) reviewed various papers that question the 

validity of the cubic exponent in equation (1). These studies show that exponents lower 

than 3, and sometimes even lower than 2 or 1, seem to fit the data better. The study shows 

that these results, which violate the fundamental laws of hydrodynamics, are due to the 

fact that many models ignore the dependence between meteorological conditions and 

other factors, leading to misleading results when using regression analysis. The 

relationship (1) comes from the proportionality between power, speed, and resistance on 

one side and the proportionality between the power and the fuel consumption on the other 

side, as explained in MAN Energy Solutions (2018). It should be noted that our study is 

based on fuel consumption per distance rather than per time. This preference is explained 

by the fact that fuel consumption per distance gives a more complete perspective of a 

vessel's efficiency, taking into account the amount of fuel a vessel uses to cover a given 

distance, as well as the variability of sailing speeds, and provides a better assessment of 

a vessel's environmental footprint over the course of a voyage, making it a preferred 

metric for operational and environmental considerations in the marine industry. Since the 

speed of the ship is proportional to the propeller rotational speed measured in revolutions 

per minute (RPM) in calm water, the fuel consumption can be estimated as a function of 

the RPM too. Furthermore, and in order to approximate fuel consumption in a way that 

takes into account the actual performance of the vessels, it is essential to include 

information on weather conditions at sea such as wind, waves, and current (Wang and 

Meng 2012). 
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In order to accurately quantify the influence of meteorological conditions, 

including waves, wind, and current, on the fuel consumption of vessels, it is essential to 

consider the concept of speed loss, as extensively studied by Kim et al. (2017). In our 

study, we define the speed loss resulting from the additional resistance attributed to wind, 

wave, and current as the wind factor, wave factor, and current factor, respectively. The 

calculation of these factors is based on the diagram shown in the flowchart of Figure 2, 

where the authors provided a procedure to estimate ship speed loss due to wind and 

irregular waves in specific sea conditions. It involves estimating the added resistance due 

to waves (∆𝑅!"#$) and wind (∆𝑅!%&'), as well as considering variables such as 

propulsion efficiency (𝜂() and transmission efficiency (𝜂)). The total resistance due to 

wind and waves (𝑅*) is calculated by combining the predicted calm water resistance (𝑅+) 

Figure 2: Ship speed loss estimation. Adapted from Kim et al. (2017). 
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with the estimated added resistances. Finally, the ship speed loss is determined by 

comparing the achievable ship speed in the specific sea conditions (𝑉!) with the reference 

ship speed in calm water (𝑉,). 

The meteorological factors considered in our study hold significant importance as 

they encompass both the relative heading (see Figure 3) and the speed/height of wind, 

wave, and current. These factors are combined to yield a representative value  for each 

ship type, and to account for its specific physical characteristics.  

An additional factor to consider in our fuel consumption analysis is the propeller 

slip (Bayraktar and Sokukcu 2023). The ship's propeller, driven by the main engine and 

transmission equipment, operates according to variables such as RPM, running time and 

pitch value. These parameters are essential for calculating the theoretical distance the 

vessel should cover in one revolution of the propeller. However, real-life conditions 

introduce a series of external factors, including winds, currents, waves, the vessel's 

Figure 3: Illustration of weather direction relating to the heading of the vessel. 
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draught and hull fouling. These factors together contribute to the difference between the 

theoretical distance and the actual distance covered, which is the propeller slip. 

2.2. Data understanding 

Data on vessel performance during voyages is often collected either from so-called noon 

reports or from mounted sensors. In our study, we only deal with the noon reports reported 

by the captains every 24 hours. These reports have various information that can be divided 

into three categories: 

• Point identification: this category concerns the identification of each voyage 

between a port of departure and a port of arrival by a unique ID in addition to the 

identification of the current and future points of the vessel’s passage. 

• Spatio-temporal context: this category contains information on the latitude and 

longitude of each point of the vessel’s passage in addition to information on the 

date, time and distance sailed from the port of departure. 

• Vessel status: in this category, the captains report the remaining level of each type 

of fuel (intermediate fuel oil and marine gas oil), the speed over ground, the 

propeller slip and the propeller RPM at each point of the passage. 

