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Abstract

This paper introduces the Heterogeneous-Fleet Electric Vehicle Routing Problem with Nonlinear

Charging Functions (HEVRP-NL). This problem involves routing a heterogeneous fleet of electric ve-

hicles, utilizing multiple charging modes, and accounting for time-dependent waiting time functions

at charging stations. The problem is modeled using a path-based mixed-integer linear programming

formulation. To solve this problem, we present an algorithmic framework that alternates between

two components. The first component is an iterated local search algorithm with a problem-specific

route evaluation function, which obtains local optimal solutions and generates a pool of high-quality

routes. The second component is a set-partitioning model that combines a subset of routes from the

pool, which is constructed based on reduced costs, into a feasible solution. We design HEVRP-NL

benchmark instances based on the publicly available electric fleet size and mix vehicle routing prob-

lem instances, which are used to evaluate our methods. For small-scale HEVRP-NL instances, the

proposed model can be employed in a general-purpose mixed integer programming solver to achieve

optimal solutions or find good upper bounds. This exact approach serves as an evaluation of our

heuristic algorithm’s ability to attain optimal solutions rapidly. Extensive computational results on

large-scale HEVRP-NL instances illustrate the advantages of considering non-linear charging func-

tions and show the impact of waiting time at the charging stations. Finally, we conduct experiments

on 120 benchmark instances for the E-VRP-NL and 168 benchmark instances for the E-FSMFTW-

PR, which are the special cases of our problem. The results indicate that our algorithm outperforms

existing approaches from the literature and identifies 32 new best solutions for the E-VRP-NL and 33

new best solutions for the E-FSMFTW-PR, respectively.
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1. Introduction

Electric Vehicle Routing Problems (E-VRPs) involve designing routes to serve a set of customers

using a fleet of electric vehicles (EVs), which may require trips to charging stations (CSs) to recharge

their batteries. In practice, many logistics companies employ various EV types for different delivery

scenarios. In addition, cities are equipped with CSs of varying power levels (Montoya et al., 2017;

Keskin & Çatay, 2018; Gnann et al., 2018), each of which is associated with a non-linear charging

time (Pelletier et al., 2017). With the rapid increase in the number of EVs and relatively lengthy

charging times, the level of busyness (waiting/queuing time before charging) at CSs varies consider-

ably depending on their location and the time of day (Keskin et al., 2019). The aforementioned factors

(i.e., EV type, charging time, mode, and location) can have a substantial effect on the routing deci-

sions. Several prior studies in this field have focused on one or a few of these challenges, but none of

these studies has addressed these important issues in a comprehensive fashion. To this end, we aim to

tackle a more comprehensive and practical E-VRP scenario: the Heterogeneous-Fleet Electric Vehicle

Routing Problem with Nonlinear Charging Functions (HEVRP-NL) by incorporating the important

features of the following E-VRP variants: the Electric Fleet Size and Mix Vehicle Routing Problem

with Time Windows (E-FSMFTW), the E-VRP with non-linear charging functions (E-VRP-NL), and

the E-VRP with time-dependent waiting times.

Hiermann et al. (2016) introduce the E-FSMFTW, and consider a full linear charging function

(EV must be fully charged at CS). In this study, larger EVs have greater load capacity and can travel

longer distances, while smaller EVs have lower acquisition costs. In a subsequent study, Wang &

Zhao (2023) further extend the E-FSMFTW by incorporating a partial linear recharging function,

resulting in the E-FSMFTW-PR. However, as stated by Uhrig et al. (2015), there are two types of

linear approximations for the real charging function: the optimistic approximation and the pessimistic

approximation. The former’s approximate charging rate is faster than the real charging speed, which

may lead to infeasible solutions in actual scenarios; the latter’s approximate charging rate is slower

than the real charging speed, which may result in failure to reach the optimal solution. Due to these

reasons, the use of linear charging functions is inadequate for modeling the battery charging process

in real-world applications.

Montoya et al. (2017) introduce the E-VRP-NL to model a more accurate charging process. In

addition to a partial charging policy, the authors propose a piecewise linear approximation of the

charging process. They consider multiple charging technologies that are associated with different

charging speeds, such as fast, normal, and slow. Later, Keskin et al. (2019) consider the E-VRP-NL

with time-dependent waiting times at CSs. To facilitate the modeling of the waiting process, they

discretize the real continuous non-linear time-dependent waiting function into several time intervals
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and simulate it as a piecewise linear function. However, they only consider a single charging tech-

nology. Froger et al. (2022) extend the E-VRP-NL by considering CS capacity restrictions, leading

to the E-VRP-NL-C. Despite the above studies accounting for more realistic charging functions, they

all assume a fleet of homogeneous EVs.

The previous E-FSMFTW studies assume a fleet of heterogeneous EVs with the same linear charg-

ing function at any CS. In contrast, we consider that each type of EV has a unique non-linear charging

function at each type of CS, which is closer to reality. Furthermore, previous work on the E-VRP-NL

considered homogeneous EVs or a single EV, neglecting considerations such as heterogeneous EVs,

time windows, and load capacity constraints, all of which are included in our study.

To solve the HEVRP-NL, we propose a mathematical model and a solution approach based on

the methods of Wang & Zhao (2023). In terms of the model, we extend the path-based formulation

in Wang & Zhao (2023) by incorporating the presence of a heterogeneous EV fleet, as well as the

utilization of non-linear charging and waiting time functions. In terms of the solution approach, we

propose a meta-heuristic based on the ILS framework of Wang & Zhao (2023) and introduce several

improvements.

The main contributions of this paper are the following. First, we propose a general mixed-integer

linear programming (MILP) model for the HEVRP-NL. Second, we propose an algorithmic frame-

work based on the ILS framework of Wang & Zhao (2023) together with several improvements. The

algorithm framework alternates between two components: (i) an iterated local search algorithm with

a problem-specific route evaluation function, which is used to find local optimal solutions and gener-

ate a pool of high-quality routes; (ii) a set-partitioning model, which is used to combine a subset of

routes from the pool into a feasible solution. Third, we conduct extensive computational experiments

on HEVRP-NL benchmark instances. The results indicate that accounting for non-linear charging

functions can significantly reduce logistics costs. Finally, the heuristic is compared with the state-

of-the-art algorithms on 120 benchmark E-VRP-NL instances and 168 E-FSMFTW-PR instances.

Our heuristic finds 32 new best solutions for the E-VRP-NL and 33 new best solutions for the E-

FSMFTW-PR, respectively.

