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Abstract

With the growing interest in leveraging space technologies to provide both knowledge and
services, the need for efficient space mission management also increases. Among all the re-
lated problems, the scheduling of tasks performed by observation satellites is not only crucial
for the astrophysical community, but it also poses challenging optimization problems, which
have been studied for nearly 30 years. The aim of this survey is to provide a comprehensive
overview of Satellite Scheduling Problems (SSPs), with a particular focus on applications.
First, we propose a novel literature classification of SSPs based on the main variants that
have been defined over the years. We address both imaging and communication tasks in the
context of Earth-centered missions and, for the first time, of outer space missions. Then,
for each class of problems we provide a review of the main contributions available in the lit-
erature, offering insights about solution methodologies. Finally, we outline some promising
future research directions.

Keywords: Satellite Scheduling Problems; Space missions; Earth Observation Satellites;
Imaging Scheduling; Communication Scheduling

1 Introduction

Space missions have attracted significant public attention since the 1960s, and especially in
recent years, as a means to explore and improve our knowledge of the Earth and the outer
space, with a focus on the Moon and Mars. Surprisingly, what was once deemed unlikely, such
as space tourism, has now become a realistic endeavor. Motivated by the numerous benefits
that the human presence in the Solar System may yield (see the Global Exploration Roadmap,
2018), several stakeholders, both public and private, are participating in the development of new
missions, making contributions both strategic and technical. Consequently, the space economy
has emerged as a prominent component of political strategies.

As defined by the Organization for Economic Cooperation and Development (OECD), the
space economy encompasses a wide range of activities and resource utilizations that generate
value and benefits for humanity while exploring, researching, understanding, managing, and har-
nessing space (OECD 2019, 2022). While the space economy’s societal impact is often associated
with Earth satellites, its concept can extend to planetary missions as well. Venturing beyond
Earth’s confines not only provides us with valuable insights into the Solar System, but also sheds
light on the birth and evolution of our own planet.

Investment in the space economy has become increasingly common and encouraged. However,
alongside advancements in technology and ground infrastructure to handle airborne resources like
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satellites or spacecraft, and in the exploitation of missions’ resulting data, there arises a pressing
need for effective resource management. First of all, planning a space mission requires the coor-
dination and work of several teams that try to balance the interest of many stakeholders (Coffin
1995). Moreover, space missions face the challenge of operating with limited resources (mainly
memory and power) to achieve scientific goals and justify the substantial investments required
to initiate them. In addition, planning space missions is operationally complex. First, it involves
the coordination of several research teams that aim to exploit specific instruments. Second,
the daily management is complicated by the fact that there are significant time delays (ranging
from minutes to hours) in the transmission of commands, actual execution, and reporting of
outcomes. Consequently, mission operations are often planned months in advance, through a
series of refinements and trade-offs to meet mission goals within constraints on power, data rate,
data volume, and time. All these factors call for optimization strategies to be implemented in
order to minimize risks and costs both before and during the mission.

In light of these considerations, significant efforts have been devoted in recent years to the
optimization of scheduling operations in space missions, particularly in the context of satellites
management. Among all the optimization problems related to it, Satellite Scheduling Problems
(SSPs) mainly concern the scheduling of operational tasks that have to be performed by a
single or by multiple observation satellites (i.e., satellites equipped with cameras able to observe
the surface of a planet). Their objective is to obtain a feasible schedule that maximizes some
objective function while respecting all the physical and operational constraints. SSPs can be
classified into two main categories. The first one involves the scheduling of scientific tasks that
can be performed by the camera(s) installed onboard a satellite. Particularly, we refer to the
so-called imaging or remote sensing tasks, which concern the observation of ground targets. The
second one involves the communication tasks between satellites and ground stations, for the
uploading of commands as well as the downloading of data. SSPs also include several variants
that relate to specific constraints of the problem and diverse applications.

The study of satellite scheduling dates back to the late 1960s, and first focused on address-
ing communication issues in military (Ahara and Rossbach 1967) and civilian contexts (Inukai
1979). These seminal works dealt with the problem of scheduling the transmission of data through
satellite antennas, to meet the increasing volume of long-distance TV, radio and telephone com-
munications (Prins 1994). Here, the satellite does not perform any activity autonomously, but
receives and transmits data between ground stations (Bourret et al. 1989, Ribeiro et al. 1989,
Granz and Gao 1992). Since then, there has been a growing interest in the scheduling of satel-
lites’ tasks, including imaging, data transfer, and communication. Figure 1 shows the results of
an analysis performed on Scopus, in which we looked for the documents where the following key-
words were used to identify the subject of the study, the kind of optimization problem, the type
of task, and the methodology, respectively: “satellite”, “scheduling|planning|management”, “col-
lection|acquisition|image|imaging|observation” - “transmission|downlink|communication”, “opti-
mization|heuristic”. This analysis confirms the increasing trend, which is strongly reflected in
the number of papers published per year, especially in the last decade, with a rapid growth since
2018.

One of the first studies dealing with the imaging SSP was the one of Bensana et al. (1996).
The authors described the daily management of an Earth Observation Satellite (EOS) and made a
comparison between several solution methods, both exact and approximate. The 2003 ROADEF
(French Operations Research & Decision Support Society) Challenge organized jointly with the
French National Center for Space Studies (CNES) further sparked interest in SSPs (see https:
//challenge.roadef.org/2003/en/). The challenge was about the scheduling of imaging tasks
on an EOS, in a simplified setting. The winner of the challenge developed an algorithm based on
simulated annealing for solving the scheduling problem (Kuipers 2003), while the second prize
winner proposed an algorithm based on tabu search (Cordeau and Laporte 2005).

After the ROADEF Challenge, several variants of the problem arose, to cope with the ad-
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Figure 1: Number of published articles per year (Scopus)

vancement of technology and the growing popularity of satellite missions, mainly orbiting around
the Earth. These advancements involve, among others, the exploitation of multiple satellites
systems, and the shared utilization of a satellite. In addition, some research has been directed
towards outer space missions, which have received more and more attention in the last decades.
One of the authors of the present article is currently working on the Mars Express mission and
has extensive experience in the actual planning and operations of space experiments (Orosei et al.
2018).

While a considerable amount of literature exists regarding the scheduling of tasks for Earth
observing satellites, few studies have been conducted on extraterrestrial missions. The abun-
dance of literature on EOS is justified by the prominent role that this kind of technology has
in our everyday life, serving various purposes such as monitoring natural phenomena, weather
forecasting, and telecommunications. This survey aims to comprehensively review the state of
the art in SSPs in both Earth and outer space missions for imaging and communication SSPs,
and to point out potential areas for future research. To provide a clear and useful overview, we
adopted a perspective focused on the diverse applications of the problem, examining most rele-
vant case studies found in the literature and describing exact and heuristic optimization methods
developed for the solution of the covered variants of the SSPs.

The remainder of this article is organized as follows: Section 2 introduces a literature clas-
sification to highlight the different types of SSPs, thus clarifying the structure of the survey.
Section 3 provides an overview of books and surveys related to the topic. Section 4 describes
SSPs applied to EOSs and presents solution methods proposed by various authors. Specifically,
it reviews imaging SSPs and its multiple variants, communication SSPs, and integrated SSPs.
Section 5 discusses the scheduling problems in outer space missions. Finally, Section 6 draws
some conclusions and outlines potential future research directions. A list of all the acronyms
used in this survey is available in the Appendix.

2 Literature Classification

The SSP has been addressed from different perspectives and in different variants. In this survey
we propose a novel classification based on problem characteristics as well as satellite and mission
characteristics. A schematic representation of the classification performed is shown in Figure
2. As outlined above, we extended our review to Outer Space (OS) missions other than Earth
Observation (EO) missions. In both cases the SSP has been increasingly studied, with a higher
growth rate and magnitude for EO.
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The SSPs can be classified into three main categories depending on the field of action. The
Imaging Scheduling deals with the selection and scheduling of imaging tasks, commissioned by
customers to be performed by the satellite in order to maximise user satisfaction. For the imaging
SSP applied to EO, which has been widely studied over the years, we further identified several
subcategories extending the standard problem to consider additional features to the application
domain. Specifically, relevant variants addressed in the literature are the following:

• Inclusion of large areas as observation targets.
• Use of realistic time-dependent representations of profits and transition time.
• Consideration of policies for the sharing of a satellite among different users.
• Occurrence of emergency tasks that generate the need for dynamic replanning.
• Study of the imaging scheduling in the presence of clouds.

The Communication Scheduling addresses the problem of scheduling the communications
between the satellites and the ground stations, by selecting the best available communication
windows. Finally, the Integrated Scheduling combines imaging and communication scheduling,
since they are strictly related.

Figure 2: Literature Classification

The technology underlying satellite operativity is in constant evolution. We can mainly
classify them into Conventional Satellite (CS) and Agile Satellite (AS). A CS has only a degree
of freedom for imaging (roll) and a fixed viewing direction, therefore it can only observe the target
during a fixed Visible Time Window (VTW), i.e., its observation Time Window (TW) coincides
with the target VTW. On the contrary, an AS has three degrees of freedom (roll, pitch, and
yaw), allowing manoeuvrability during and between image acquisitions (Lemaître et al. 2002).
Consequently, the direction and starting time of an observation are free and the target VTW
for an AS is longer than the corresponding observation TW, due to the satellite’s ability to look
ahead and look back (Figure 3). Moreover, the AS can possibly execute two or more observation
tasks within the VTW, as long as all operational constraints are satisfied (Wang et al. 2020).
Figure 3 shows the difference between the observation capacity of a CS and an AS. Both satellites
have a fixed-duration observation TW (white rectangle) to observe a target (gray rectangle). The
CS can only observe the target when it is exactly above it, as its camera has a fixed viewing
direction. The AS, on the other hand, can change its field of view, so that it can take advantage
of a longer VTW (black rectangle) and decide to place the observation TW before arriving above
the target, looking forward, or after, looking backward.
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Figure 3: Difference between the observation capacity of a CS (above) and an AS (below)

A particular type of agile satellite is the video satellite, capable of staring at targets for
longer observation times (Cui et al. 2018). Furthermore, a new generation of AS, called super
agile satellites, has been recently introduced. This kind of satellite can perform imaging of
ground targets during attitude maneuvering, allowing to perform non-along track observations
(Lu et al. 2021). Therefore, super-agile satellites do not require multiple observations for imaging
target sequences that are not parallel to satellite track or non-linear area, such as coastline and
borderlines (Wang et al. 2020). Clearly, along with the improvement of the observation capability
of an AS and the resulting increased efficiency of the imaging scheduling, the complexity of the
agile SSP, in comparison with the conventional SSP, increases too.

Regarding the satellite system composition, studies on SSPs address both single satellites
and constellations of satellites. This choice has an impact on the methods proposed, since the
scheduling of multiple satellites is more complicated. When scheduling a fleet or constellation
of satellites, one has more resources in terms of agents, memory, and power and more tasks can
be performed at the same time. As a consequence of this flexibility, the scheduling process has
many more decision variables.

Finally, the decision making process can be centralized in a ground station, correspond-
ing to the management center of the satellite, or delegated to the satellites themselves that
autonomously generate the plans, through software installed onboard. Since the autonomous
scheduling has different characteristics and solution methods compared to ground center schedul-
ing, we do not treat this problem in this survey.