In addition, our study benefits from comprehensive meteorological information 

received every 6 hours from our industrial partner. These meteorological reports provide 

information on the speed/magnitude and direction of wind, waves and currents, as well 

as precomputed speed loss values for each meteorological component, determined 

according to the methodology explained in the previous section. The noon reports and 

weather reports contain the information detailed in Table 1. 
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Table 1: Overview of the data 

Parameter                          Description  

VoyageId ID number given to each voyage between one origin and one destination 
PointId Unique ID number for each row of the database 
NextPointId The following point ID in the order of passage 
PointType The type of point (departure, arrival, noon report) 
VesselName Name of the vessel 
Passage The origin and destination of the voyage 
VoyageType Indicates whether the voyage is laden or ballast 
Latitude Latitude in degrees 
Longitude Longitude in degrees 
Distance The distance travelled since the last point (nautical miles) 
Date The time and date at which the point was crossed by the vessel 
TimeElapsedFromPreviousNoon Number of hours elapsed since the last noon report 
DistanceFromPreviousNoon Distance traveled since the last noon report 
IfoRemaining Quantity of intermediate fuel oil on board (metric tons) reported every 24 

hours 
MgoRemaining Quantity of marine gas oil on board (metric tons) reported every 24 hours 
RPM 
 
Slip 

Propeller rotational speed (revolutions per minute) reported every 24 hours 
Propeller slip (%) reported every 24 hours 

AverageSpeed The speed over ground in knots 
WindDirection The direction of the wind reported every 6 hours 
WindMagnitude The speed of the wind in Beaufort reported every 6 hours 
WindFactor The speed loss caused by the wind in knots reported every 6 hours 
WaveDirection The direction of the waves 
WaveMagnitude The height of the waves in meters reported every 6 hours 
WaveFactor The speed loss caused by waves in knots reported every 6 hours 
CurrentDirection The direction of the current reported every 6 hours 
CurrentMagnitude The speed of the current in m/sec reported every 6 hours 
CurrentFactor The speed loss caused by the current in knots reported every 6 hours 

 

2.3.Data preprocessing 

Noon reports represent a significant challenge as manual data entry has an impact on the 

quality of the developed models. The data quality could be low due to several reasons. 

One reason is that the remaining fuel meter is not accurate. Another is that the captain is 

not reviewing the current status in detail and may even use information from the previous 

day. Also, there may be contractual reasons to report inaccurate information to show 
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better (or worse) performance than actual. Therefore, the pre-processing of the data is a 

crucial step for modeling. 

2.3.1. Outlier removal 

In this step, we attempt to detect outliers in the data without compromising the relevant 

information we need. To accomplish this, we start with a visual inspection of the available 

parameters by plotting the dataset values and examining them for any extreme values that 

deviate significantly from the majority of the data points. Additionally, considering the 

specific characteristics of the vessel, such as its type, we also take into account the 

predetermined minimum and maximum values of, for example, the RPM that the vessel 

is designed to operate within, in order to identify and handle any data points that fall 

outside of these predefined limits. 

As a statistical method to detect outliers, we use the z-score which indicates the 

distance between a data point and the mean of the database divided by the standard 

deviation according to the following formula: 

 z = -	/	0
1
	, (2) 

where x is the value of the data point, μ is the mean of the data set, and σ is the standard 

deviation. Outliers are defined as points whose z-score is smaller or greater than a given 

threshold. 

2.3.2. Feature scaling 

Since the parameters of the ships have different ranges and units, it is important to scale 

them in the preprocessing stage. One of the most common feature scaling techniques is 

Min-Max normalization. This technique consists in scaling the features so as to have them 

bounded between 0 and 1 by the following relation: 
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 xm =
 x / xmin

xmax	/	xmin	
 , (3) 

where xm is the normalized value of the actual variable x. The values xmin and xmax are the 

minimum and maximum observed values of the variable x, respectively. The processed 

data is then used to train and validate the model. 

2.3.3. Feature engineering 

Feature engineering is an important process for data-driven modeling that consists of 

transforming raw data into features that more accurately represent the problem underlying 

the predictive model. This process includes two important steps: feature generation, 

through which new features are generated from existing ones and feature selection, which 

consists in selecting the relevant features that will serve as inputs for our model. 