2. Literature Review

There is a vast body of literature on E-VRPs. Some studies focus on the energy consumption

(Zhang et al., 2018; Pelletier et al., 2019; Basso et al., 2021; Bruglieri et al., 2023), while others focus

on the battery-swapping technology (Hof et al., 2017; Jie et al., 2019; Raeesi & Zografos, 2020; Çatay

& Sadati, 2023). However, the majority of papers, including this one, focus on the charging process,

which is the key component in E-VRPs. In this section, we review the literature based on the type of
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charging functions considered.

2.1. E-VRPs with linear charging functions

First, we discuss the literature on E-VRPs with linear charging functions that focus on homoge-

neous EV fleets. In Schneider et al. (2014), the authors propose a mathematical model and a variable

neighborhood search algorithm with tabu search (VNS/TS) for the electric vehicle routing problem

with time windows (EVRPTW) with a full linear recharging function. They aim to minimize the num-

ber of vehicles used and the total distance of routes. Felipe et al. (2014) introduce the green vehicle

routing problem with multiple charging technologies and partial linear charging functions (GVRP-

MTPR). Desaulniers et al. (2016) propose an exact branch-price-and-cut algorithm and investigate

four different linear recharging strategies for the EVRPTW. Desaulniers et al. (2020) improve upon

previous results in Desaulniers et al. (2016) by modifying the route-generation labeling algorithm

and, as a consequence, they can determine additional optimal solutions. Keskin & Çatay (2016) ex-

tend the EVRPTW by using a partial linear recharging function. Schiffer & Walther (2017) focus

on the electric location routing problem with time windows and partial linear recharging (ELRP-

TWPR), considering location decisions for charging stations and routing of electric vehicles. In their

subsequent work, Schiffer & Walther (2018) propose an adaptive large neighborhood search for the

location routing problem with intra-route facilities and linear refueling policy. Cortés-Murcia et al.

(2019) present the electric vehicle routing problem with time windows, partial linear recharging func-

tion, and satellite customers. Keskin et al. (2021) consider the EVRPTW with stochastic waiting

times, using linear charging function.

Second, we review the literature on mixed and heterogeneous fleets. Goeke & Schneider (2015)

propose the EVRPTW with a mixed fleet (EVRPTW-MF) containing electric commercial vehicles

(ECVs) and conventional internal combustion commercial vehicles (ICCVs). They utilize a realistic

energy consumption function that considers vehicle speed, gradients, and cargo load. Macrina et al.

(2019) investigate a mixed fleet VRP with different linear recharging speeds, comprising both EVs and

ICCVs. Hiermann et al. (2016) consider a variety of electric vehicles with different capacities, battery

sizes, and prices and propose the E-FSMFTW, using a full linear recharging function. Hiermann et al.

(2019) propose a hybrid heterogeneous electric fleet routing problem (H2E-FTW) with conventional,

plug-in hybrid, and electric vehicles. Recently, Wang & Zhao (2023) extend the E-FSMFTW by

incorporating a partial linear recharging function.

A notable limitation of the aforementioned literature is that the authors consider linear charging

functions, which is typically not the case in practice.
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2.2. E-VRPs with non-linear charging functions

Non-linear charging functions capture the fact that the battery charge level is not a linear function

of the charging time (Uhrig et al., 2015). This consideration is aligned with reality and also leads to

improved routing decisions in terms of feasibility and operating costs (Pelletier et al., 2017). There-

fore, studies on E-VRP-NLs have gained attention in recent years. This literature often relies on either

one of the following assumptions: 1) the CSs can simultaneously handle an unlimited number of EVs,

or 2) each CS is equipped with a limited number of available chargers.

First, we provide a review of the literature assuming the CSs can handle an unlimited number

of EVs. The E-VRP-NL was first introduced by Montoya et al. (2017), who aimed to model a more

accurate charging process. The authors propose a piecewise-linear approximation of the charging pro-

cess and use various charging technologies (e.g. fast, normal, slow). Later, Pelletier et al. (2018) use

the same piecewise linear approximation, and consider the electric freight vehicles charge scheduling

problem. Froger et al. (2019) propose a path-based model for the E-VRP-NL, which is a more ef-

fective alternative model to avoid replicating charging stations. Lee (2021) consider the E-VRP with

concave and non-decreasing charging functions. Zhou et al. (2022) consider the electric bus charging

scheduling problem with a non-linear charging function and battery degradation effect.

Second, we review the literature assuming that each CS is equipped with only a few chargers

and considering the congestion at CSs. Keskin et al. (2019) deal with this issue by explicitly con-

sidering expected (i.e., deterministic) time-dependent queuing times at CSs. Kullman et al. (2021)

introduce the E-VRP with public-private recharging strategy (E-VRP-PP). They only use a single EV,

and consider the non-linear charging functions with a realistic queuing process at the charging station.

Froger et al. (2022) extend E-VRP-NL by considering charging station capacity restrictions, leading

to the E-VRP-NL-C. Lam et al. (2022) extend E-VRP-NL to the EVRPTW with piecewise-linear

recharging and capacitated stations. However, they impose a restriction that there can be at most one

charging station visited between any two customers, and only consider a single charging technology.

Lera-Romero et al. (2024) combine time-dependent aspects with E-VRP-NL and consider the waiting

times at CS. However, they only account for homogeneous EV fleets and assume a uniform waiting

time function for all CSs.

2.3. Summary of the E-VRP features and the proposed methods

To provide a clear comparison between our problem and existing studies, we present a summary

of the E-VRP features in Table 1. In summary, we consider a heterogeneous fleet of EVs, whose

charging process is represented by multiple non-linear charging functions, and we account for time-

dependent waiting time functions at CSs.
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Table 1: Summary of features in existing E-VRP studies

Reference Variants Fleet Charging function Multiple Charging Congestion at CSs Time Windows Vehicle Capacity Model Method