To the best of our knowledge, we are the first to perform a comprehensive literature classifi-
cation focused on the application of the SSPs. As can be seen in the following section, existing
surveys on the SSPs adopt a methodology perspective and do not provide the reader with a
complete overview of the numerous subproblems existing in the SSPs, especially in the field of
imaging SSP.

3 Books and Surveys

Several books have been published that explore optimization in space-related problems. Ciriani
et al. (2003) discuss optimization problems in the space and air industry sectors. They mainly
refer to spacecraft design, trajectory optimization, and satellite management for the space indus-
try, and to airline and airport management for the air industry. Within the same book, Gabrel
and Murat (2003) present a chapter that focuses on the EOS mission planning and introduces
the Spot5 mission case study. This work will be further described in the next sections. The book
series by Fasano and Pintér (2013, 2019, 2023) presents advanced case studies and challenges
in space engineering, documenting advancements over the years. In the first chapter of Fasano
and Pintér (2013), the authors review optimization applications in space engineering. They
categorized the problems into ten classes, among which they describe planning and scheduling,
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observation data handling and remote monitoring, and cargo loading and unloading. In the
second volume, Mitrovic-Minic et al. (2019) present a framework consisting of a pre-processing
tool and an optimizer for planning and scheduling multiple missions. Chen et al. (2023) recently
provided an overview of the key technologies and the research status of task planning for EOSs.
They introduce the centralized and distributed EOSs task scheduling models, algorithms under
deterministic conditions, and dynamic scenarios of EOSs task rescheduling methods. Finally,
they describe the architecture of typical satellite task scheduling and planning systems.

Regarding SSPs, several surveys have been conducted, focusing on specific aspects or problem
variants:

• Wang et al. (2020) summarize current research on the imaging scheduling problem applied
to agile EOS. They discuss several formulations, both simple and advanced, to handle
various profit definitions, multiobjective functions, and autonomous models. They also
review solution methodologies, including exact methods, heuristics, metaheuristics, and
machine learning techniques.

• Xhafa and Ip (2019) survey SSPs primarily in relation to communication tasks, covering
problem variants and satellite deployment systems. They then extend their previous work
in Ip et al. (2022), deepening the description of the optimization algorithms for the solution
of the communication SSPs.

• Zhang et al. (2021) discuss the theoretical foundations and applications of the imaging SSP.
They also propose a classification of the problems and review model building approaches
and solution techniques.

• Wu et al. (2022) focus on autonomous SSPs, i.e., when task scheduling is performed onboard
the satellite, considering both imaging and communication tasks. They explore different
modeling methods and response/rolling strategies for autonomous planning. Additionally,
they survey heuristic, metaheuristic and machine learning approaches. They emphasize
multiple-satellite case studies as for communication architecture and synchronization.

• Li et al. (2023) review the research on the satellite range scheduling problem, which aims
to schedule general communications between satellites and ground stations (including ma-
neuvering, command uploading and data downloading). They analyze mathematical for-
mulations of the problem and then classify and summarize the common solution methods,
their characteristics, and application scenarios.

In comparison to previous related work, we make three primary contributions: (i) we address
both imaging and communication SSPs, providing a comprehensive overview for researchers
studying these problems; (ii) we survey several variants of SSPs and present them with an
application perspective, thus distinguishing our approach from existing surveys that primarily
focus on the solution methods; (iii) we include works that address SSPs for outer space missions.

This article does not cover optimization problems related to satellites other than the planning
and management of their activities. For other problems, we refer the interested reader to Hu
et al. (2018) for trajectory optimization, to Cerf (2013) and Barea et al. (2020) for active debris
removal, to Sun and Teng (2003) for satellite layout optimization (i.e., optimal placement of
equipment in a satellite module), and to Wang et al. (2021) for constellation design (i.e., optimal
selection of orbits and number of satellites for a new constellation). Similarly, solution techniques
for SSPs that fall outside the realm of Operations Research, such as machine learning (Herrmann
and Schaub 2023) and agent modeling (Schetter et al. 2003), are not included in this survey.

4 Earth Observation Missions

Earth observation missions play an increasingly important role in the space economy and are
essential for the understanding of the Earth and its environment, as EOSs are the major platform
for space image acquisition. An EOS can perform various tasks such as disaster surveillance,
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military oversight, and environmental monitoring. The images acquired by satellites are valuable
not only in territorial studies and related activities (e.g., agriculture or fishing), but also in
regional planning, education, and intelligence (Zhao et al. 2022). Therefore, EOSs’ management
is a topic of great interest in many scientific disciplines and in the context of Operations Research.
The management of an EOS concerns the generation of activity plans and communications plans,
in order to achieve the scientific goals and fulfill the stakeholders’ needs. An activity plan is
necessary to decide which task (observation) to perform and when, during the planning horizon.
The communication plan is essential since a contact between satellites and ground stations is
allowed only in particular TWs and in some cases could not overlap with operational windows
of the satellites.

Earth observation is enabled by the presence and frequent upgrade of satellites orbiting
around the Earth, which are launched and then managed by different research institutes, that
often collaborate and share satellites. The first artificial satellite orbiting the Earth was Sputnik
1, launched by the Soviet Union on 4 October 1957: scientists used it to study the ionosphere
by radio signals (Cracknell and Varotsos 2007). In the field of observation satellites, the first
photo of Earth from a satellite was taken by Explorer 6, launched by the National Aeronautics
and Space Administration (NASA)’s Jet Propulsion Laboratory, on 14 August 1959 (Uri 2020).
In 1972 the United States started the Landsat program, the largest program for the acquisition
of images of Earth from space (Wulder et al. 2019) and, finally, the first real-time satellite image
was acquired by the United States’s KH-11 satellite system in 1977 (Krebs). According to the
Index of Objects Launched into Outer Space, maintained by the United Nations Office for Outer
Space Affairs and to the Union of Concerned Scientists, there were 11,330 individual satellites
orbiting the Earth at the end of June 2023, but only 70% of them were active. Among these,
about 1200 satellites are devoted to Earth observation, mainly controlled by American companies
(Planet Labs, Spire Global) or Chinese and Russian Ministries of Defence. The greatest part
(almost 5000) are instead used for communication and were mostly launched by SpaceX (Starlink
constellation). Earth observation is attracting considerable attention and providing increasing
opportunities for the development of new services. As a result, in the following years many more
EOSs are expected to be launched. An example of this trend is observable in the European Space
Agency (ESA)’s program in Earth observation from 2010 to 2030 (Figure 4).

Figure 4: Developed Earth observation missions (ESA 2023)

Some real EOS or constellations of EOSs have been studied within the literature that ad-
dresses the EOS scheduling problem. Authors dealing with specific satellites delve into their
specific attributes and subsequently devise tailored solutions for the SSP. Satellites usually con-
sidered in Operations Research are:

• SPOT5 - Satellite pour l’Observation de la Terre (Bensana et al. 1996, Vasquez and Hao
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2001, Gabrel and Vanderpooten 2002, Gabrel and Murat 2003, Mansour and Dessouky
2010, Ribeiro et al. 2010): was a commercial EOS from the French Space Agency, active
from May 2002 to March 2015.

• KOMPSAT-2 - Korean Multi-purpose Satellite 2 (Jang et al. 2013): is an Earth-imaging/
environmental Korean satellite, launched on 28 July 2006.

• FORMOSAT-2/ROCSAT-2 - Republic of China Satellite-2 (Lin et al. 2005, Liao and Yang
2007): is a decommissioned EOS operated by the National Space Organization of Taiwan,
active from May 2004 to August 2016.

• COSMO-SkyMed - COnstellation of small Satellites for the Mediterranean basin Obser-
vation (Bianchessi and Righini 2008): is an Italian Earth-imaging constellation of four
identical satellites, launched between 2007 and 2010.

• PLEIADES (Lemaître et al. 2002, Bianchessi et al. 2007): is an environment-focused con-
stellation of two satellites, from the French CNES, launched in 2011 and 2012.

• RADARSAT-2 (Karapetyan et al. 2015): is a Canadian Space Agency (CSA) EOS, launched
on 14 December 2007.

In the remainder of this section, we will present a review of works focused on scheduling
imaging tasks, communication tasks, or a combination of both in Earth observation missions.
We will classify the imaging scheduling problem into several sub-problems, to specify different
applications and particular problem constraints.

4.1 Imaging Scheduling in EO

The imaging scheduling problem applied to satellites orbiting around the Earth has been inten-
sively studied in the literature. In the simplest version of the problem, a set of requests has to
be selected and scheduled on a satellite or constellation of satellites in order to maximize the
observation profit, while satisfying a set of complex operational constraints. Each satellite can
have different characteristics in terms of storage capacity, energy consumption, and maneuver-
ability. Each request has its weight or priority and concerns some specified area on the Earth’s
surface. The requests are collected from customers by the ground center that operates the satel-
lite and correspond to the input of the scheduling problem. Generally, the number of requests
is very large and not all the requests can be fulfilled given the limited satellite capacity and the
operational constraints. Hence, the imaging scheduling problem is an oversubscribed problem,
i.e., the amount of requests largely exceeds the amount of observations that a satellite system
can provide.

Users’ requests can be of two types: mono or stereo. For the mono type, each request is
observed only once, whereas for stereo requests, each target must be acquired twice in the same
direction but from different angles. Furthermore, an observation request can have one out of
two shapes: spot (i.e., a small circular area) or large polygonal area. Each observation request
can be transformed into a set of strips that cover it (Figure 5). A spot target can be covered
by a single strip, while a polygonal area may require several strips to be completely imaged (see
Section 4.1.3).

The constraints included in the imaging SSP are mainly temporal constraints and onboard
resources limitations, both energy and memory. Moreover, due to the satellite moving in its
orbit, target points or areas can be observed only in limited TWs. Furthermore, in other specific
download windows the spacecraft can communicate with the ground stations, download the data
collected and hence empty its memory. Some examples of typical constraints are:

• The satellite has a daily image acquisition time limit.
• Orbits have a maximum number of observations that can be scheduled.
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Figure 5: Examples of spot (on the left) and polygonal area (on the right) target

• The storage capacity onboard the satellite is limited.
• The satellite has limited energy to perform imaging and maneuvering.
• The satellite performs only an observation at a time.
• A pair of observations can be scheduled only if the setup time requirement between them

is satisfied.
• An observation can be scheduled if its weather conditions satisfy some given requirements.
• A minimum transition time for achieving the correct position has to be considered between

each pair of consecutive observation activities of the same resource.
The profit function reflects several criteria aggregating more or less explicitly commercial,

strategic or technical aspects. The simplest profit function maximizes the number of requests
satisfied by the schedule. In more advanced objective functions, each request is weighted by
its priority, reflecting client importance or demand urgency. Finally, different works introduced
multi-objective problems, to consider at the same time several goals together with profit max-
imization, such as the maximization of fairness of resource sharing and load balance, or the
minimization of energy costs and failure rate.

4.1.1 Conventional Satellite with no additional features

The first advancements in satellite technology were made by conventional satellites, which then
became the initial focus for the Operations Research community. The Conventional Satellite
scheduling problem, when examined in its basic form without additional features, stands as
the simplest version within the SSP domain. This version focuses only on fulfilling spot target
requests, with the satellite having a single opportunity to acquire them during its pass over the
designated area in a single orbit.

Many articles have been published on the Conventional SSP without additional features, both
in early and later years. To help the reader navigate this section, Table 1 provides an overview of
the references that are discussed here, along with their main characteristics. Particular emphasis
is put on test cases, which include many real-world satellites.