Given the different frequencies of fuel consumption and meteorological reports, 

we have chosen to average the meteorological factors for each fuel consumption report 

by averaging them as shown in Figure 4. This operation aims at obtaining an average 

representation over 24 hours of the speed loss resulting from wind, waves and currents 

explained by the meteorological factors. At the end of this process, we have obtained 

three new features: averaged wind factor, averaged wave factor and averaged current 

factor. 

During the feature selection phase, we use a correlation coefficient, in particular 

Pearson's correlation coefficient, to determine which features affect our target variable, 

which is fuel consumption per nautical mile. The Pearson correlation coefficient is a 

statistical measure that evaluates the strength of the linear relationship or association 

between two continuous variables. It provides indications of the strength (magnitude) and 

direction of this correlation, helping us to make informed decisions on feature selection. 
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This methodology also plays a crucial role in preventing multicollinearity between our 

input variables, ensuring that our results remain unbiased and reliable. 

2.4.Prediction model 

Since our aim is to develop a predictive model that will be integrated into a weather 

routing system and, consequently, to have weights for each input to predict fuel 

consumption per distance unit, we are using regression analysis in our study. 

Regression analysis is among the most common statistical methods used for fuel 

consumption prediction in the literature (Fan et al. 2022). The multiple linear regression 

(MLR) is used to estimate the regression coefficients α0, α1, ..., αk, of equation (4), 

corresponding to each of the selected inputs in the feature selection step by minimizing 

the sum of squared residuals (SSR) according to the formula (5). 

 𝑦% = 𝛼2 + 𝛼3𝑥3% +⋯+ 𝛼4𝑥4% + 𝜖%   (4) 

 𝛼. = argmin5 ∑ (𝑦% − 𝛼2 − ∑ 𝛼6𝑥6%4
673

&
%73 )8   (5) 

Here, 𝑦% is the i-th observed value of the dependent variable y, 𝑥3% , 𝑥8% , … , 𝑥4% are the i-th 

observed values of independent variables 𝑥3, 𝑥8, … , 𝑥4, 𝜖% is the residual term, n is the 

sample size and k is the number of independent variables. 

Figure 4: Example of data averaging in the case of three meteorological reports in each 
fuel consumption report. 
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2.5.Evaluation 

In order to evaluate the accuracy of our predictions and to validate the model, we relied 

on a set of performance measures often used in the literature, namely the mean absolute 

error (MAE), the root of the mean squared error (RMSE), and the mean absolute 

percentage error (MAPE). The MAE provides an indication of the average absolute 

deviation between predicted and actual value, the RMSE penalizes larger errors more 

heavily, providing insight into the overall spread of the errors, while the MAPE measures 

the relative error in percentage terms and evaluates the model's performance in relation 

to the magnitude of the data. Therefore, using all three metrics provides a comprehensive 

assessment of the model's performance from different perspectives. 

We also employed the k-fold cross-validation (CV), a commonly used technique 

for model evaluation (Krstajic et al. 2014). This technique involves partitioning the data 

set into k folds, where each fold contains an equal-sized sample from the original data set. 

Among the k folds, k-1 folds are utilized for model training, while the remaining fold is 

used for model validation. This process is repeated k times, and the performance 

measures, including MAE, RMSE, and MAPE are calculated by averaging the results 

obtained over all the folds. The formulas for each of these performance measures are as 

follows: 

 MAE = 3
&
∑ |𝑦% −	𝑦.%|%  (6) 

 RMSE = A3
&
∑ (𝑦% −	𝑦.%)8%  (7) 

 MAPE = 322
&
∑ | 9!/	9:!

9!
|%  (8) 
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where 𝑦.% denotes the forecast value for the i-th observation 𝑦%. 

3. Results 

In this section, we present the results of each step of the proposed methodology (Figure 

1) , providing a comprehensive overview of the outcomes and insights gained throughout 

the evaluation process. 

3.1.Case study 

In our study, the prediction of fuel consumption has been performed on a set of nine sister 

bulk carriers having the same characteristics (see Table 2). The dataset provided by our 

industrial partner concerns 601 voyages of various durations (see Figure 5) sailed between 

2019 and 2021 with a total of 4337 noon reports (see Figure 6). 