Erdoğan & Miller-Hooks (2012) G-VRP HO C NEG Repl Heuristics

Schneider et al. (2014) E-VRPTW HO FL NEG ✓ ✓ Repl VNS/TS

Goeke & Schneider (2015) E-VRPTWMF M PL NEG ✓ ✓ Repl ALNS

Desaulniers et al. (2016) E-VRPTW HO FL, PL NEG ✓ ✓ SP Branch-and-price

Hiermann et al. (2016) E-FSMFTW HE FL NEG ✓ ✓ Repl ALNS

Keskin & Çatay (2016) E-VRPTW-PR HO PL NEG ✓ ✓ Repl ALNS

Montoya et al. (2017) E-VRP-NL HO NL ✓ NEG Repl ILS + HC

Froger et al. (2019) E-VRP-NL HO NL ✓ NEG Path MILP solver

Hiermann et al. (2019) H2E-FTW M PL NEG ✓ ✓ – GA+LNS+SP

Keskin et al. (2019) EVRPTW HO NL TD ✓ ✓ Repl ALNS

Cortés-Murcia et al. (2019) E-VRPTWsc HO PL NEG ✓ ✓ Repl ILS+SP

Kullman et al. (2021) E-VRP-PP SV NL ✓ DYN Repl Static and dynamic policies

Keskin et al. (2021) EVRPTW HO PL SW ✓ ✓ AF ALNS

Froger et al. (2022) E-VRP-NL-C HO NL ✓ LC Path ILS+branch-and-price

Lam et al. (2022) EVRPTW-PLR-CRS HO NL ✓ LC ✓ ✓ Path Branch-and-cut-and-price

Wang & Zhao (2023) E-FSMFTW-PR HE PL ✓ NEG ✓ ✓ Path ILS+SP

Lera-Romero et al. (2024) TDEVRPTW HO NL ✓ TD ✓ ✓ SP Branch-and-price

Our work HEVRP-NL HE NL ✓ TD ✓ ✓ Path ILS+SP

Fleet: homogeneous fleet (HO), mixed fleet (M), single vehicle (SV), heterogeneous fleet (HE)

Charging function: constant charging time (C), full linear charging (FL), partial linear charging (PL), non-linear charging (NL)

Multiple Charging: each CS may charge at a different speed (e.g., fast, normal, slow)

Congestion at CSs: neglected (NEG), limit the number of charges at CSs (LC), time-dependent waiting time (TD), dynamic decision making (DYN), stochastic waiting time (SW)

Model: replication-based formulation (Repl), path-based formulation (Path), set partitioning with a variable per route (SP), arc-flow formulation (AF)

Methods: Iterated Local Search (ILS), Large Neighborhood Search (LNS), Variable Neighborhood Search (VNS), Genetic Algorithm (GA), Tabu Search (TS)
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In recent years, the path-based formulation has gained popularity for solving E-VRPs as it does

not require duplicating CSs. In Section 4, we extend the path-based model of Wang & Zhao (2023)

to solve the HEVRP-NL and provide a detailed explanation of how we integrate the features of non-

linear charging functions and time-dependent waiting functions into the model.

In terms of the meta-heuristic, a combination of ILS with mathematical optimization methods

(B&P and SP) has become a powerful approach for solving large-scale E-VRPs in recent years. In

Section 5, we propose a meta-heuristic based on the ILS framework of Wang & Zhao (2023). Our

algorithmic framework follows the same algorithmic design which contains the following compo-

nents: initial solution, perturbations, local search, and set-partitioning. We have made customized

modifications and numerous improvements for solving the HEVRP-NL as follows:

(1) We design a problem-specific function for evaluating a route with a given sequence of cus-

tomers and CSs, under the consideration of the non-linear charging functions, the non-linear waiting

time functions, and the constraints violations that are allowed. This evaluation function plays a crucial

role in both the perturbations and local search phases, significantly influencing the solution quality

and the solution time. In Wang & Zhao (2023), the route evaluation function can only handle a linear

charging function without considering time-dependent waiting functions at CSs.

(2) In the set-partitioning component, we design a new method for managing the stored route set,

which differs from the method of Wang & Zhao (2023). Their approach involves storing a specific

number of solutions in the route set and clearing the set after solving the model each time. Our method

obtains dual variables by solving the relaxed set-partitioning model, then utilizes the information of

the reduced cost to add the routes into the route set or remove the routes from the current set.

(3) In the set-partitioning component, once the model is solved, we further enhance the charg-

ing decisions for each route in the newly assembled solution by solving the fixed-vehicle charging

problem. This process is not undertaken in Wang & Zhao (2023).

(4) In the perturbations, we not only employ commonly used destroy-and-repair operators in Wang

& Zhao (2023) but also introduce a newly enhanced closest removal operator by utilizing the cus-

tomer correlation function introduced in Vidal et al. (2013).

(5) We compare our enhanced algorithm with the algorithm presented in Wang & Zhao (2023) by

conducting experiments on relevant benchmarks. The results indicate that our algorithm outperforms

Wang & Zhao (2023)’s in both solution quality and computational time.

3. Problem Description

Our HEVRP-NL problem involves a set of customers C, a set of CS nodes F, and a heterogeneous

fleet of EVs denoted by K. Each EV type k ∈ K has a maximum capacity Qk, a maximum driving
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distance Yk, and a fixed cost f k. We define N = C∪{0}. For each customer i ∈ C, a demand hi needs to

be delivered within the time window
[
αi, βi
]
. The service time of each customer is represented by si.

The travel distance and the travel time between nodes i and j are denoted by di j and ti j, respectively.

EVs can be partially charged at any CS.

We use a partial charging policy, allowing EVs to charge any amount of energy at the CS.

Given the presence of different EV types, we extend the non-linear charging functions in Mon-

toya et al. (2017) as follows. Each CS i has a charging technology (e.g., slow, normal, fast) as-

sociated with a piecewise linear concave charging function ϕik for each EV type k. We denote by

Bik = {0, . . . , bik} the ordered set of breakpoints of the piecewise linear approximation of the charg-

ing curve of EV type k at CS i. Let qikm and cikm be the State of Charge (SoC, modeled as avail-

able driving distance) and the charging time of breakpoint m ∈ Bik of the EV type k in CS i. Let

ρikm be the charge slope of the segment joining the breakpoints
(
qik,m−1, cik,m−1

)
and (qikm, cikm) (i.e.,

ρikm =
(
qikm − qik,m−1

)
/
(
cikm − cik,m−1

)
) at CS i for EV type k. Figure 1 shows an example of the piece-

wise linear charging functions for CSs with power of 90kW (fast), 50kW (normal), and 30kW (slow)

charging EVs with a 50kWh and a 60kWh battery.

Figure 1: Piecewise linear charging functions for fast CSs, normal CSs, and slow CSs charging EV1 with 50kWh battery
and EV2 with 60kWh battery

Since each CS is equipped with a limited number of chargers, EVs may need to wait in line before

they can be charged. We adopt non-linear waiting time functions and approximate them using piece-

wise linear functions as in Keskin et al. (2019). The waiting time functions satisfy the FIFO property.