Early works. The imaging SSP was addressed for the first time in relation to the daily
scheduling of a single conventional EOS, in which each imaging request has a unique VTW. In
this framework, great attention was devoted to the multiple-camera satellite Spot5, which hosts
three cameras that can observe at most one target at a time and may not be used together. In
the imaging SSP applied on Spot5, as firstly described in Bensana et al. (1996), a set of mono and
stereo imaging requests is provided with different weights. Notably, in this problem an imaging
request coincides with the shot that can cover it (i.e., the photograph lasting as its VTW). Each
mono request can be fulfilled by any of the three cameras, while stereo requests need both the
front and the rear one. The problem aims to select a maximum-weight subset of observations
to be performed, while meeting three hard constraints: a minimum transition time between two
observations on the same camera, a limitation of the instantaneous flow of data, and a finite
satellite storage capacity. Bensana et al. (1996) compared exact and approximate approaches
to solve 20 instances of the Spot5 problem provided by CNES (see Bensana et al. 1999), in
both one-orbit or multi-orbit scenarios. The two sets of instances range from 67 to 364 requests
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Table 1: Summary - Conventional Satellites with no additional features

Reference
System Multiple Methodology

Test Cases
Composition Objectives Exact Heuristic

Bensana et al. (1996) SS ✓ ✓ Spot5
Vasquez and Hao (2001) SS ✓ Spot5
Gabrel and Vanderpooten (2002) SS ✓ ✓ Random Instances
Mansour and Dessouky (2010) SS ✓ ✓ Spot5
Ribeiro et al. (2010) SS ✓ Spot5
Wu et al. (2013) MS ✓ JB-3A, JB-3C, CBERS-1, CBERS-2
Xiaolu et al. (2014) MS ✓ Random Instances
Wu et al. (2017) MS ✓ JB-3A, JB-3C, CBERS-1, CBERS-2
Chen et al. (2018) MS ✓ Spot5, MTI, ORBVIEW-3, IKONOS-2, EO-1
Chen et al. (2019) MS ✓ HJ-1A, HJ-1B, HJ-1C
Luo (2020) SS ✓ Spot5, ZY-3, GF-1
Wu et al. (2022) MS ✓ Random Instances
Wang et al. (2023) MS ✓ Random Instances

Abbreviations: Single Satellite (SS), Multiple Satellites (MS)

and from 209 to 1057 requests, respectively. In particular, they test a Depth First Branch-and-
Bound (B&B), and a Russian Dolls search (a B&B algorithm on nested subproblems, in which
the results of each search is used in the following one, Verfaillie et al. 1996) within a Constraint
Satisfaction Programming (CSP) framework and a Best First B&B applied to an Integer Linear
Programming (ILP) formulation. These exact methods are compared with a greedy algorithm
and a tabu search. The Russian Dolls search proves to be the best exact approach for the one-
orbit instances, which include less than 400 variables. On the other hand, for the multiple-orbit
scenario it fails to find good solutions within the time limit, while tabu search always finds
the best solution. Shortly after, Vasquez and Hao (2001) translated Bensana et al. (1996)’s ILP
formulation into a knapsack formulation with conflict constraints and proposed a new tabu search
algorithm to solve the Spot5 imaging SSP. Their algorithm improves the best known solutions
by Bensana et al. (1996) for the multi-orbit instances, but without near-optimality guarantees.

In the following years, several attempts were made to generate tight upper bounds for the
single and multi-orbit instances of the problem. Gabrel and Murat (2003) proposed a decom-
position approach, where a sub-problem is assigned to each camera onboard the satellite. The
sub-problems are then modeled with a vertex-path formulation and solved by a longest path
algorithm, while the whole problem concerning the compatibility of sub-problem solutions is
handled through column generation. This approach provided good upper bounds for the single-
orbit instances. Later, Vasquez and Hao (2003) employed a partition-based approach following
the divide and conquer principle, in which several sub-problems containing a subset of variables
are solved exactly and their optimal values are summed up to get the final bound. They outper-
form the bounds of Gabrel and Murat (2003) for the one-orbit instances. Moreover, new bounds
are presented for the multi-orbit set, which improve the classical ones obtained from the linear
relaxation or logical constraints relaxation in the knapsack formulation.

In contrast to previous works, Gabrel and Vanderpooten (2002) addressed the daily schedul-
ing problem of a one-camera satellite, regarding it as the selection of a shot sequence, where each
shot can fulfill one or more imaging requests. Not all shots can be taken due to the problem’s fea-
sibility constraints, and some shots have higher priority related to strategic importance. Multiple
criteria are introduced to evaluate a sequence: number of imaging requests satisfied and total
priority of the shots performed (to be maximized), and satellite utilization (to be minimized).
To solve the problem, a feasibility graph is built to generate all the feasible shot sequences, and
an adapted shortest-path algorithm is employed to extract the efficient ones. Finally, a multiple
criteria interactive procedure allows to adapt the importance of each criterion and to select the
most satisfactory sequence.

Later works. Some years after the first studies on the Spot 5 problem, Ribeiro et al. (2010)
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strengthened Vasquez and Hao (2001)’s formulation with valid inequalities arising in node pack-
ing and 3-regular independence system polyhedra and improved both computational times and
optimality gaps. This new formulation allowed the CPLEX general-purpose solver to finally
solve to optimality all the multi-orbit instances. Later on, some slight variations of the Spot5
problem were studied. Mansour and Dessouky (2010) proposed a multi-criteria genetic algorithm
for the bi-objective Spot5 problem, in which a new not-binary genome representation is adopted.
The objective function maximizes the total profit and the number or requests satisfied, while
penalizing genome’s infeasibility due to the observation conflicts and memory constraints. Luo
(2020) extended the model of Vasquez and Hao (2001) for the Spot5 scheduling problem to cover
cases with N on-board cameras, and proposed a hybrid artificial bee colony algorithm to solve
the problem. Their algorithm achieves smaller solution gaps than Vasquez and Hao (2001)’s
tabu search algorithm on both Spot5 instance sets and a new test set randomly generated from
the operational parameters of the Chinese satellites ZY-3 and GF-1.

In recent years, several studies have been published on advanced pre-processing techniques to
reduce the complexity of the problem. Different works introduce task merging strategies in the
SSP, noting that if two or more targets are geographically adjacent, they might be covered by
one observation strip. Consequently, task merging allows to fulfill more requests while saving the
satellite’s energy. However, merging is not always feasible as it depends on technical constraints,
such as storage capacity, available energy, and transition time required between the positions
of tasks. Wu et al. (2013) studied the multi-satellite SSP and proposed a two-phase scheduling
method, composed by a cluster-task phase and a scheduling phase. In the former, a graph is
established, representing the imaging requests and whether or not they meet the merging fea-
sibility constraints. The task clustering is then performed with an improved minimum clique
partition algorithm. In the latter, a hybrid ant colony optimization generates the solution to
the scheduling problem. The authors prove the effectiveness of the algorithm on two reference
scenarios containing the orbits of two and four Chinese satellites, respectively. Moreover, they
demonstrate the utility of the task-clustering mechanism when solving large scale instances of
the problem (up to 834 targets and 2516 VTWs). Later, Xiaolu et al. (2014) and Wu et al. (2017)
proposed dynamic task clustering approaches within a metaheuristic framework. Xiaolu et al.
(2014) presented a multi-EOS scheduling iterative approach composed by task assignment and
task merging. The task assignment is performed by an adaptive ant colony optimization algo-
rithm that selects a TW for each task and assigns them to a satellite. Then, in the second phase,
a dynamic programming algorithm finds the best solution for each satellite, i.e., an observation
plan including information on how tasks should be merged (and observed) to maximize the profit.
In Wu et al. (2017) an adaptive simulated annealing algorithm is employed to generate satellite
schedules, while the dynamic task clustering strategy is embedded into the neighbourhood search
process. The proposed approach outperforms Wu et al. (2013)’s static one. Particularly, two
scenarios with different target distributions are tested and the results show that task merging
has a larger impact on the profit-energy ratio for large-scale and densely-distributed instances.

Some pre-scheduling approaches were developed in the following years. Chen et al. (2018)
addressed the multi-SSP and analyzed several conflict indicators of VTWs and requests, based,
for instance, on the number of conflicting requests in a VTW or the number of VTWs for each
request. The indicators are then employed in two greedy heuristics and an improved differential
evolution algorithm. Starting from the study of Chen et al. (2018), Chen et al. (2019) utilized
the conflict indicators in a pre-processing strategy to decrease the number of TWs, thus reducing
the size of the problem. They formulated the problem with a Mixed Integer Linear Programming
(MILP) model, in which constraints are derived from an analysis of the interdependence between
feasible time intervals. Wang et al. (2023) improved Chen et al. (2019)’s study with a bidirectional
rolling horizon pre-processing, which pre-schedules more tasks, and with an in-depth analysis to
strengthen the MILP formulation. With the improved pre-processing strategy and formulation,
instances with up to 800 observation requests and 20 satellites can be optimally solved within
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20 minutes. In addressing the EOS scheduling problem, they link it to the unrelated parallel
machine scheduling with multiple TWs.

Finally, a decomposition method was proposed by Wu et al. (2022). They adopt a divide-
and-conquer framework to solve the large-scale multi-satellite observation scheduling problem, in
which the orbits of satellites are treated as the resources providing imaging services. The authors
propose a method that combines exact and metaheuristic approaches in two iterative phases: a
task-orbit allocation phase, performed by an algorithm based on ant colony optimization and
tabu search, and a task scheduling phase, in which a linear model for every single orbit is solved
via B&B. They efficiently solve instances up to 1600 tasks.

4.1.2 Agile Satellites with no additional features

Agile satellites represent the majority of active satellites in the Earth’s orbit. For this reason,
the latest research on SSPs concerns them for the most part and a great effort has been made to
include some advanced and realistic features in the various studies, as described in the following
sections. Nevertheless, the study of the simplest agile SSP dates back to the late 20th century
when the first flexible-moving satellites emerged.

Early works. To the best of our knowledge, the first work dealing with single-agile SSP was
carried out by Gabrel et al. (1997), who proposed a graph model applicable to both the single-
and multiple-orbit imaging SSP. The study explores the acquisition of images from various or-
bits (with diverse camera rolling angles), and starting at different times (with distinct pitching
angles). The proposed model employs a time discretization strategy to identify all the possible
observations for each request, so the quality of the solution (a feasible observation sequence with
a maximum number of requests fulfilled) depends on the chosen discretization. Therefore, to
assess the efficacy of their graph-based solution approach, the authors conduct a comparative
analysis against two alternative approaches that utilize a continuous set of observations. Some
years later, Globus et al. (2004) addressed the imaging SSP for multiple EOSs with flexible
nadir-pointing capability (i.e., able to observe in different directions from the one orthogonal to
the surface) and multi-day horizon. The study conducts a comprehensive comparison of thir-
teen permutation-based scheduling algorithms, encompassing variants of genetic algorithm, hill
climbing, simulated annealing, random search, and squeaky wheel optimization (an iterative
greedy heuristic based on priorities, Joslin and Clements 1999). They test the algorithms on ten
instances with up to 6114 observation targets. The findings suggest that strategies characterized
by an initial wide exploration followed by a more narrow search, such as simulated annealing,
appeared best suited for this problem.