 
Table 2: Main characteristics of bulk carriers 
Size  Handymax 

Engine  MAN-B&W 

Deadweight (metric tons)  40,481 

Gross tonnage (gt)  24,725 

Length overall (m)  176.65 
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Furthermore, for our analysis, we define a set of scenarios corresponding to the 

fuel consumption prediction model with different features as inputs, as summarized in 

Table 3. The first scenario corresponds to the cubic relationship between fuel 

consumption and the RPM. The second scenario extends this cubic relationship by 

incorporating meteorological factors. This scenario takes into account the meteorological 

factors available at each noon report, hence at the time of the report. To reflect the weather 

conditions over the past 24 hours before the noon report, we define scenario 3, which 

considers the averaged weather factors over 24 hours while maintaining the cubic RPM 

Figure 6: The distribution of the durations of the case study 
voyages (in days). 

Figure 5:The number of voyages (Left) and the number of noon reports (Right) for each 
bulk carrier.  
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speed. We also define two additional scenarios, 4 and 5. Scenario 4 is similar to scenario 

2 but includes the propeller slip feature along with meteorological factors at noon reports. 

Scenario 5 is the same as scenario 3, including the slip and thus considering the averaged 

weather factors. 

Table 1: Scenarios for predicting fuel consumption with various combinations of input 
features. 

  RPM3 Wind 
Factor 

Averaged 
Wind 
Factor 

Wave 
Factor 

Averaged 
Wave 
Factor 

Current 
Factor 

Averaged 
current 
Factor 

Slip 

Scenario 1 X               
         

Scenario 2 X X   X   X     
         

Scenario 3 X   X   X   X   
         

Scenario 4 X X   X   X   X 
         

Scenario 5 X   X   X   X X 
 

3.2.Data preprocessing 

At the outlier removal stage, we employed a two-step process consisting of visual 

inspection and z-score method to identify and remove outliers, as explained in Section 

2.3.1. The visual inspection involved thoroughly examining the dataset for any unusual 

or extreme values, while the z-score method was applied to calculate the z-scores for each 

data point and identify those with z-scores above a predefined threshold of 3 or below       

-3. In total, 5.68% of the data points were identified as outliers and removed from the 

dataset. The removal of these outliers resulted in changes in the distribution of the data, 

which can be observed in Table 4. This table presents descriptive statistics of the features 

that were identified as having the most impact on fuel consumption, both before and after 

the outlier removal process. 
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Table 2: Descriptive statistics of the most significant features before and after removing 
outliers 

Feature Before outliers removal After outliers removal 

  Mean Standard 
Deviation Minimum Maximum Mean Standard 

Deviation Minimum Maximum 

FuelConsumption 
(Mt/nautical mile)  

0.068 1.073 -49.705 56.785 0.066 0.010 0.022 0.113 

SpeedOverGround 
(knots) 

11.479 2.372 1.020 127.522 11.577 1.291 6.410 15.979 

RPM 81.093 8.670 7.200 470.000 81.226 5.881 55.520 96.000 

Slip (%) 1.936 6.097 -105.60 96.000 7.288 8.197 -22.000 38.650 

Wind Speed (Beaufort) 3.964 1.366 0.500 9.000 3.888 1.371 0.500 8.000 

Wind Factor (knots) -0.101 0.190 -4.000 0.000 -0.089 0.158 -1.395 0.000 

Wave Height (m) 1.860 1.067 0.020 10.190 1.764 0.991 0.020 7.330 

Wave Factor (knots) -0.352 0.693 -8.500 3.000 -0.272 0.507 -5.000 3.000 

Current Speed (m/s) 
 
 
Current Factor (knots) 

0.497 
 
 
-0.138 

0.442 
 
 
0.537 

0.019 
 
 
-3.690 

3.922 
 
 
3.260 

0.458 
 
 
-0.128 

0.411 
 
 
0.478 

0.019 
 
 
-3.140 

3.922 
 
 
2.120 
  

 

During the feature selection phase, our focus was on selecting the most relevant 

features that contribute to fuel consumption. Based on the coefficients presented in the 

correlation matrix (Figure 7), we decided to prioritize the RPM feature, which plays a 

significant role in determining the vessel's speed and its fuel consumption. Additionally, 
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we chose to include the averaged weather factors, namely the Averaged Wind Factor, 