It is assumed that the expected waiting time at all CSs and at any given arrival time can be estimated in

advance (e.g., from the historical data or drivers’ experience). Thus, each CS i has a piecewise linear

time-dependent waiting time function Wi(t) when an EV arrives at a CS at any time t. We denote by

Mi = {0, . . . ,Mi} the ordered set of time intervals of the Wi(t) function at CS i. Let Wm
i be the waiting
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time at CS i at the beginning of mth time interval, S m
i be the slope of the waiting time function of CS

i in mth time interval, and Am
i be the time length of the mth time interval at CS i. Figure 2 shows an

example of the piecewise linear time-dependent waiting time functions for CSs.
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Figure 2: Piecewise linear time-dependent waiting time functions according to Keskin et al. (2019)

A feasible solution must satisfy the following conditions: 1) each customer is visited exactly once

by an EV; 2) each route starts and ends at the depot; 3) each route is feasible with respect to energy,

time windows, and capacity constraints. The objective of the HEVRP-NL is to minimize the sum of

travel time costs, charging time costs, and fixed costs. The first term is the sum of the total travel time

of all trips, the second term is the sum of charging time at each CS, and the third term is the sum of

the costs of all activated EVs.

4. A mixed-integer linear programming model

4.1. Path-Based Model

Most of the existing models for E-VRPs can be classified into two categories: replication-based

models and path-based models. To allow multiple visits to each CS, many studies (Schneider et al.

(2014), Keskin & Çatay (2016),Hiermann et al. (2016), Montoya et al. (2017), Kullman et al. (2021))

replicate the CSs in the mathematical model. These models need to set the number of copies of each

charging station, which greatly increases the solution time. To avoid replicating CS nodes, other

studies use a more complex but more effective approach, named the path-based model. Their idea is

either to enumerate paths of visits to CSs between any two customer nodes or depot nodes (Roberti &

Wen (2016), Andelmin & Bartolini (2017), Froger et al. (2019), Froger et al. (2022)), or enumerate

paths of visits to customers between any two CSs or the depot (Bruglieri et al. (2019a), Bruglieri et al.

(2019b)). We refer to the former case as CS paths and to the latter as customer paths.
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In this paper, we propose a path-based model based on CS paths for the following reasons: a) the

number of customer paths grows much faster than the number of CS paths; b) customer path-based

formulations require introducing a sufficient number of copies of paths that do not visit any customer

between two charging stations.

4.2. Path Enumeration

The idea of the CS path-based model is to enumerate all paths between any two non-charging

nodes. We refer to this set of paths as P. The set Pi jk comprises paths from node i ∈ N to node j ∈ N

by EV type k ∈ K. Note that this concept of path is adopted from Froger et al. (2019), and paths

from i to j may include one or multiple visits to CSs, without including any customers. We define

parameters org(p) = i, dest(p) = j, and evt(p) = k, which represent the starting node, destination

node, and EV type of path p. Let dp be the travel distance of path p. The value tp represents the travel

time of path p without considering charging time or waiting time at CS. Let n(p) be the number of

CSs on path p. If n(p) = 0, it means there are no CSs visited on path p, i.e., the EV travels directly

from node org(p) to node dest(p). We define cs(p, l) as the l-th CS on path p (l ∈ {1 . . . n(p)}). Let

τplm (m ∈ Bcs(p,l)k =
{
0, . . . , bcs(p,l)k

}
) be the charge distance of the segment joining the breakpoints

m − 1 and m at CS cs(p, l) on path Pi jk. Thus, τplm = qcs(p,l)km − qcs(p,l)k,m−1.

Even with the CS path-based model, the number of paths can still be very large. Given k EV types,

m charging stations, and n non-recharging nodes, the time complexity of enumeration is O(k · n2 ·m!).

To overcome this, we eliminate infeasible paths by applying constraint conditions (refer to Section

4.3), and design dominance rules for CSs to eliminate dominated paths (refer to Section 4.4) to make

our model more tractable.

4.3. Eliminating infeasible paths

To reduce the size of the path set P, we employ the following constraints (1)-(3) to eliminate

infeasible paths without affecting the optimal solution.

Constraints (1) check if a path p violates the time window. If so, the path can be eliminated. The

value of ρ∗ is the steepest slope for a segment of the piece-wise linear charging functions on path p

(i.e., ρ∗ = maxl=1...n(p){ρcs(p,l)1}). Wcs(p,l)
min represents the minimum waiting time of each CS on path p.

Under the condition of performing the minimum charging time and minimum waiting time, the EV

would arrive beyond the latest arrival time of the ending node:

αorg(p) + sorg(p) + tp + max{0, dp − Qevt(p)}/ρ∗ +

n(p)∑
l=1

Wcs(p,l)
min > βdest(p) ∀p ∈ P, n(p) > 0. (1)
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Constraints (2) check if a path p violates the distance constraint. If so, the path can be eliminated.

It means that when the EV traverses this path, the SoC is insufficient to reach the nearest CS or return

to the depot:

min
l∈F∪{0}

{dli} + di j + min
l∈F∪{0}

{dil} > Yevt(p) ∀i, j ∈ C, k ∈ K, n(p) = 0, p ∈ Pi jk. (2)

Constraints (3) check if a path p violates the capacity constraint. If so, the path can be eliminated.

It means that the capacity on that path exceeds the maximum load capacity of the EV:

horg(p) + hdest(p) > Qevt(p) ∀p ∈ P. (3)

4.4. Eliminating dominated paths

After eliminating the infeasible paths, we proceed to eliminate the dominated paths. A path p that

involves no CS (i.e., n(p) = 0) cannot be dominated by other paths. As for a path p that contains at

least one CS (i.e., n(p) ≥ 1), we define it as a Recharging Path (RP). By designing the dominance

rule, we eliminate the dominated RPs.

For an RP p, let ϕp and ϕp as the charging functions corresponding to the fastest and slowest CS

on path p. Let Wp and Wp as the waiting time functions corresponding to the busiest and least busy

CSs on path p. Let torg
p as the travel time from the starting node to the first CS on path p. Let tdest

p be

the travel time from the last CS to the destination node on path p.

Dominance Rule: Let an RP p1 and another RP p2 have the same starting node org(p1) =

org(p2) = o and the same ending node dest(p1) = dest(p2). We can eliminate the dominated RP

p2 if the following conditions are met: 1) the charging rate of ϕp1 is equal to or faster than ϕp2; 2)

the waiting time of Wp1 is equal to or shorter than the waiting time of Wp2 at any time interval; 3)

(torg
p1 ≤ torg

p2 ) ∧ (tdest
p1 ≤ tdest

p2 ) ∧ (dp1 ≤ dp2).