Later works. Further works on Agile SSP without additional features were published in the
last decade. Xu et al. (2016) investigated a multi-agile scheduling problem, and proposed an ILP
formulation. They developed two priority-based indicators to evaluate benefits and opportunity
costs of different positioning of the observations in a feasible sequence. The indicators are then
employed in two constructive algorithms and an ant colony optimization approach. The latter
outperforms the exact solution by the ILP solved by CPLEX for instances involving more than
50 requests, whereas CPLEX fails to produce a feasible solution for instances with 200 tasks. To
reduce the dimension of the solution space and the calculation cost, Zhao et al. (2020) proposed
a pre-processing method based on task clustering for dense point targets in a single agile SSP.
Then, the authors adopt a double-layered tabu algorithm that generates the local observation
path within the cluster regions (inner layer) and the global target observation path including all
clusters (outer layer).

Recent publications have emerged also in response to the new technological advances, partic-
ularly in the development of video and super-agile satellites. Cui et al. (2018) investigated the
scheduling problem of multi-target fixed-duration staring imaging for a single video satellite, with
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a planning horizon shorter than one orbit period. Both video staring imaging and photo staring
imaging are considered, with time requirements of 5 s and 0.5 s, respectively. The authors for-
mulate a continuous time model and propose a modified ant colony optimization algorithm with
tabu lists to solve the problem. To design their test case, they employ the real parameters of the
Tiantuo-2 satellite. Differently, in Chang et al. (2020) the final image duration is set as a variable
of the problem. The authors propose a mission planning model for an optical video satellite and
a dedicated method to calculate the minimum image duration of each observation, considering
task priority and ground target congestion. A greedy heuristic is developed to generate a feasible
solution, supported by heuristic deductions. As for super-agile satellites, Lu et al. (2021) pro-
posed a scheduling method to observe multiple targets within a single pass exploiting satellite’s
ability. The authors combine multiple point targets into imaging strips through a clustering and
decomposition approach, and establish a bi-objective mathematical model aiming at maximizing
the mission coverage benefit and minimizing the mission completion time. Finally, an improved
particle swarm optimization algorithm is employed to solve the problem. The computational
tests outline the benefit of this approach compared to methods that consider independent point
targets or fixed positions of the satellite camera.

4.1.3 Large Area Target

Customer requests submitted to a satellite or a constellation of satellites can be spot or area
targets. Dealing with area targets involves the consideration of additional aspects compared to
spot targets. Indeed, a large area target cannot be imaged in a unique observation, and splitting
and acquisition strategies should be developed. Consequently, an area target can be translated
into a set of strips that cover it and must be acquired in order to fully observe it. An area
target is conventionally decomposed into parallel strips. However, when multiple-satellites or
single-satellite multiple-orbit scenarios are considered, an area target can be covered with the
aid of multiple nonparallel strips (Figure 6). The strip-decomposition leads to an increase in the
complexity and size of the problem, especially when it comes to multiple-satellite systems, when,
however, better coverage of the targets can be achieved.

Figure 6: Difference between parallel acquisitions in a single-satellite single-orbit environment (on the left) and
nonparallel acquisitions in a multi-satellite or single-satellite multi-orbit environment (on the right)

The study of SSPs with large area targets has received great attention over the years, as it
represents a very realistic scenario in Earth observation. Table 2 provides an overview of the
many references reported in this section and their main characteristics. For each reference, its
test case is outlined, including both real-world satellites or specific target areas.

Partial coverage. Several authors allow the rewarding of the partial acquisition of an area
target and compute the resulting profit depending on the percentage of the coverage. Lemaître
et al. (2002) describe the problem of selecting and scheduling observations of an agile EOS
during a single orbit, considering both spot and area targets, the latter ranging from 20 to 100
km in length. They cut the area target into contiguous and parallel strips of equal width and
propose a convex objective function to maximize the sum of partial rewards obtained from each
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Table 2: Summary - Large Area Target

Reference
System Multiple Methodology

Test Cases
Composition Objectives Exact Heuristic

Lemaître et al. (2002) SS ✓ ✓ ROADEF 2003
Cordeau and Laporte (2005) SS ✓ ROADEF 2003
Habet et al. (2010) SS ✓ ROADEF 2003
Jang et al. (2013) SS ✓ ✓ KOMPSAT-2
Perea et al. (2015) MS ✓ Extremadura, Andalusia, Cadiz*
Niu et al. (2018) MS ✓ ✓ 2008 Wenchuan earthquake*
Barkaoui and Berger (2019) MS ✓ CBERS-2, IKONOS-2, Spot5
Berger et al. (2020) MS ✓ CBERS-2. IKONOS-2, Spot5
Wu et al. (2019) MS ✓ ✓ L-band InSAR satellite
Xu et al. (2019) MS ✓ African Savannah, Amazon Forest, Southern China*
Zhu et al. (2019) MS ✓ FengYun, YaoGan, and ZiYuan
Zhibo et al. (2021) MS ✓ Nanhai, Southeast China*
Gu et al. (2022) MS ✓ 20 Chinese satellites
Zheng et al. (2023) MS ✓ Gabon, Belarus*, L-SAR 01A, L-SAR 01B, GAOFEN 3
* specific area target

Abbreviations: Single Satellite (SS), Multiple Satellites (MS)

request. The gain percentage associated with a partial acquisition of a polygon is computed
with a piecewise linear function associating to the 40% and 70% of the acquisition the 10% and
40% of the revenue, respectively. They compare four different approaches for the solution of
the problem: a greedy algorithm, a dynamic programming algorithm, a constraint programming
approach and a local search algorithm. The same profit function was later adopted also by
several authors, as Benoist and Rottembourg (2004), Cordeau and Laporte (2005), Habet et al.
(2010), Xu et al. (2019), Zhu et al. (2019), Zheng et al. (2023).

The problem addressed by Lemaître et al. (2002) became the subject of the ROADEF Chal-
lenge 2003 (Verfaillie et al. 2002) and has therefore been much studied in subsequent years.
Cordeau and Laporte (2005) won the second prize in the Challenge by means of a tabu search
heuristic previously developed for the vehicle routing problem with TWs. The algorithm allows
the exploration of infeasible solutions during the search, penalizing them with a self-adjusting
parameter. Good upper bounds for the solution of the ROADEF instances were provided by
Benoist and Rottembourg (2004) by enriching the linear model of the problem with valid in-
equalities and exploiting a Russian Dolls approach. The bounds, which were the best known
for the problem, reach an average gap of 12.2% with respect to the best known solutions. Some
years later, Habet et al. (2010) proposed a tabu search algorithm to solve the ROADEF problem.
To improve the search in case of moves leading to the same gain value, a second tabu search
algorithm is used, which minimizes the sum of the transition durations between two image ac-
quisitions. Through the developed approach, they obtained the best known solutions for 15 of
the 20 instances provided by the Challenge, and found a better one for four of them.

Other applications of the imaging SSP with area targets have been studied in the last years.
In these works the profit gathered from each target covered by the schedule depends on the
percentage with which it is covered (i.e., the size of the acquired area respect to the complete
area). Niu et al. (2018) consider the multi-SSP of large areal tasks for rapid response to natural
disaster. They design a strip-decomposition method considering a slewing angle step, and a
multi-objective model to optimize coverage rate, imaging completion time, average spatial res-
olution and slewing angle. They present a real disaster scenario (2008 Wenchuan earthquake)
and two specific sub-scenarios. The multi-objective Non-dominated Sorting Genetic Algorithm
(NSGA)-II (Deb et al. 2002) is applied to efficiently solve the problem. In Barkaoui and Berger
(2019) the multi-conventional satellite imaging scheduling problem with area targets is compared
to the vehicle routing problem with TWs and then solved via a hybrid genetic algorithm. In
this study, each area target is partitioned into multiple parallel strips and then in additional
segments. The authors considered a non-deterministic setting, in which the expected profit of
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the schedule depends on observation outcome uncertainty, defined by a probability value, and
the proportion of the area targets acquired. Later, Berger et al. (2020) studied the effect of
covering the area target with observations performed in different directions (i.e., from different
orbits, thus acquiring non-parallel strips). To handle the possible overlapping, minimal covering
constraints are introduced in the formulation. The authors develop a new CPLEX-based prob-
lem solver (QUEST) for the resulting quadratically constrained problem, in which Lagrangian
relaxation is exploited to get upper bounds and then a Branch-and-Cut (B&C) algorithm is run
to achieve a high quality integer solution. Finally, Gu et al. (2022) proposed an accurate cover-
age calculation in which large area target are defined as spherical polygons of the Earth and a
polygon clipping technique (Vatti 1992) allows the consideration of the overlapping of different
observation strips on the same target. They prove that the proposed approach can calculate the
coverage accurately within less time than calculation methods based on grid points (described
in the following paragraph). The studied scheduling problem, which aims to maximize the total
area of the observed regions, is solved through a particle swarm optimization algorithm with an
individual reconstruction method to deal with infeasible solutions.

Space discretization. In addition to strips-decomposition, space discretization is a widely used
approach to deal with the acquisition of area targets. Indeed, this technique largely simplifies
the computation of the coverage rate when considering multi-satellite or multi-orbit scenarios,
which would generate cases of overlap of the observation strips. Jang et al. (2013) study an
image collection planning problem for KOMPSAT-2, a Korean satellite. They discretize each
area target in square regions (scenes) and generate feasible observation segments by grouping
adjoining scenes. The problem is formally stated with an ILP model that chooses non-overlapping
segments in order to maximize the total profit in a multi-orbit long-term planning environment
(31-days). They adopt a Lagrangian relaxation and subgradient methods to obtain upper bounds
of the objective function, and a deletion and insertion greedy heuristic to restore the feasibility
of the Lagrangian solution. This approach outperforms the CPLEX solver applied to the ILP
problem for instances with more than 100 area targets.

A point-discretization was later introduced by Xu et al. (2019), who studied the coverage of
very large area in a multi-SSP. Specifically, they propose a set covering model and a three-phase
solving framework, composed by a discretization phase to convert the area target into a set of
equidistant points, a target strips-decomposition phase, and a scheduling phase through a genetic
algorithm. The strip coverage is computed as the number of points covered by selected strips
and the reward function deducts overlapping points from the profit. They test their approach
on the coverage of three high vegetation-covered areas: African Savannah, Amazon Forest and
Southern China.

Grid-discretization was employed in the same year by Zhu et al. (2019) and Wu et al. (2019).
In Zhu et al. (2019) many square cells generate candidate strips according to satellite imaging
opportunities. A three-phase solution method is here developed and compared to the classical
two-phase one (discretization and scheduling). In the proposed approach a cover optimization
phase is performed by a dynamic greedy algorithm, which identifies the strips that can cover
each area target, looking for the strip that covers the most uncovered cells for each imaging
opportunity. Then, a tabu search algorithm selects the strips to generate the final plan, among
the ones chosen in the previous step. Wu et al. (2019) study the imaging SSP for China’s L-band
satellite formation, in which each target can be requested multiple times. The targets are clas-
sified according to their size (spot or area) and the number of observations requested, and three
different objective functions are defined according to each class of targets. The region targets
are decomposed into grids, which define meta-tasks, and an improved NSGA-III algorithm (Deb
and Jain 2014) is employed for the solution of the optimization problem. Recently, Zhibo et al.
(2021) dealt with a multi-SSP with area targets and addressed the case in which the time dura-
tion of a candidate strip exceeds the maximal working duration of the camera. They introduce
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an excursion parameter ∆λt to divide the infeasible strips into a set of feasible strips, starting in
successive time instants. Furthermore, the discretization parameter ∆λγ is introduced to divide
the consistent range of rolling angles into a set of discrete values, thus allowing side-overlapping
strips. They present a non linear model and a genetic algorithm in which an individual recon-
figuration method corrects infeasible solutions and a grid-discretization of the area targets is
performed to evaluate the fitness function. Two scenarios are finally tested, involving the region
of Nanhai and Southeast China.