Averaged Wave Factor, and Averaged Current Factor that provide a comprehensive 

representation of the combined influence of the direction and the speed/height of wind, 

waves, and currents as explained previously. Although the correlation coefficient for the 

propeller slip is important, it must be recognized that this value is often not available and 

cannot be reliably estimated before the sailing of the vessel. Consequently, despite its 

importance, we were unable to incorporate it into our predictive model at this stage. By 

selecting the RPM and the averaged weather factors, we ensure that our model, 

representing the pre-defined scenario 3, accurately captures the impact of these key 

elements on the vessel's performance. 

Figure 7: Correlation matrix 
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3.3.Modeling 

Since we proceeded to the scaling of the data before the modeling step, it is 

necessary to do a reverse scaling of the weights obtained in order to have the final 

estimated regression function and to make an analysis of the results. A summary of the 

regression performed is presented in Table 5. 

Table 3: Regression summary 

Variable Coefficient Standard error t-statistic P-value 
          
Intercept 3.89×10-2 7.02×10-4 55.53 0 
  

4.28×10/;  
 
1.23×10/<  

  
34.85 

  
0 RPM3 

          
Averaged Wind Factor -9.79×10-3 1.26×10-3 -7.76 0 
          
Averaged Wave Factor -7.24×10-3 3.25×10-4 -22.32 0 
          
Averaged Current Factor -4.32×10-3 3.36×10-4 -11.92 0 
          

 

3.4.Evaluation 

The cross-validation was performed using 10 folds, and the proposed model, 

corresponding to the scenario 3, achieved a MAE of 5.49×10-3 metric tons per nautical 

mile, a RMSE of 7.36×10-3  metric tons per nautical mile, and a MAPE of 8.40 %. The 

errors were calculated on all noon reports, with the minimum value of fuel consumption 

of 22×10-3  metric tons per nautical mile and the maximum value of 113×10-3  metric tons 

per nautical mile. We also conducted the same evaluation for the remaining scenarios, 

and the summary of the results is provided in Table 6. 
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Table 4: A summary of the MAE, RMSE and MAPE errors across the entire dataset for 
the predefined scenarios. 

  MAE RMSE MAPE 
Scenario 1 6.66×10-3   8.96×10-3    10.26% 
Scenario 2 6.10×10-3    8.30×10-3    9.42% 
Scenario 3 5.49×10-3    7.36×10-3    8.40% 
Scenario 4 4.59×10-3    6.53×10-3    7.10% 
Scenario 5 4.37×10-3    6.11×10-3    6.67% 

 

In addition to calculating the MAE. RMSE and MAPE on all the data, we also 

calculated residuals based on noon reports from the proposed model predictions using the 

following relationship: 

 Residual	% = 𝑦% − 𝑦.%  (12) 

 The distribution of the residuals (Figure 8) shows that 91.7% of the residuals are 

concentrated between -10-2 metric ton per nautical mile and 10-2 metric ton per nautical 

mile.  

Figure 8: Distribution of residuals across noon reports for the proposed model. 
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Since our data concern several voyages of the sister bulk carriers, it would be 

relevant to analyze the distribution of different types of errors across all voyages rather 

than only focusing on the average errors presented in Table 6. According to Figure 9, for 

the proposed model, 85.71% of the voyages have a MAE of less than 10-2 metric ton per 

nautical mile, while 82.51% show a RMSE within the same 10-2 metric ton per nautical 

mile threshold. Furthermore, 64.18% of the voyages achieve a MAPE below 10%, 

indicating highly accurate forecasting according to Montaño et al. (2013). Also, 93.39% 

of the voyages maintain a MAPE lower than 20%, which aligns with the 'good forecasting' 

criteria outlined in Montaño et al. (2013). 

Compared to a model based only on a cubic relationship with the RPM and lacking 

meteorological information (Scenario 1), our model demonstrates a lower error rate 

(Figure 10). 

Figure 9: Distribution of errors across voyages for the proposed model. 