4.5. Formulation

We define the decision variables as follows. The binary variable xp takes the value 1 if path p

is selected, and 0 otherwise. The continuous variables ap, ĥp, and rp track the time, capacity, and

remaining travel distance of EV arrival on path p, respectively. The continuous variable ∆pl tracks

the charging time of the l-th CS on path p. The continuous variables y
pl

and ypl track the remaining

travel distance when EV enters and leaves CS cs(p, l). For m ∈ Bcs(p,l)k, the binary variables wplm

and wplm represent whether the SoC is larger than qcs(p,l)k,m−1 when EV enters and leaves CS cs(p, l);

the continuous variables λplm and λplm represent the coefficients associated with the segment charging

distance τplm when EV enters and leaves CS cs(p, l). The continuous variable Λpl represents the
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waiting time at the l-th CS on path p. The continuous variable upl tracks the EV’s arrival time at the

l-th CS on path p. The binary variable δplm takes the value of 1 if the EV’s arrival time at the l-th

CS on path p is larger than the arrival time at the beginning of mth time interval, and 0 otherwise.

The continuous variable zplm represents the coefficients associated with the time length of the mth time

interval at the l-th CS on path p. The path-based formulation of the HEVRP-NL is as follows:

min
∑
p∈P

xptp +

n(p)∑
l=1

∆pl

 + ∑
j∈N,k∈K,p∈P0 jk

xp f evt(p) (4)

s.t.
∑

j∈N,k∈K,p∈Pi jk

xp = 1 ∀i ∈ C (5)

∑
j∈N,p∈Pi jk

xp =
∑

j∈N,p∈P jik

xp ∀i ∈ C,∀k ∈ K (6)

∑
j∈N,k∈K,p∈Pi jk

xp =
∑

j∈N,k∈K,p∈P jik

xp ∀i ∈ N (7)

∑
j∈N,k∈K,p∈P jik

ĥp =
∑

j∈N,k∈K,p∈Pi jk

ĥp + hi ∀i ∈ C. (8)

The objective function (4) minimizes the sum of travel time cost, charging time cost, and fixed cost.

Constraints (5) ensure that each customer is visited exactly once. Constraints (6) ensure that the EV

type for visiting each customer is consistent with the EV type for leaving each customer. Constraints

(7) ensure that EVs must leave after visiting customers, and EVs departing from the depot center

must return to the depot center. Constraints (8) track the load capacity of EVs when they visit each

customer.

Time Window Constraints:

∑
j∈N,k∈K,p∈P jik

(ap + xp(tp + si) +
n(p)∑
l=1

(∆pl + Λpl)) =
∑

j∈N,k∈K,p∈Pi jk

ap ∀i ∈ C (9)

ap + xptp +

n(p)∑
l=1

(∆pl + Λpl) ≤ β0 ∀i ∈ C, k ∈ K, p ∈ Pi0k (10)

xpαi ≤ ap − xpsi ≤ xpβi ∀i ∈ C, j ∈ N, k ∈ K, p ∈ Pi jk. (11)

Constraints (9) enforce that the departure time of the EV from each customer i = dest(p) on path p

is equal to the sum of the departure time of the EV from org(p), the travel time on path p, the total

charging time on path p, and the service time at i. Constraints (10) ensure that the return time of the

EV to the depot does not exceed its latest time. Constraints (11) ensure that the time windows of all

customers are satisfied.
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Distance Constraints:

y
pl
≤ ypl ∀p ∈ P (12)

rp − xpdorg(p),cs(p,1) = y
p1

∀p ∈ P (13)

yp,l−1 − xpdcs(p,l−1),cs(p,l) = y
pl

∀p ∈ P, l = {2, . . . , n(p)} (14)∑
j∈N,k∈K,p∈P jik

(rp − xpdp +

n(p)∑
l=1

(ypl − y
pl

)) =
∑

j∈N,k∈K,p∈Pi jk

rp ∀i ∈ C (15)

rp − xpdp +

n(p)∑
l=1

(ypl − y
pl

) ≥ 0 ∀i ∈ C, k ∈ K, p ∈ Pi0k. (16)

Constraints (12) ensure that the SoC of the EV upon arrival at each CS is less than or equal to the

SoC of the EV upon departure from the CS. For each path p, Constraints (13) ensure that the EV has

enough travel distance to reach the first CS. Constraints (14) express the SoC relationship of the EV

between two consecutive CSs on path p. Constraints (15) track the SoC of EV when it visits each

customer. Constraints (16) ensure that the EV has enough SoC to return to the depot.

Non-Linear Charging Function:

y
pl
=

∑
m∈Bcs(p,l),evt(p)

λplmτplm ∀p ∈ P, l = 1, . . . , n(p) (17)

wplm ≥ wpl,m−1 ∀p ∈ P, l = 1, . . . , n(p),m = 1, . . . , bcs(p,l),evt(p) (18)

wplm ≥ λplm ≥ wpl,m+1 ∀p ∈ P, l = 1, . . . , n(p),m = 0, . . . , bcs(p,l),evt(p) − 1 (19)

ypl =
∑

m∈Bcs(p,l),evt(p)

λplmτplm ∀p ∈ P, l = 1, . . . , n(p) (20)

wplm ≥ wpl,m−1 ∀p ∈ P, l = 1, . . . , n(p),m = 1, . . . , bcs(p,l),evt(p) (21)

wplm ≥ λplm ≥ wpl,m+1 ∀p ∈ P, l = 1, . . . , n(p),m = 0, . . . , bcs(p,l),evt(p) − 1 (22)

∆pl =
∑

m∈Bcs(p,l),evt(p)

λplmτplm/ρcs(p,l),evt(p),m

−
∑

m∈Bcs(p,l),evt(p)

λplmτplm/ρcs(p,l),evt(p),m ∀p ∈ P, l = 1, . . . , n(p). (23)

Constraints (17) - (19) track the SoC of the EV upon arrival at each CS. Constraints (20) - (22) track

the SoC of the EV upon departure from each CS. Constraints (23) express the non-linear charging

function (piece-wise linear function) between the charging distance and the charging time for each

CS.
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Time-Dependent Waiting Time Function:

upl =
∑

m∈Mcs(p,l)

zplmAm
cs(p,l) ∀p ∈ P, l = 1, . . . , n(p) (24)

δplm ≥ δpl,m−1 ∀p ∈ P, l = 1, . . . , n(p),m = 1, . . . ,Mcs(p,l) (25)

δplm ≥ zplm ≥ δpl,m+1 ∀p ∈ P, l = 1, . . . , n(p),m = 0, . . . ,Mcs(p,l) − 1 (26)

Λpl = xpW0
cs(p,l) +

∑
m∈Mcs(p,l)

zplmAm
cs(p,l)S

m
cs(p,l) ∀p ∈ P, l = 1, . . . , n(p) (27)

upl ≥ up,l−1 + Λp,l−1 + ∆p,l−1 + xptcs(p,l−1),cs(p,l) ∀p ∈ P, l = 2, . . . , n(p) (28)

up1 ≥ ap + xptorg(p),cs(p,1) ∀p ∈ P. (29)

Constraints (24) - (26) track the arrival time of EV at each CS. Constraints (27) track the waiting time

of EV at each CS. Constraints (28) - (29) describe the relationship between the arrival time of EV at

each CS and the arrival time of the EV at the preceding node.