Regional mapping. Some authors address the imaging SSP for the coverage of a unique
large area target. Perea et al. (2015) study a scheduling problem for the coverage of an area
by multi-EOS by modelling it as a set covering problem. Here, the intersection of all possible
acquisition strips and the area target generates a series of sub-regions that must be covered
within a planning horizon, while minimizing the acquisition costs. A heuristic algorithm based
on the Greedy Randomised Adaptive Search Procedure (GRASP) is proposed and compared with
the ILP formulation. The computational tests are performed over three Spanish targets with
different extensions (Extremadura, Andalusia, and Cadiz). The ILP could not find a solution for
the medium and large size instances, while for the small size ones the average computational times
of the heuristic were inferior by two orders of magnitude. Differently, in Zheng et al. (2023) only
part of the target area could be captured by the satellites during the given schedule time horizon
(1-day). Therefore, the objective function aims to maximize the total profit of the observation
schedule, calculated with a piecewise linear function (Lemaître et al. 2002). The authors propose
a three-phase method composed of grid space construction to translate an irregular area into a
rectangular-system, candidate strip generation allowing for non-parallel strips, and strip selection
performed by a tabu search algorithm with variable neighborhoods. They test their approach
on two regions having different sizes, shapes and latitudes (Belarus and Gabon) and prove the
efficiency of their approach compared to parallel-strips decomposition ones.

4.1.4 Time-dependent Profits and Transition Time

Several authors have introduced in their works a more realistic representation of the problem’s
characteristics. In particular, they focus on the description of profit or quality functions, and
transition time between two targets. Indeed, while most research assumes they are constant to
simplify the formulation and the solution of the problem, these attributes are strongly time-
dependent. Table 3 summarizes the articles discussed in this section and their specific test cases.
As can be seen, the study of this variant is quite recent, except for some references in the early
2000s, and mainly focuses on AS-01, the first agile satellite of China.

Table 3: Summary - Time-dependent Profits and Transition Time

Reference
System Multiple Methodology

Test Cases
Composition Objectives Exact Heuristic

Wolfe and Sorensen (2000) SS ✓ Random Instances
Lin et al. (2005) SS ✓ ✓ ROCSAT-II
Li et al. (2017) SS ✓ Random Instances
Liu et al. (2017) SS ✓ AS-01
He et al. (2018) MS ✓ AS-01
Li et al. (2018) MS ✓ ✓ HJ-1A, HJ-1B
Peng et al. (2019) SS ✓ AS-01
Xie et al. (2019) SS ✓ AS-01
Peng et al. (2020) MS ✓ AS-01
Peng et al. (2020) SS ✓ AS-01
Wei et al. (2021) SS ✓ ✓ AS-01

Abbreviations: Single Satellite (SS), Multiple Satellites (MS)

Time-dependent profits. Time-dependent profits are usually introduced in SSP studies to
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address the need to obtain high quality data from observations. This strongly depends on the
timing and the relative position between the satellite and the target. A typical assumption is that
the best quality is obtained when the observation TW is set at the middle of the VTW, since the
satellite is perfectly above the target. However, the preferences can be more complicated due to
orbital dynamics, the nature of the specific target, or environmental factors. Some examples of
profit functions are represented in Figure 7, where the real profit collected by an observation is a
different percentage of the original value p, depending on the relative position of the observation
TW respect to the VTW.

Figure 7: Examples of time-dependent profit functions

Wolfe and Sorensen (2000) were the first to consider time-dependent profits applied to a
single-agile SSP. In their study, task preference is specified by a suitability function defined
within the feasible TW. The authors propose two constructive heuristics, based on priorities and
look-ahead function, respectively, and a genetic algorithm that allows to skip tasks or to place
them at their worst position in the TW. A similar suitability function is adopted also by Lin et al.
(2005), who address the daily imaging scheduling problem for a low-orbit EOS, ROCSAT-II, in
which a request is composed by multiple tasks. The objective function evaluates task completion
and setup costs, as well as the total suitability of all tasks performed. The problem is solved
through a Lagrangian relaxation of the MILP formulation, enriched with a feasibility adjustment
heuristic algorithm. They finally adapt Vasquez and Hao (2001)’s tabu search algorithm to their
problem and show that the Lagrangian-relaxation approach is superior to the tabu search one
in both solution quality and computation time. In Li et al. (2017) the revenue from a request is
a piecewise linear function of its tardiness and earliness (with reference to its due date), follow-
ing the just-in-time philosophy. The authors formulate this problem with a MILP model and
develop a novel hybrid differential evolution algorithm to solve it, testing instances up to 100
requests. Finally, Li et al. (2018) proposed a five-objective MILP formulation for the multi-agile
SSP, including profit, observation task number, image quality, resource balance and observation
timeliness. In their study, the image quality depends on the distance and angle from the camera
to the target, where the best value is obtained in the middle of the VTW. They propose and
compare three different preference-based multi-objective evolutionary algorithms to solve the
problem and an interactive framework for the decision maker to adjust preferences during the
search.

Time-dependent transition time. Time-dependency in transition time computation arises
from the dynamic nature of the minimum transition time required by a maneuver between the
conclusion of an observation and the start of the following one. Indeed, it strongly depends on
the precise time at which the transition begins, which influences the relative position of two
observations and the maneuver speed needed by the camera to observe them. The typical way
to represent the transition time tij between two consecutive observations i and j is through a
piecewise linear function depending on Θij , i.e., the angle to transit between the targets covered
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by i and j, and different angular velocities v depending on the angles, as follows:

tij =


a+Θij/v1 if Θij ≤ α

b+Θij/v2 if α < Θij ≤ β

...

n+Θij/vn if Θij > ω.

Peng et al. (2020) prove that the time-dependent transition time satisfies both the FIFO and
the triangle inequality rules. The authors propose a greedy randomized iterated local search
for the agile SSP with time-dependent transition time and constants profits. Their algorithm
outperforms both Liu et al. (2017) and He et al. (2018) for the single and multiple SSP, respec-
tively. Later on, Wei et al. (2021) studied the single agile EOS scheduling problem and proposed
a multi-objective memetic approach with the consideration of time-dependent transition time,
combined with problem-specific crossover, mutation, and local search operators inspired by Peng
et al. (2020). They consider two objectives: the failure rate and the load balance degree.

Time-dependent profits and transition time. Most studies introduce both time-dependent
transition times and profits in the problem. Liu et al. (2017) refer to single-agile EOS scheduling
applied to the particular case of the Chinese AS-01 satellite, including time-dependent transition
times and quality. The real image quality of each request is assessed on a ten-level scale, and is
computed as a function of the time at which the observation is performed. In this problem, the
quality is one of the user’s requirements so it figures as a problem constraint, while the goal is
the maximization of the priorities. Due to time-dependencies, the problem is quite complex to
solve exactly, hence the authors propose a two-phase procedure to solve small-size instances with
a CSP model. They further develop an Adaptive Large Neighborhood Search (ALNS), in which
a number of simple destroy and repair operators compete to modify the current solution. To deal
with the expensive computation of transition time they define two time slacks to compute the
maximum time by which each observation can be moved in its VTW without causing the schedule
to become infeasible. In follow-up work, He et al. (2018) extended the ALNS algorithm to the
multiple-satellite case. Specifically, they introduce a heuristic task assignment mechanism to
assign requests to different satellites. The multi-satellite problem is thus decomposed into several
single-satellite subproblems, which are solved by ALNS. Moreover, the assignment mechanism
will reassign tasks to different satellites if the solution of the subproblems has not improved
for a number of destroy-repair iterations. Xie et al. (2019) adopt similar functions to describe
time-dependent transition times and observation quality (here seen as a profit in the objective
function) in the multiple-agile EOS scheduling problem. They propose a heuristic algorithm
based on a temporal conflict network, which characterizes the overlaps of the VTWs of the
target points through the edges and their weights. The computational analysis shows that when
the problem size is large (over 300 requests), their algorithm outperforms that of He et al. (2018).
Later on, Peng et al. (2019) solved the agile EOS scheduling problem with both time-dependent
transition times and time-dependent profits, modelling it as an Orienteering Problem. They
proposed a bidirectional dynamic programming based iterated local search algorithm, and define
auxiliary features to simplify the feasibility check on transition time and the computation of
accumulated profit during the search. Their approach is compared with Liu et al. (2017) and
improves the performance of ALNS by 20.33% in the no-time-dependent profit version. Further
improvements were obtained in a later work (Peng et al. 2020) with an exact approach, which
adapts the bidirectional dynamic programming with decremental state space relaxation proposed
by Righini and Salani (2009) to tackle the single-orbit scheduling for an agile EOS with time-
dependent transition times and profits.
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4.1.5 Satellite Sharing

Due to their cost, space projects, such as Earth observation missions, are often co-funded by
several agents. The shared-resources EOSs must be managed to satisfy physical constraints
(hard constraints), but also efficiency and fairness ones (soft constraints). Indeed, each agent
has its own requests, with specific priorities and due dates, and could have different rights on
the exploitation of the resources.

Usually, this problem is faced by stating a multiple-objective model, including both profit
and fairness maximization. These two objectives may be at odds with each other: generally,
an allocation cannot be efficient (Pareto-optimal) and perfectly equitable at the same time.
Lemaître et al. (2003) describe four different centralized arbitration procedures to solve the bi-
objective multi-agent allocation problem in the context of EOS mission management, based on
different ways of taking into account the efficiency and equity trade-off. In particular, they define
an individual utility ui(x) and a collective utility uc(x), that measure the satisfaction level of
the arbitrator concerning the solution x. Finally, they introduce a variant of the problem that
considers task priorities defined by agents and users’ rights on resource exploitation. Later,
Bianchessi et al. (2007) addressed the case of the PLEIADES system, co-funded by multiple
users, in which they aim at maximizing the weighted sum of the normalized utilities associated
with the different users of the system. They propose a tabu search heuristic and an upper
bounding procedure based on column generation to evaluate the quality of the solutions. Their
approach is tested on representative benchmark instances provided by the French CNES. Each
set considers two satellites performing 12 or 13 orbits in a 24-hour time horizon, and four users.

Further contributions emerged from Tangpattanakul et al. (2012, 2015). Tangpattanakul
et al. (2012) propose a Biased Random-Key Genetic Algorithm (BRKGA), along with two alter-
native methods for the selection of the elite set of solutions in the algorithm, based on NSGA-II
and an indicator-based evolutionary algorithm. In their research, the fairness is considered by
minimizing the maximum profit difference between each pair of users. The methods are eval-
uated on realistic instances derived from the 2003 ROADEF Challenge modified for four users
requirements. Tangpattanakul et al. (2015) propose an indicator-based multi-objective local
search which proved to be statistically better than their previous BRKGA.