Figure 10: Comparison of the error distribution among voyages for the proposed model 
and the cubic relationship. 
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Specifically, 79.62% of the voyages have a MAE lower than 10-2 metric ton per 

nautical mile, 72.79% of the voyages have a RMSE lower than 10-2 metric ton per nautical 

mile, and 50.92% of the voyages have a MAPE lower than 10%. Furthermore, the 

distribution of residuals (Figure 11) from the noon reports indicates that the errors of the 

cubic relationship are spread over the same value ranges as our model, but with less 

concentration around zero.  

Moreover, the correlation matrix in Figure 7 highlights the significance of 

propeller slip in influencing fuel consumption. Therefore, despite being a post-voyage 

calculation in our dataset, its inclusion among the features offers valuable insights into 

fuel consumption. Consequently, a comparative analysis is conducted between our model 

(Scenario 3) without propeller slip and the same model augmented with propeller slip as 

an explanatory variable (Scenario 5). 

Figure 11: Comparison of the residuals’ distribution among noon reports for the 
proposed model and the cubic relationship. 
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After incorporating propeller slip into our model, the distribution of voyage-based 

errors shows that 91.68% of voyages have an MAE below 10-2 metric ton per nautical 

mile. 89.34% indicate an RMSE below this threshold, and 78.25% manifest an MAPE 

below 10%. The inclusion of propeller slip has resulted in a reduction in error rates, as 

illustrated in Figure 12. 

The evaluation of the distribution of different types of errors (MAE. RMSE. and 

MAPE) across voyages was extended to the other scenarios. and a summary of the results 

is presented in Table 7. 

Table 5: A summary of the percentage of voyages with MAE and RMSE lower than   
10-2 Mt/nm and MAPE lower than 10% then lower than 15% for the predefined 
scenarios. 

  
MAE<10-2 

Mt/nm 
RMSE <10-2 

Mt/nm MAPE<10% MAPE<15% 

Scenario 1 79.63% 72.79% 50.92% 74.29% 
Scenario 2 81.64% 76.79% 58.26% 78.30% 
Scenario 3 85.71% 82.52% 64.18% 81.45% 
Scenario 4 90.48% 87.15% 76.96% 89.48% 
Scenario 5 91.68% 89.34% 78.25% 90.83% 

 

4. Discussion 

As previously mentioned in the results section, the proposed model successfully predicted 

the fuel consumption of nine ships with a MAE of 5.49×10-3 metric ton per nautical mile 

Figure 12: Comparison of the error distribution among voyages for the proposed model 
with and without the slip information. 
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and a RMSE of 7.36×10-3  metric ton per nautical mile, respectively. However, since the 

calculated performance measures do not account for the direction of errors, these average 

error values (MAE and RMSE) across the entire dataset alone may not fully reflect the 

accuracy of our model. By averaging the errors over voyages, we reduced the impact of 

direction cancellation (overestimation and underestimation cancellation) and observed 

that approximately 85% of voyages have average errors lower than 10-2 metric ton per 

nautical mile (Figure 9), which is still considered good performance considering the 

average fuel consumption. 

The distribution of residuals in noon reports (Figure 8) indicates that the majority 

of them are centred around zero, with roughly equal proportions of negative and positive 

values. This implies that our model's predictions are generally accurate despite the 

presence of certain outliers, which may be attributed to human factors affecting data 

quality. Since fuel consumption data in noon reports is manually recorded by captains, 

input errors may occur. Additionally, captains may intentionally report lower fuel 

consumption values due to contractual obligations or to avoid penalties, resulting in 

inaccurate or manipulated data. Furthermore, external factors such as measurement 

errors. equipment inaccuracies or variations in operating conditions could also contribute 

to the observed bias in the distribution of errors. 

The comparison between our model and the scenario 1 model shows that our 

model has fewer errors as it takes into consideration the meteorological conditions while 

retaining the cubic relationship between fuel consumption and RPM speed. This suggests 

that while the cubic relationship may be reliable in calm water conditions, it does not 

reflect the realities of sailing, which  involves navigating through meteorological 

conditions such as wind, waves, and currents.  
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Moreover, the results show that incorporating propeller slip into a predictive 

model (Scenario 5), where this information is available, reduces error rates and improves 

accuracy. This provides a deeper insight and a better understanding of the complex 

dynamics that influence fuel consumption as it accounts for the combined effects of 

engine resistance and weather conditions. 