Domains of the Decision Variables:

xp ∈ {0, 1} ∀p ∈ P (30)

0 ≤ ĥp ≤ xpQevt(p) ∀p ∈ P (31)

0 ≤ ap ≤ xpβ0, 0 ≤
n(p)∑
l=1

(Λpl + ∆pl) ≤ xpβ0 ∀p ∈ P (32)

0 ≤ rp ≤ xpYevt(p) ∀p ∈ P, l = 1, . . . , n(p) (33)

0 ≤ y
pl
≤ xpYevt(p), 0 ≤ ypl ≤ xpYevt(p) ∀p ∈ P, l = 1, . . . , n(p) (34)

0 ≤ upl ≤ xpβ0 ∀p ∈ P, l = 1, . . . , n(p) (35)

wplm ∈ {0, 1},wplm ∈ {0, 1} ∀p ∈ P, l = 1, . . . , n(p),m ∈ Bcs(p,l),evt(p) (36)

0 ≤ λplm ≤ 1, 0 ≤ λplm ≤ 1 ∀p ∈ P, l = 1, . . . , n(p),m ∈ Bcs(p,l),evt(p) (37)

δplm ∈ {0, 1}, 0 ≤ zplm ≤ 1 ∀p ∈ P, l = 1, . . . , n(p),m ∈ Mcs(p,l). (38)

Constraints (30) define variables xp as 0-1 binary variables that represent whether path p is visited.

Constraints (31) force ĥp to 0 if the EV does not visit path p. Constraints (32) force ap, Λpl and ∆pl

to 0 if the EV does not visit path p. Constraints (33) - (35) forcibly assign rp, upl, y
pl

and ypl as 0 if

the EV does not visit path p. Constraints (36) - (38) define the domain of the decision variables wplm,

wplm, λplm, λplm, δplm and zplm.

14



5. Solution Method

In this section, we propose a meta-heuristic approach based on the ILS framework, which has been

successfully applied for solving large-scale E-VRPs, as shown in related literature (Cortés-Murcia

et al., 2019; Froger et al., 2022; Wang & Zhao, 2023). The algorithm framework contains four parts:

initial solution, perturbations, local search, and set-partitioning. We customize and enhance the ILS

framework to address the HEVRP-NL.

Algorithm 1 The algorithmic framework
1: S best ← ϕ, Ω← ϕ, λ← λ0, ηfea ← 0, ηinfea ← 0
2: n← 1
3: Construct an initial solution S
4: while n ≤ nmax do
5: S

′

← GenerateRoutes(S , λ, ηfea, ηinfea) · · · · · · · · · Route Generator (see Algorithm 2)
6: S

′′

← AssembleRoutes(S
′

,Ω, n) · · · · · · · · · · · · · · · Route Assembler (see Algorithm 5)
7: if S

′′

is a feasible solution and S
′′

is better than S best then
8: S best ← S

′′

, S ← S
′′

9: end if
10: n← n + 1
11: end while
12: return S best

The proposed algorithmic framework consists of two components: a route generator and a route

assembler as described in Algorithm 1. The first component employs an iterated local search algo-

rithm equipped with a problem-specific route evaluation function. Starting from an initial solution S ,

this part of the algorithm finds the local optimal solution S
′

and adds high-quality routes to the pool

Ω. The second component employs a set-partitioning model to combine a subset of routes from the

pool Ω into a new solution S
′′

. At the end of each iteration, we update the best feasible solution S best.

The algorithmic framework iterates between these two components.

We allow violations in capacity, time window, and distance constraints, by making use of penalty

parameters λ, ηfea and ηinfea to guide the algorithm’s search between feasible and infeasible solution

spaces. The parameter λ represents the penalty factor, with an initial value of λ0. The parameters

ηfea and ηinfea represent the number of consecutive iterations with feasible solutions and infeasible

solutions, respectively.

5.1. Route Generator

We first perturb the current solution S by employing destroy-and-repair operators to improve the

solution diversity and escape from local optima. Then, we utilize a variable neighborhood descent

(VND) procedure to obtain a local optimal solution S
′

. Finally, we check the feasibility of S
′

and up-

date the penalty parameters. Specifically, after ηpenalty consecutive iterations with violated constraints,
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λ is multiplied by a factor of ε. Conversely, if all the constraints are satisfied for ηpenalty consecutive

iterations, λ is divided by ε. Algorithm 2 presents the route generator.

Algorithm 2 The Route Generator - GenerateRoutes(S , λ, ηfea, ηinfea)
1: Parameters: ηpenalty, ε
2: S ← Perturbation(S , λ)
3: S

′

← VND(S , λ)
4: if S

′

is a feasible solution then
5: ηfea ← ηfea + 1, ηinfea ← 0
6: else if S

′

is an infeasible solution then
7: ηinfea ← ηinfea + 1, ηfea ← 0
8: end if
9: if ηinfea ≥ ηpenalty then

10: λ← λ ∗ ε, ηinfea ← 0
11: else if ηfea ≥ ηpenalty then
12: λ← λ/ε, ηfea ← 0
13: end if
14: U pdateS olution(S

′

, λ)
15: return S

′

5.1.1. Solution Evaluation and Generalized Cost Function

Given a route r of EV type k, which includes a sequence of customers and CSs, we define a

generalized cost function (39) to evaluate it. The parameters ftc(r), ffc(r) and fcc(r) represent the

travel time cost, fixed cost and charging time cost of route r, respectively. The sum of these three

terms represents the original objective function. The parameters PCap(r), PTW(r), and PDis(r) are the

violations of capacity, time window, and distance constraints, respectively. The details of the route

evaluation are shown in Section 5.1.2. We obtain the following cost function:

f k
gen (r) = ftc(r) + ffc(r) + fcc(r) + λ

(
PCap(r) + PTW(r) + PDis(r)

)
. (39)

Next, we evaluate each route r under each vehicle type k ∈ K and select the optimal EV type with

the routing cost fbest(r) by the function (40):

fbest (r) = min
k∈K

f k
gen (r). (40)

Finally, a solution S is defined as a set of n routes represented as S = {r1, . . . , rn} and can be

evaluated by using the generalized cost function (41):

fgen (S ) =
n∑

i=1

fbest (ri) . (41)
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5.1.2. Route Evaluation

This section is devoted to evaluating a given route r of EV type k with a sequence of customers

and CSs by computing its minimum cost function (39). For a given route r, travel time cost ftc(r),

fixed cost ffc(r) and capacity violation PCap(r) are easy to compute, with a computational complexity

of O(1). Thus, to minimize the routing cost is to minimize the sum of charging time cost fcc(r), time-

window violation PTW(r) and distance violation PDis(r), which is a challenging problem since this

information cannot be known in advance.