4.1.6 Emergency Tasks and Dynamic Replanning

When dealing with the management of a satellite and the scheduling of its imaging tasks, there
may be a need to perform a replanning in response to unforeseen events, such as the presence
of emergency tasks. This situation is very common for disaster monitoring and the resulting
optimization problem could become very complex. Indeed, emergency tasks could introduce
conflicts in the existing schedule with the other tasks, that consequently must be removed.
Additionally, they may have different urgency levels and priorities that depend on several factors.
Various methods have been proposed to compute the priority of emergency tasks. Cui and
Zhang (2019) propose a calculation model of emergency mission priority for the multi-satellite
mission scheduling based on seven impact factors, including urgency degree, conflict degree,
target visibility and mission revenue. Then, they employ a hybrid genetic tabu search algorithm
and heuristic factors to solve the scheduling problem. Wu et al. (2019) decompose the task
priority into four parts: target, imaging task, TT&C (track, telemetry, and control) requirement,
and data transmission requirement. They extensively describe the computation strategy for
each part and then apply the priority model to dynamical assign priorities during the rolling
rescheduling of the emergency tasks, performed via genetic algorithms.

Solving the SSP oriented to emergency tasks involves either generating a completely new
plan, or adapting the existing one. Wu et al. (2012) take the first approach via a hybrid ant
colony optimization algorithm. The authors set the execution of feasible emergency tasks as a
hard constraint and common tasks are then scheduled on the remaining observation resources.
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Although creating an updated schedule guarantees the best solution, it is less preferable due
to higher solving time and adaptation effort. Hence, to dynamically adjust the oldest plan
and reduce the problem complexity, several authors adopt rolling-horizon policies, with event
trigger (Haiquan et al. 2019), period trigger (Wu et al. 2019) or mixed trigger mode (Qiu et al.
2013). This approach dynamically schedules tasks into smaller TWs. A great number of dynamic
heuristic methods proposed in the literature aim, instead, to insert new tasks into an existing
schedule, utilizing strategies like direct insertion, insertion by shifting or deleting, also considering
the minimization of the perturbation of the existing scheme (Wang et al. 2014; Wang et al. 2015;
Haiquan et al. 2019). Wang et al. (2014) study the single SSP and propose two heuristic factors
to evaluate the congestion degree of a TW and the overlapping degree of a task when inserting
a new one. Wang et al. (2015) introduce in their solution approach a task-merging algorithm: if
two or more targets are geographically adjacent, they tune the slewing angle and the observation
duration of the sensor to enable an observation strip to cover them all. In particular, they try to
merge an emergency task with an existing one. Haiquan et al. (2019) consider a multi-satellite
scheduling problem with additional constraints on instruction transmission, satellite storage and
data transmission.

A replanning process may be necessary even when a fault occurs in the satellite. Zhu et al.
(2015) propose a dynamic fault-tolerant scheduling model, defining backup tasks for each primary
task. Their algorithm also includes overlapping of backup tasks and a task merging mechanism.
In Zhai et al. (2015) the robustness against unforeseeable events is associated with the number
of tasks that can be rearranged in another time slot. The authors propose a NSGA-II to gen-
erate the initial schedule, and a heuristic algorithm with a task merging strategy to adapt the
solution. Finally, Li and Li (2019) addressed the agile EOS proactive scheduling problem and
include robustness against satellite failure or emergency task insertion by maximizing the slack
time between two consecutive tasks, which is able to absorb some level of uncertainties without
rescheduling. They solve the resulting bi-objective problem via a differential evolution algorithm
with binary encoding representation of candidate solutions.

4.1.7 Cloud Coverage

The presence of clouds is one of the major causes of observation failure and the primal source
of uncertainty when scheduling observations (Han et al. 2022). Cloud coverage not only sub-
stantially degrades imaging quality but also consumes resources, including the observation TW,
satellite storage capacity, and energy. Such resource consumption consequently diminishes ob-
servation opportunities for other targets, underscoring the pivotal role of cloud forecasting in
effective mission planning for EOSs. This problem is particularly critical for optical sensors in
EOSs, which are unable to penetrate cloud cover.

Some early works deal with cloud coverage in a deterministic way. In Lin et al. (2005)
cloud-covered TWs are computed from the weather forecast data of Center Weather Bureau.
Consequently, cloud-free images for ROCSAT-II can be obtained preventing the observations
within these windows (see Section 4.1.4 for further details). In the following years, however,
the imaging SSP with cloud coverage was primarily studied as a stochastic problem. One of
the first works dealing with uncertainties from weather condition was the one of Liao and Yang
(2007), that, unlike following works, considers the probability of rain to formulate the success
rate of a job at each time period. The authors cast the scheduling problem of FORMOSA-2 as
a stochastic integer programming problem, employing a rolling horizon strategy that leverages
Lagrangian relaxation and a heuristic algorithm for feasibility adjustment.

Later on, to address this variant of the imaging SSP researchers usually included some new
parameters in their models representing cloud coverage. Most studies simplified it into two
conditions: complete cloud occlusion and no cloud occlusion. Wang et al. (2016) embrace the
uncertainty of cloud coverage by modeling cloud blocks as stochastic events, denoted by 0-
1 stochastic variables and a probability value. They formulate the multi-satellite scheduling
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problem through a Chance Constraint Programming (CCP) model imposing a certain confidence
level on the profit of the observations. The problem is then solved via a sample approximation
method and a B&C algorithm, based on lazy constraint generation. Two years later, Wang et al.
(2018) suggested to schedule each task in multiple orbits to increase the probability of successful
observation. They proposed an exact algorithm in which each sub-problem is solved by path
programming and three heuristics to solve the large-scale problems. A real-world case of disaster
monitoring is provided, and all the proposed methodologies outperformed on average the current
schedule. Moreover, the exact algorithm proves to be more efficient and more robust than the
Liao and Yang (2007) algorithm, which schedules each task to at most one orbit. Wang et al.
(2020) formulate a multiple EOS scheduling model considering the impact of clouds and propose
a Branch-and-Price (B&P) algorithm based on a Dantzig–Wolfe decomposition. Furthermore,
they discuss the impact of clouds on successful observations from different orbits in the case of
joint probabilities (i.e., when probabilities of cloud coverage for each target are not considered
different and independent), and establish a sample average approximation model.

Recent works allow for partial coverage considerations. In Wang et al. (2019) the limits of
considering 0-1 observation profits under the impact of cloud coverage, which does not represent
reality, is overcome. Here, a range for the actual observation profit is defined by the nominal
and deviation values. The nominal value denotes the expectation observation profit which is
determined by the original mission profit and the predicted situation of cloud coverage. The
deviation value represents the deviation of actual profit compared to the nominal value, which
depends on the accuracy of cloud coverage prediction. The authors establish a linearized robust
scheduling model, with a budget for the deviations allowed, and propose a column-generation-
based heuristic, which is hybridized with simulated annealing in Wang et al. (2021). Differently,
Valicka et al. (2019) introduce two-stage and three-stage stochastic MILP models for the multi-
SSP in which a set of scenarios is considered with different fraction of cloud coverage over the
target. The profit for each scenario is an inverse function of cloud cover. In their stochastic
approach, the scheduling is first produced over the complete set of scenarios representing cloud
cover uncertainty, considering the related probability. Then, the realized profit is computed only
after the uncertainty is solved and the scenario is realized. The stochastic models outperform
the deterministic model applied to the expected cloud coverage scenario for both small and large
scenario sets. Gu et al. (2022) propose a dynamic replanning scheme for multiple EOSs based
on cloud forecasting. The approach involves a proactive scheduling based on a CCP model, in
which the cloud occlusion is first formulated as a 0-1 stochastic event. To simplify the calculation
of probability in CCP, a Monte Carlo simulation is adopted to create a set of sample scenarios.
Then, a rolling horizon-based replanning algorithm considers cloud forecasting via a predictive
recurrent neural network, which allows to consider partial coverage profit, and combines a rapid
insertion method and an interval shrinking-based moving strategy. Finally, in Han et al. (2022)
the authors started from the CCP model of Gu et al. (2022) and proposed an improved simulated
annealing-based heuristic combining a fast insertion strategy for large-scale observation missions.

4.2 Communication Scheduling in EO

The communication between a satellite and a ground station is a fundamental activity for the
daily management of a satellite. Indeed, satellites need to contact the ground stations for ma-
noeuvrability instructions, status control, and uplinking of commands. Moreover, for the imaging
satellites the downlink communication is fundamental to continue their activity. In the commu-
nication SSP the resource set of satellites need to connect with the ground station resources.
To do so, only determined TWs are available, during which, generally, each satellite can com-
municate with a unique ground station and vice versa. The communication problem consists in
associating with each satellite-ground station pair a TW to perform their task. Since the di-
mension of satellite constellations is increasing due to higher need for flexibility and robustness,
while ground station networks are hardly expanded, the problem is harder to solve for the real
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case scenarios (Marinelli et al. 2011). The scheduling of all types of communication tasks, for a
generic satellite, is addressed as Satellite Range Scheduling Problem (SRSP). The SRSP includes
data downlink. Hence, in the following paragraph we will describe the main works published
on SRSP. Then, we will delve into the download scheduling problem related to imaging satellites.

Satellite Range Scheduling Problem. The first formal analysis of SRSP was presented by
Barbulescu et al. (2004) in the context of air force satellite control network (communication
satellites). Then, Marinelli et al. (2011) proposed a time indexed ILP formulation aimed at max-
imizing the number of tasks completed on time. They employ a Lagrangian heuristic to solve
the problem and test it on GALILEO constellation, a global satellite positioning and navigation
system. To deal with the complexity of the problem, Luo et al. (2017) propose a pre-scheduling
technique based on the analysis of flexibility of a request (i.e., the difficulty of its scheduling)
and conflicts between satellites requests. Then, a rescheduling approach based on conflict reso-
lution tries to insert unscheduled requests into the existing plan. Differently, Brown et al. (2018)
assume the point of view of the ground stations and try to minimize the number of time periods
that satellites are not tracked, considering their priority, in view of a fair allocation of tracking
time. They propose a population-based local search including a conflict resolution approach and
a track period extension to maximize the utilization of the ground stations, bounded through a
Lagrangian relaxation of the MILP model. Du et al. (2019) address a multi-objective SRSP aim-
ing at the minimization of failure rate and maximization of the load balance of ground stations.
They propose a multi-objective evolutionary algorithm combined with a tabu search-based local
search, to generate a memetic approach. They prove this combination improves the performance
of several multi-objective approaches, such as NSGA-II. Finally, to simplify the problem Liu
et al. (2019) considered as the resource set only the critical resources, i.e., ground stations re-
quested by more than one satellite simultaneously. Therefore, they optimally assign non-critical
resources during a space-reduction phase, and then solve the scheduling problem for the critical
resources via a dynamic approach.

Download Scheduling Problem. The generation of effective download schedules is very impor-
tant since image downlink often becomes the bottleneck in the efficiency of the whole system.
Indeed, satellites have finite storage capacity and need to empty their memory before continu-
ing to collect data. To do this, they dispose of a set of TWs available for the transmission of
data to the Earth. Data transmission can follow two protocols: real-time transmission, requiring
the satellite being within an available VTW while undertaking observation tasks, and record
playback, that consists in storing data before transmission to the Earth.