The various predefined scenarios are based on the availability of meteorological 

data between noon reports or their absence, and then on the availability of information on 

the propeller slip. The summary Tables 6 and 7 allow us to conclude the importance of 

integrating meteorological conditions, given that the highest error rate is observed in 

scenario 1 when compared to the other scenarios. Additionally, the availability of 

meteorological reports between noon reports and their consideration (through the 

averaging of meteorological factors over the past 24 hours) has shown lower error rates 

than other scenarios that rely on a single meteorological value available at each noon 

report (scenarios 2 and 4). The availability of the propeller slip further reduced the error 

rate, but since this information is not available before the ships' voyage in our case, the 

best scenario is the scenario 3. 

5. Conclusion 

Fuel consumption is a crucial factor in optimizing the performance of ships during sailing 

and reducing greenhouse gas emissions, as targeted by the IMO in the coming years. In 

this study, we have presented a systematic methodology to develop a fuel consumption 

prediction model based on a commonly observed cubic relationship in the literature, while 

incorporating meteorological factors that reflect the speed loss due to wind, waves, and 

currents. The Multiple Linear Regression model was utilized to establish this cubic 

relationship between fuel consumption and the propeller rotational speed along with the 

meteorological factors. 
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Our model was trained and tested on a dataset of nine sister bulk carriers with 

similar physical characteristics, resulting in accurate fuel consumption predictions with 

over 80% of voyages having average errors of less than 10-2 metric ton per nautical mile. 

Furthermore, a comparison with the cubic relationship highlighted the impact of 

considering meteorological conditions in predicting fuel consumption, resulting in 

improved accuracy and reduced errors. The incorporation of the slip factor improved the 

model's performance too. However, a crucial limitation arises from the impracticality of 

utilizing slip as a predictive feature in our case. This is due to the unavailability of slip 

data before the vessel's voyage. In addition, our model enhances its representation of 

meteorological conditions by overcoming the traditional methodologies. Instead of using 

only the speed/magnitude of the meteorological components and projecting their 

direction, we use an approach in which we merge speed/magnitude and direction into a 

single measure: the speed loss induced by each of the winds, waves and currents. 

Further improvements to our model could be achieved by acquiring more high-

quality data to minimize the biases observed in our results. This could involve collecting 

data from a wider range of vessel types, routes, and operating conditions to increase the 

accuracy of the model. Additionally, it is important to note that the model currently relies 

on averaged weather factors, which may limit its ability to capture the full range of 

weather variations. Moreover, incorporating real-time data from onboard sensors, such as 

fuel flow meters, weather monitoring equipment, and navigation data, could improve the 

accuracy of the fuel consumption prediction model. 

In addition, the model could be extended to take into account other factors that 

affect fuel consumption such as vessel load, maintenance practices and operational 

procedures. By incorporating these variables into the model, it could provide more 
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comprehensive and accurate fuel consumption predictions for different vessels in various 

operational scenarios.  

The model presented in this study demonstrates significant potential as a valuable 

addition to weather routing systems when applied to various types of vessels. Integrating 

this model into existing systems could provide optimized routes that consider not only 

distance but also emissions in different weather scenarios. By incorporating emissions 

into the routing process, the routing system ensures that the proposed routes prioritize the 

reduction of environmental impact while maintaining efficiency. This integration aligns 

with the increasing emphasis on sustainability within the maritime industry and 

contributes to more environmentally conscious navigation practices. 

6. Acknowledgments 

The authors express their gratitude to True North Marine for supplying the data and 

verifying the results presented in this article and acknowledge the support of PROMPT 

and MITACS which funded this project. 

7. References 

Bayraktar M, Sokukcu M. 2023. Marine vessel energy efficiency performance prediction 
based on daily reported noon reports. Ships and Offshore Structures 1-10. 

Bialystocki N, Konovessis D. 2016. On the estimation of ship’s fuel consumption and 
speed curve: A statistical approach. Journal of Ocean Engineering and Science 1:157–
166. 

Coraddu A, Oneto L, Baldi F, Anguita D. 2017. Vessels fuel consumption forecast and 
trim optimisation: a data analytics perspective. Ocean Engineering 130:351–370. 