0 CS1 CS2 0

0 1 CS1 2 3 CS2 4 0

Time Window Time Vector Simplified Time Vector

(a) original time vectors

(b) simplified time vectors

departure arrival departure arrival

Figure 3: An example of time vectors for a route without charging or waiting at any CS

Suppose we have a route containing four customers and two CSs, which is shown in Fig 3. If the

EV departs from the depot at the earliest time, serves each customer, and travels without charging or

waiting at any CS, the time vectors of the route are shown in Fig 3 (a). Note that since the charging

time cost only exists at CS, we can further obtain the simplified time vectors between the depot and

CS nodes as shown in Fig 3 (b). When the EV is waiting or charging at a CS, the time vector at the

CS will shift to the right. Therefore, we can have the following observation.

Observation: For a certain route r of EV type k, where the EV traverses without charging or

waiting at any CS, our goal is to shift the time vectors of CSs as little as possible to meet the time

window and distance constraints.

We employ a heuristic algorithm that follows a “minimize charging time first and minimize wait-

ing time second” strategy. The strategy consists of three steps. In the first step, the EV follows a “no

charging, no waiting" strategy along the route. In the second step, we shift the time vectors of CSs to

perform the charging time as minimally as possible to satisfy distance constraints. In the third step,

we determine the waiting time at each CS.

Step1: EV (fully charged) traverses route r with a condition of “no charging or waiting" at CS.

Under this condition, we obtain the arrival time ai and the leave time li for each node i. If this
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condition leads to a violation of the time window at a node, we incorporate the violation into PTW(r)

and force the node’s arrival time back to the end of its time window. Then, we define the CS node

and depot node as non-customer nodes. For each non-customer node i, we define the variables T max
i ,

T slack
i , T arr

i , qarr
i , qlea

i , TC
i , T D

i and T W
i . These variables are initialized as follows:

T max
i = βi − ai (42)

T slack
i =

j∑
n=i

max{0, αn − an} (43)

T arr
i = ai (44)

qarr
i = qlea

i = Yk −

i∑
n=1

dn−1,n (45)

TC
i = 0 (46)

T D
i = 0 (47)

T W
i = Wi(T arr

i ). (48)

The variable T max
i represents the maximum shift time at node i without violating its time window,

which is initialized in Expression (42). The variable T slack
i represents the sum of the waiting times of

customers between node i and the next non-customer node j, which is initialized in Expression (43).

The variable T arr
i represents the arrival time at node i, which is initialized in Expression (44). The

maximum driving distance of EV type k is Yk, the variables qarr
i and qlea

i represent the SoC when the

EV arrives and leaves node i, respectively, which are initialized in Expression (45). The variables

TC
i and T D

i represent the charging time and the duration of delay time in reaching node i, which are

initialized in Expressions (46) and (47). The variable T W
i represents the waiting time at node i, which

is initialized in Expression (48).

We obtain the simplified route r = {0,CS 1,CS 2, . . . ,CS n, 0}, which only contains the depot node

and n CS nodes (where n may be 0).

Step2: Shifting the time vectors of CSs to minimize the charging time.

Our task is to minimize the total charging time cost by determining the charging time TC
i at each

CS node i. The method is shown in Algorithm 3. We sequentially examine qarr
i at each CS i in order.

We begin with the first non-customer node with a negative qarr
i . It indicates that the EV does not have

enough available driving distance to reach node i, and the EV needs to charge at CSs before node i to

ensure a non-negative SoC upon arrival.

Since different CSs have different non-linear charging functions, we assess the SoC of the EV

at each CS before node i to obtain the corresponding charging slope. We select the CS c with the
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steepest charging slope ρc as the fastest CS. Next, we calculate the maximum available charging time

T charge
c at the charging rate of ρc. We add T charge

c to TC
i and perform T charge

c at CS c. Such charging

operations will be repeated until qarr
i becomes 0, then we continue to examine the SoC of the next

non-customer node.

Algorithm 3 Minimize the Total Charging Time
1: for i ∈ {0,CS 1,CS 2, . . . ,CS n, 0} do
2: if qarr

i < 0 then
3: while qarr

i < 0 do
4: c← Find_Fastest_Available_CS (i)
5: if c is null then
6: PDis(r)← PDis(r) − qarr

i
7: for j ∈ {CS i, . . . ,CS n, 0} do
8: qarr

j ← qarr
j − qarr

i ,qlea
j ← qlea

j − qarr
i

9: end for
10: else
11: T charge

c ← Get_Max_Charging_Time(c,−qarr
i ) · · · · · · · · · (see Algorithm 6)

12: TC
c ← TC

c + T charge
c

13: Per f ormChargeTime(c,T charge
c ) · · · · · · · · · · · · · · · · · · · · · (see Algorithm 8)

14: end if
15: end while
16: end if
17: end for

However, when it is impossible to find a CS before node i that can be used for charging, qarr
i

remains negative. This implies that, no matter how much charging takes place at CSs before node i,

the EV will not have enough energy to reach node i. In such cases, we add qarr
i to PDis(r), and we

forcefully replenish −qarr
i of SoC for each subsequent node after node i.

The above charging operation will continue until the last non-customer node is examined.

Step3: Shifting the time vectors of CSs to perform the waiting time.

Since the waiting time functions satisfy the FIFO property, delaying the departure time cannot

improve the solution. After charging in Step2, we proceed to perform waiting time at each CS based

on the time-dependent waiting time function. The details are shown in Algorithm 4.