The objective of the optimization problem is to maximize the global profit or quantity of the
transmitted data, while respecting the process constraints. Additionally, some authors aim at
minimizing the total tardiness, i.e., the total delay of all observing data from observation to trans-
mission. Karapetyan et al. (2015) considered the optimization of the data transmission tardiness
in the downlink scheduling problem for Canada’s Earth observing satellite, RADARSAT-2, and
proposed a schedule generation procedure that schedules urgent and regular requests in two con-
secutive steps, respecting task priorities. The authors compare the performance of four standard
metaheuristics: GRASP, ejection chain, simulated annealing and tabu search.

In the same year, Spangelo et al. (2015) study the single-satellite multiple-ground stations
download scheduling problem. They take into consideration the dynamics of energy consumption
and data storage and propose a MILP model of the problem for linear dynamics. An iterative
algorithm based on the MILP representation is then developed to solve the non-linear dynamics
case. Later, Chen et al. (2020) included the consideration of data topics in the problem. A data
topic is required by a particular user and contains a set of observation data units provided by
different satellites. Every observation data topic has completeness and timeliness requirements,
which are evaluated in the objective function thanks to specific reward functions. The full
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amount of reward is assigned only if all of the observation data belonging to one topic have
been transmitted to the ground station before the expected time, otherwise the value of the
observation data will be decaying sharply. To solve the problem, the authors proposed a hybrid
scheduling algorithm, combining particle swarm optimization and a genetic algorithm. Liu et al.
(2022) address the multi-satellite downlink scheduling problem considering waiting time through
the minimization of latency costs. They propose a simulated annealing algorithm with a tabu list
to assign the download requests to ground stations, and then solve the single station scheduling
problem via greedy approaches based on arrival time considerations.

The previous works assume prior knowledge of the exact amount of new data generated by
observations and stored. In new satellites systems, the execution of sophisticated compression
algorithms makes the volume of data generated uncertain, since it depends on the imaged ground
area and on the conditions over them. To cope with this problem, the maximum volumes could
be assumed for all the tasks, leading to under-utilisation of resources. Maillard et al. (2016)
presented an approach in which download scheduling is made on the ground via a squeaky wheel
optimization algorithm, considering maximum volumes only for high-priority observations and
expected volumes for low-priority ones. Then, a schedule adaptation is performed onboard,
when most of the volumes are known, via repair heuristic procedures. This approach improves
the performance of the pure ground scheduling and reduces the computational effort of a pure
online scheduling.

Modern satellites dispose of a new capability for transmitting data in a more efficient way.
Indeed, an original image can be split in several segments that can be transmitted independently
and without following the capturing order. Chang et al. (2023) deal with this new aspect of the
satellite image data download scheduling problem, and propose a bi-objective memetic algorithm
to minimize transmission failure rate and improve the service-balance degree.

4.3 Integrated Scheduling in EO

The integrated scheduling problem considers at the same time imaging and download tasks
scheduling. Indeed, the result of imaging scheduling has an effect on data transmission schedul-
ing, since the download volume depends on the size of collected images, and data transmis-
sion scheduling influences the imaging scheduling and the available storage capacity in return.
Therefore, simultaneous planning of imaging and communication tasks enables the generation of
efficient schedules, providing an all-around perspective. An integrated approach is particularly
necessary in the recent years, as the number of imaging requests is increasing.

Various authors address a real case study and solve the problem with heuristic methods.
Bianchessi and Righini (2008) describe the optimization problem and all operational constraints
related to the COSMO-SkyMed project for the observation of the Earth through a constella-
tion of satellites. The aim of the scheduling problem is to synchronize the acquisition and the
download operations in order to maximize the number of images taken and transmitted, in a
long (16-days) and middle (4-days) horizon. Large area requests are taken into account but
partial acquisition is not rewarded. They present a greedy constructive algorithm, enriched with
look-ahead and backtracking capabilities. Later, Wang et al. (2011) studied the bi-objective
integrated scheduling of Huanjing constellation (HJ-1A and HJ-1B), in which both the summed
rewards for spot targets and the proportional reward for area targets must be maximized. They
improve the performance of the algorithm of Bianchessi and Righini (2008) with a priority-based
heuristic, and insert a check for conflict-avoidance and a download-as-needed policy. The article
of Augenstein et al. (2016) presents a MILP model for a large constellation of EOSs, Terra Bella,
to maximize the number of collected images while minimizing the undownlinked data onboard
the satellites. To solve the problem the authors propose a sequential scheduler, with successive
scheduling of downlinks and image collections, supported by a dynamic programming heuristic.
Recently, Monmousseau (2021) presented a MILP model for the integrated SSP of Planet’s Dove
constellation, composed by thirty satellites. They compare the performance of the B&B algo-
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rithm used for MILP against the software used by Planet to process the available data, which
exploits a simulated annealing algorithm to find a good solution. As expected, the MILP model
performs better than Planet’s software, providing solutions with higher utility value and lower
consumption of the satellites’ power.

Several other works have been published over the years, introducing new constraints into the
problem or different solution approaches. Cho et al. (2018) propose a two-step MILP formula-
tion to first solve the data download time intervals allocation problem, and then the imaging
scheduling problem, by introducing the result of the previous step as a constraint. In their study
the precedence condition between tasks is considered. An exact solution method was later pre-
sented by Hu et al. (2019), who developed a B&P algorithm for a multi-satellite integrated SSP.
They divide the overall scheduling horizon into several time periods and then decompose the
problem into a master problem and multiple pricing problems via Dantzig and Wolfe decompo-
sition. They embed the column generation process into a B&B framework and then develop a
heuristic to prune tree branches earlier. Waiming et al. (2019) propose a MILP model using a
directed acyclic graph for determining candidate solution options. To solve the problem, they
develop a two-phase genetic annealing method, where the genetic algorithm is used to explore
new solutions and the simulated annealing algorithm improves global searching. Differently,
Chang et al. (2021) aim to optimize the loss rate of data capturing and the energy consumption
of multiple satellites within three different scenarios: separated scheduling of imaging and down-
load, compromised scheduling (i.e., the imaging scheduling includes transmission constraints),
and coordinated integrated scheduling. They design an adaptive bi-objective memetic algorithm,
which integrates ALNS and NSGA-II, and compare its performance on the different frameworks.
Finally, the transmission mode (real-time and record playback) was included for the first time
by Zhang and Xing (2022) as a variable in the formulation of the integrated SSP. They propose
an improved genetic algorithm with a novel idea of encoding and decoding, to match the specific
request with the corresponding satellite-ground resources.

5 Outer Space Missions

The quest for knowledge about the universe has prompted humanity to develop technologies
capable of exploring other planets, a crucial endeavor for understanding Earth’s origins and
predicting its future. Two key technologies, rovers and orbiters, play essential roles in this
exploration. Rovers investigate planetary surfaces and materials, while orbiters (i.e., satellites)
host several instruments onboard, among which cameras to perform observations from above. The
images acquired are transmitted to ground centers for analysis, contributing to our understanding
of celestial bodies and to the improvement of future missions.

Over the years, numerous missions have been planned to explore the Solar System. The first
satellite to achieve a heliocentric orbit was the Soviet Luna 1 in 1959. In the same year, the
probe Luna 3 acquired the first picture of the far side of the Moon. In 2003, the European Space
Agency started a lunar mission mainly aimed at taking three-dimensional X-ray and infrared
imagery of the lunar surface. Subsequently, several missions focused on the exploration of the
Moon, as it is the closest celestial body to Earth, and Mars, considered the planet most similar
to ours. At present, seven orbiters are surveying the red planet: Mars Odyssey, Mars Express,
Mars Reconnaissance, MAVEN, Trace Gas, Hope Mars, and Tianwen-1. They are managed by
different space agencies and contribute to the collection of information about Mars. Some other
missions also focused on Venus, Jupiter, Saturn, and Mercury (see https://www.planetary.
org/space-missions for a complete overview). Space missions are continuously developed and
launched. NASA’s exploration road-map sets future goals until 2033 and includes mission towards
the Moon, Jupiter, Mars, Venus, and Titan (Williams 2024). Similarly, ESA is planning several
future missions, as reported in Figure 8.

Planning the schedules of extraterrestrial orbiters is an even more challenging task than that
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Figure 8: Solar System Explorers: Legacy, Active, and in Development (ESA 2023)

of EOS. Surprisingly, the study of extraterrestrial artificial satellites in the field of Operations
Research is limited, with many current planning and scheduling procedures relying on common-
sense or heuristic reasoning. While EOS studies provide some insights, they are not entirely
applicable to space missions due to the vast differences in context. Outer space satellite schedul-
ing necessitates long-term planning, as opposed to the daily planning of EOS. Additionally, it
must account for various external conditions and limitations, such as available activity time and
resources. Moreover, outer space spacecraft were launched years ago, using technology that may
not be fully optimized, carrying inherent limitations.

All the studies in the field of outer space SSP refer to active or planned missions. The main
application found in the literature is the Mars Express mission, launched in 2003 with the aim of
observing the entire surface at high and super resolution, and also determining the structure of
the sub-surface and the composition of the atmosphere (Orosei et al. 2015). In particular, many
studies address the Mars Express mission in the field of Communication SSP (see Section 5.2).
Moreover, some of the authors of this survey are currently working to an Imaging SSP applied
to the radar sounder MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding),
onboard the Mars Express orbiter (Delorme et al. 2024).

To the best of our knowledge, the pioneering introduction of an automatic planner and
scheduler for mission management occurred in 1999, when NASA activated the Remote Agent
Experiment (RAX) on the Deep Space One mission. The RAX Planner/Scheduler facilitated
high-level goal-oriented commanding of the spacecraft, utilizing heuristic procedures to generate
plans (Jónsson et al. 2000). This software demonstrated its capability to construct concurrent
plans with over a hundred tasks, including thrust activities, communication, and imaging tasks.
The software operated by taking a candidate plan as input and recursively extending it, consider-
ing the task to be scheduled and the associated constraints. Following this milestone, dedicated
systems were subsequently developed to address the diverse scheduling needs of space missions,
encompassing both early-stage mission scheduling and detailed planning of imaging and commu-
nication tasks. Most of these software tools integrate heuristic procedures with correction and
visualization tools. Implementation of these software tools varied, with some deployed onboard
the spacecraft itself and others residing in ground control centers for remote management. For
the sake of coherence, only the latter will be mentioned below, with reference to the research
work applied to them.

In the remaining part of this section, we will delve into a review of works centered around
scheduling imaging tasks, communication tasks, or a combination of both in outer space context.
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5.1 Imaging Scheduling in OS

The image selection and scheduling problem in the outer space field mainly refers to the coverage
of large area targets (i.e., part or all of the surface of a planet). As in the Earth observation
imaging SSP, the target is visible only in specific VTWs and the viewing ability of the camera
allows to observe only a limited region below the satellite. Moreover, the satellite has very
limited storage capacity, due to fewer possibilities to download data to ground stations. Hence,
the imaging SSP in OS aims to optimally plan the acquisition tasks of a satellite for each orbit,
usually in a long-time horizon, to maximize the coverage rate while respecting the resource
capacity.

This problem has been addressed by Knight and Chien (2006) using squeaky wheel opti-
mization. They introduced CLASP, a scheduler system that employs a gridded representation
of regions and generates strips to represent observation opportunities. CLASP was utilized to
evaluate maximum coverage for the first five flybys of Europa Clipper mission and the ten clos-
est flybys for each target body of the JUpiter ICy moons Explorer (JUICE) by Troesch et al.
(2017), and it was also prototyped as a tool for early-stage mission planning of the Mars Odyssey
THEMIS instrument by Mclaren et al. (2011). In a recent study, Maillard et al. (2021) presented
five new greedy algorithms to enhance the quality of schedules generated within CLASP’s core.