Fan A, Yan X, Bucknall R, Yin Q, Ji S, Liu Y, Song R, Chen X. 2020. A novel ship 
energy efficiency model considering random environmental parameters. Journal of 
Marine Engineering & Technology 19:215–228. 

Fan A, Yang J, Yang L, Wu D, Vladimir N. 2022. A review of ship fuel consumption 
models. Ocean Engineering 264:112405. 



32 
 

Farag YBA, Ölçer AI. 2020. The development of a ship performance model in varying 
operating conditions based on ANN and regression techniques. Ocean Engineering, 198, 
106972. 

Gkerekos C, Lazakis I, Theotokatos G. 2019. Machine learning models for predicting 
ship main engine Fuel Oil Consumption: A comparative study. Ocean Engineering, 188, 
106282. 

Hu Z, Jin Y, Hu Q, Sen S, Zhou T, Osman MT. 2019. Prediction of fuel consumption for 
enroute ship based on machine learning. IEEE Access 7:119497–119505. 

Işıklı E, Aydın N, Bilgili L, Toprak A. 2020. Estimating fuel consumption in maritime 
transport. Journal of Cleaner Production 275:124142. 

Joung TH, Kang SG, Lee JK, Ahn J. 2020. The IMO initial strategy for reducing 
Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. Journal of 
International Maritime Safety, Environmental Affairs, and Shipping 4(1):1-7. 

Kim M, Hizir O, Turan O, Day S, Incecik A. 2017. Estimation of added resistance and 
ship speed loss in a seaway. Ocean Engineering 141:465–476. 

Kim YR, Jung M, Park JB. 2021. Development of a fuel consumption prediction model 
based on machine learning using ship in-service data. Journal of Marine Science and 
Engineering, 9(2), 137. 

Krstajic D, Buturovic LJ, Leahy DE, Thomas S. 2014. Cross-validation pitfalls when 
selecting and assessing regression and classification models. Journal of Cheminformatics 
6(1):1-15. 

Moreno JJM, Pol AP, Abad AS, Blasco BC. 2013. Using the R-MAPE index as a resistant 
measure of forecast accuracy. Psicothema 25:500-506. DOI: 
10.7334/psicothema2013.23. 

Psaraftis HN, Lagouvardou S. 2023. Ship Speed vs Power or Fuel Consumption: Are 
Laws of Physics Still Valid? Regression Analysis Pitfalls and Misguided Policy 
Implications. Cleaner Logistics and Supply Chain 100111.  

Simonsen M, Walnum HJ, Gössling S. 2018. Model for estimation of fuel consumption 
of cruise ships. Energies, 11 (5), 1059. 

Solutions ME. 2018. Basic principles of ship propulsion. MAN Energy Solutions: 
Copenhagen, Denmark. 

Statistics E. 2020. The 2020 world merchant fleet statistics from equasis. Statistics from 
Equasis. 

Stopford M. 2008. Maritime economics 3e. Routledge. 

Tarelko W, Rudzki K. 2020. Applying artificial neural networks for modelling ship speed 
and fuel consumption. Neural Computing and Applications 32(23):17379–17395. 



33 
 

Tran TA. 2021. Comparative analysis on the fuel consumption prediction model for bulk 
carriers from ship launching to current states based on sea trial data and machine learning 
technique. Journal of Ocean Engineering and Science 6:317–339. 

Wang S, Ji B, Zhao J, Liu W, Xu T. 2018. Predicting ship fuel consumption based on 
lasso regression. Transportation Research Part D: Transport and Environment 65:817–
824. 

Wang S, Meng Q. 2012. Liner ship route schedule design with sea contingency time and 
port time uncertainty. Transportation Research Part B: Methodological 46(5):615-633. 

Weiqiang Y, Honggui L. 2013. Application of grey theory to the prediction of diesel 
consumption of diesel generator set. Proceedings of the 2013 IEEE International 
Conference on Grey systems and Intelligent Services (GSIS). IEEE. 

Yuan J, Nian, V. 2018. Ship energy consumption prediction with Gaussian process 
metamodel. Journal of Ocean Engineering and Science 152:655-660. 

 