In 2020, Paterna et al. (2020) approached the imaging scheduling problem as a multi-objective
optimization problem and employed genetic algorithms to solve it. The proposed technique
consists of two main stages: segmentation and selection. The inputs to the system include the
total scheduling interval, and a description of the spacecraft’s trajectory during its orbit around
the target celestial body. The segmentation stage divides the time horizon into shorter acquisition
intervals, using either a time-based or a target-based criterion. The output of the segmentation
stage comprises a set of acquisition segments, characterized by metrics such as surface coverage,
power consumption, and memory usage. These metrics are then utilized in the selection phase,
where they are combined into suitable cost or fitness functions to evaluate the quality of the
acquisition schedule. In this phase, the authors employed NSGA-II, a multi-objective variant of
genetic algorithms. To demonstrate the effectiveness of their approach, they applied it to the
operations of a radar sounder onboard JUICE during the phase called GCO-500 lasting 130 days.

5.2 Communication Scheduling in OS

The communication SSP in OS has received more attention than the imaging SSP, and has
been mainly referred to Mars Express mission. The primary communication issue discussed in
the literature is known as the Mars Express Memory Dumping Problem (MEX-MDP). In this
scenario, the objective is to create a set of commands for downlinking data generated by the
payload and stored in the onboard memory to Earth, while accounting for constraints such as
limited onboard memory, a restricted number of downlink sessions, and varying data transmission
rates during communication TWs. The plans need to be robust and minimize data loss due to
memory overwriting or communication issues.

Oddi et al. (2002) extensively described MEX-MDP with preemption allowed and provided
its formal mathematical representation. They proposed a two-level greedy heuristic guided by
either packet store priority or data volume, along with a tabu search procedure. They tested
their approaches on a set of instances generated from few realistic initial data and classified
in four levels of complexity. The instances contain a number of observation requests ranging
from 12 to 96, corresponding to three days of satellite works. In subsequent years, the authors
proposed improvements to the solution methods, introducing iterative random sampling (Oddi
et al. 2005), which increased the performances up to 70% over the greedy heuristic for the hard
instances, and a max-flow formulation (Oddi and Policella 2007) solved using the Edmond-Karp
implementation of the Ford-Fulkerson method. They also developed an iterative level procedure
to enhance solution robustness by considering the utilization of onboard memory. This approach
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is implemented within the MEXAR2 tool, currently used by the planning team of Mars Express.
Righini and Tresoldi (2009) developed a linear programming model for MEX-MDP and provided
rules for producing balanced solutions. In the extended problem, they incorporated four objective
functions: the minimization of data losses, residual data, and number of dump operations, and the
maximization of the schedule’s robustness. The first two objectives are hierarchically prioritized,
while a multi-objective analysis is performed for the latter two. They tested their algorithms
on real data from which they generated 23 instances with planning horizons ranging from 3 to
28 days. Their approach reduced both the number of transmissions and the saturation level
compared to plans generated by MEXAR2 for all instances and also reduced the computational
time by up to 98%.

A generalization of MEX-MDP is the overlapping memory dumping problem, where data
collection and downlink activities can occur concurrently. This problem was discussed in rela-
tion to the Rosetta comet rendezvous mission conducted by ESA. For Rosetta operations, the
behavior of each downlink can be controlled by setting priorities or limiting duration. Rabideau
et al. (2017) described two heuristics implemented in the DALLOC tool, which utilizes buffer
volume profiles to assign priorities to data buffer emptying, and compare them to a maximum
flow solution adapted from Oddi and Policella (2007). They tested their heuristics on real mission
data instances of about three months and a half, with 324 downlink TWs and over 40,000 data
production events, and proved they can provide faster and more robust solutions compared to the
max-flow approach, which in return performs better with nonoverlapping downlinks. Hébrard
et al. (2022) subsequently proposed an improvement to the best heuristic implemented by Ra-
bideau et al. (2017), employing a randomized repair strategy and testing it on a large synthetic
data set.

Similar to the downlink, the uplink scheduling problem aims to generate a feasible sched-
ule for transmitting telecommands from the ground segment to the space segment. Due to the
considerable distance between Mars and the Earth, the solution needs to be robust as repair op-
erations can be time-consuming or even impossible. Robustness can be enhanced, for example,
by requiring confirmation or retaining a backup window whenever feasible. Cesta et al. (2008)
developed a two-step greedy algorithm within the RAXEM tool used for the Mars Express mis-
sion. In this algorithm, files are sorted based on the execution time of their first telecommand.
Thanks to the developed software, the work-hours involved in planning the uplink for a week
has been reduced by a factor of 4-6 on average. Donati et al. (2011) developed a greedy algo-
rithm enriched with look-ahead and backtracking capabilities. This algorithm aims to find an
ideal solution initially, and if not possible, it adjusts by making compromises. In addition to
maximizing the number of telecommands transmitted and ensuring robustness, the scheduling
algorithm can be configured with different settings to optimize secondary aspects. The authors
compared their solutions with those generated by RAXEM to evaluate their effectiveness on a
not tightly constrained set of eleven instances coming from real data, with a number of uplink
files ranging from 25 to 114, containing from 220 to 270 telecommands each. Their algorithms
resulted in solutions as robust as RAXEM’s, but faster for most instances.

5.3 Integrated Scheduling in OS

The literature on SSPs in outer space also includes attempts to address the integrated scheduling
problem, which involves the simultaneous consideration of imaging and communication tasks. In
2012 a challenge was published for the International Competition on Knowledge Engineering for
Planning and Scheduling by Fratini and Policella (2012), focusing on the Mars Express domain.
The challenge aimed to determine a set of slewing actions that would generate time slots for
the spacecraft’s main activities (observation, communication, and maintenance). Furthermore,
it involved creating commands for downlinking data to Earth and uploading command files for
the chosen experiment from Earth to the satellite. The problem’s input comprised a set of
files providing information on the observations to be performed, as well as additional details
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regarding the spacecraft’s orbits and the availability of ground stations for communication. One
of the solutions, proposed by Kolombo et al. (2013), employed a simple method based on the
incremental addition of operations to a partial schedule, with adjustments made to the time
allocation of already scheduled operations to fit the newly added ones. The algorithm prioritized
scheduling imaging and maintenance requests using a depth-first search approach, followed by
scheduling the related communication actions.

As part of a general effort promoted by ESA to support the integrated mission planning by
means of software tools, a planning system was developed for the long-term planning of Mars
Express mission, MrSPOCK (Cesta et al. 2011). The long term plan level involves decisions
about slot assignments for the main activities of the spacecraft (i.e., science, communication,
and maintenance) such that all the operative constraints are satisfied. MrSPOCK exploits a
genetic algorithm led by a multi-objective function.

6 Conclusions and Future Research Directions

The efficient management of space missions is a critical challenge for the astrophysics commu-
nity, given the limited resources available and the many physical and environmental constraints.
Within this challenge, Satellite Scheduling Problems (SSPs) have emerged as a prominent and
extensively studied class of optimization problems in the field of Operations Research, focusing
on the optimal planning of tasks executed by observation satellites. While Earth observation
systems have received considerable attention, with milestones set by the Spot5 problem and the
ROADEF Challenge 2003, outer space satellites have been comparatively less studied.

This survey extensively reviews over a hundred papers mostly spanning the last three decades,
offering a comprehensive outlook on both Earth observation and outer space missions. Recog-
nizing the diverse variants encompassed by the SSP and its varied application contexts, an
application-centric perspective is adopted, thus facilitating the navigation of this expansive field
for new researchers. We provided a detailed classification of the literature based on three primary
problem classes: Imaging, Communication, and Integrated. Within each problem class, we have
delineated the principal contributions and techniques developed over the years to cope with the
difficulty of the problem. Our analysis reveals a prevalence of heuristic or hybrid methodologies,
with a scarcity of exact approaches. Notably, numerous studies based their investigations on
real-world test cases and data involving both existing satellites and targets, emphasizing the
practical relevance of the research.

In the area of Earth observation studies, imaging and communication scheduling are well-
established research fields, which have been addressed in different variants and through several
approaches. When studied separately, both imaging and communication SSP make simplified
assumptions on their counterpart. However, the integration of imaging and communication
decisions is relevant for real applications and the development of effective algorithms to face the
integrated SSP should be a focus in future research. Other interesting research directions may
include multi-objective optimization, investigating techniques that balance conflicting objectives,
such as maximizing observation coverage, minimizing costs, and optimizing energy consumption.
Multi-objective optimization can provide a more comprehensive understanding of trade-offs and
enable decision-makers to choose satisfying solutions. Pursuing the same idea, more attention
should be devoted to the fair allocation of resources between the several users of the satellites.
Indeed, the sharing of a satellite, or an instrument onboard it, is a very common practice and
the fairness in the planning process is a realistic constraint (and objective), which can preclude
the feasibility of a classic maximum-profit schedule. Nevertheless, despite its relevance, few
works have studied this optimization problem in the SSP domain so far. Finally, addressing the
dynamism of the SSP and the fault tolerance of satellite scheduling systems emerges as a critical
focal point for improvement. Future research should aim to develop improved algorithms capable
of dynamic adjustment in response to unforeseen events or changes in mission requirements, as
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well as to unexpected disruptions, mitigating the impact of failures.
Turning our attention to outer space missions, the research landscape presents significant

opportunities for the development of novel methodologies, as little research has been applied
to this domain. Moreover, several space missions are currently active (see, e.g., Mars Express,
Chicarro et al. 2004), just started (see, e.g., JUICE launched on 14 April 2023, Grasset et al.
2013), or are planned for the coming years (see, e.g., Uranus Orbiter planned to be launched in
the late 2030s, Girija 2023), providing an interesting and wide range of application scenarios.
New methodologies can enhance existing scheduling software, which often rely on basic heuristic
strategies or provide only visual support for human decision-making processes. Specifically,
applying insights from Earth observation to outer space missions, particularly in addressing
challenges such as environmental impacts and coverage of large areas, represents a promising
avenue for future research.
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Appendix. Acronyms

ALNS Adaptive Large Neighborhood Search
AS Agile Satellite

B&B Branch-and-Bound
B&C Branch-and-Cut
B&P Branch-and-Price

BRKGA Biased Random-Key Genetic Algorithm
CCP Chance Constraint Programming

CNES National Center for Space Studies
CS Conventional Satellite

CSP Constraint Satisfaction Programming
EO Earth Observation

EOS Earth Observation Satellite
ESA European Space Agency

GRASP Greedy Randomised Adaptive Search Procedure
ILP Integer Linear Programming

JUICE JUpiter ICy moons Explorer
MARSIS Mars Advanced Radar for Subsurface and Ionosphere Sounding

MEX-MDP Mars Express Memory Dumping Problem
MILP Mixed Integer Linear Programming

MS Multiple Satellites
NASA National Aeronautics and Space Administration
NSGA Non-dominated Sorting Genetic Algorithm
OECD Organization for Economic Cooperation and Development

OS Outer Space
RAX Remote Agent Experiment

ROADEF French Operations Research & Decision Support Society
SS Single Satellite

SSP Satellite Scheduling Problem
TW Time Window

VTW Visible Time Window
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