5.1.3. Initial solution

We construct the initial solution by using a combination of a greedy insertion criterion and a

random factor. We begin by having the vehicle start from the depot and randomly select an unassigned

customer as the first customer to be served. The remaining part is to insert the rest of the unassigned

customers at the position that minimally increases the objective function (41). Note that we allow the

creation of a new route to serve a customer. This process continues iteratively until all customers have

been assigned to routes and there are no remaining unassigned customers.
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Algorithm 4 Perform the Waiting Time
1: for c ∈ {CS 1,CS 2, . . . ,CS n} do
2: T wait ← T W

c
3: for i ∈ {CS c, . . . ,CS n, 0} do
4: if i , c then
5: T arr

i ← T arr
i + T wait

6: end if
7: T shi f t

i ← Get_Max_S hi f t_Time(i) · · · · · · · · · · · · · · · · · · (see Algorithm 7)
8: if T shi f t

i < T wait then
9: PTW(r)← PTW(r) + T wait − T shi f t

i

10: T wait ← T shi f t
i

11: end if
12: T max

i ← T max
i − T wait

13: T temp ← T wait

14: T wait ← Max(0,T wait − T slack
i )

15: T slack
i ← Max(0,T slack

i − T temp)
16: if T wait = 0 then
17: break
18: end if
19: end for
20: for i ∈ {CS c, . . . ,CS n} do
21: T W

i ← Wi(T arr
i )

22: end for
23: end for

5.1.4. Perturbations

We remove κ customers from their respective routes, with κ randomly selected in the interval

[min{|C|, 3},max{min{|C|, 3}, [
√
|C| |}], and reinsert them back to the solution. We use the destroy

operators Random Removal, Random Route, and Target Removal, the repair operators Greedy

Insertion, Greedy Insertion, and 2-Regret Insertion, which are extensively utilized in the relevant

literature (Keskin et al., 2019; Cortés-Murcia et al., 2019; Hiermann et al., 2019; Froger et al., 2022;

Wang & Zhao, 2023). In addition, we use an enhanced closest removal operator as follows.

Closest Removal: We randomly select a customer i ∈ C and remove the κ−1 “closest” customers

to i from their respective routes. We use the customer correlation function (49) of Vidal et al. (2013)

to calculate how “close” two customers are to each other:

r(i, j) = di j + rWT max
(
α j − si − ti j − βi, 0

)
+ rTW max

(
αi + si + ti j − β j, 0

)
, (49)

where
[
αi, βi
]

and si represent the time window and service time of customer i, respectively. Addition-

ally, rWT and rTW represent the coefficients for unavoidable waiting time and time window violation.

The operations are used with uniform probability.
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5.1.5. Variable neighborhood descent – VND

The VND is implemented as a local search strategy following the best improvement strategy. We

apply Swap, Relocate, and 2-OPT* neighborhood operations on customer nodes. These operators

have been widely used in the relevant literature (Cortés-Murcia et al., 2019; Hiermann et al., 2019;

Wang & Zhao, 2023). In addition, we also apply a problem-specific neighborhood operator Repla-

cePath, that has been successfully employed for managing CS nodes in Wang & Zhao (2023).

5.2. Route Assembler

The idea behind the Route Assembler is to store the generated routes in a pool and to formulate a

set partitioning (SP) model to obtain a new solution. This method has been successfully used in the

relevant literature (Cortés-Murcia et al., 2019; Froger et al., 2022; Wang & Zhao, 2023).

However, this method has the following issues: a) the time required to solve the SP model will

grow exponentially as the number of routes in the pool increases, so it is necessary to control the size

of the pool properly; b) due to limited storage space, it is not possible to include all generated routes

in the pool. Therefore, when the pool is full, a filtering mechanism is needed to decide which routes

are added or removed; (c) for the routes in the pool, their charging decisions can be further improved.

5.2.1. Set Partitioning Model

Let Ω be the pool of feasible routes. The 0-1 binary variable θr represents whether route r is

included in the solution or not. The parameter cr is the routing cost of each r ∈ Ω. The 0-1 binary

parameter ψir represents whether route r visits customer i. The HEVRP-NL can be formulated as the

following SP model:

min
∑
r∈Ω

crθr (50)

s.t.
∑
r∈Ω

ψirθr = 1 ∀i ∈ C (51)

θr ∈ {0, 1} ∀r ∈ Ω. (52)

A linear programming (LP) relaxation of the SP can be formulated by relaxing the binary variables

θr to continuous variables. By solving the LP, the values of the dual variable πi (i ∈ C) associated

with constraints (51) are obtained. Let χr be the reduced cost of route r as follows:

χr = cr −
∑
i∈C

πiψir. (53)
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5.2.2. The fixed-route vehicle charging problem

Once the SP model is solved, we further enhance the charging decisions for each route selected in

the newly assembled solution.

For a fixed route under a given sequence of customers, we can optimize the selection of charging

stations, the partial-charging level, and EV type simultaneously, which is called the fixed-route vehicle

charging problem (FRVCP). The charging decisions can be improved by solving the FRVCP and we

can enhance the routing quality. While this process has been applied in many works (Schiffer &

Walther, 2018; Keskin et al., 2019; Froger et al., 2022), we are the first to incorporate it into the

set-partitioning component and further improve the quality of the routes in the pool.

Here, we build a path-based model that incorporates the piece-wise linear charging functions,

the time-dependent waiting time functions, and the heterogeneous fleet. Similar to the model in

Section 4, it only requires enumerating paths between consecutive non-charging nodes in the route.

Once the charging decision of a route is optimized, it is labeled as "optimized" to prevent redundant

optimization.

5.2.3. Managing the Pool

To restrict the memory usage and computational effort, the size of the pool Ω is bounded by ξ. A

filtering mechanism for the generated routes is proposed to manage the pool as follows.

First, for a generated route r1, we store it into the pool with the routing cost and a hash value to

avoid duplicates. Second, for the generated route, we examine whether it is dominated by other routes

in the pool. Specifically, when two routes contain the same customer but have different routing costs,

we remove the higher one. If a generated route r is unique and not dominated by the routes in Ω, we

always add it to the pool if the pool’s size does not exceed the limit ξ. Third, if the size of the pool

exceeds ξ, for a generated route r, we compute its reduced cost χr according to the Equation (53). If

its reduced cost is negative, we add r into the Ω and remove the route with the highest reduced cost

from Ω. If the reduced cost of r is non-negative, we will add it into a backup pool Ωback.

Every nsp iterations, an SP is formulated with the routes in Ω to obtain a new feasible solution S
′′

.

Then, an LP model of Ω is also formulated to update the dual value πi of each customer i. Every nback

iterations, we compute the reduced cost for each route in Ωback, and then add the routes with negative

reduced costs to Ω, while removing the routes with the highest reduced cost from Ω.

Once the local optimal solution S
′

is obtained from the first component of our algorithm, we will

try to add each feasible route r in S
′

into the pool Ω. Algorithm 5 presents the details of the route

assembler.
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Algorithm 5 The Route Assembler - AssembelRoutes(S
′

,Ω, n)
1: Parameters: nsp, nback

2: for each feasible route r ∈ S
′ do

3: if r is unique in Ω and r is not dominated by other routes in Ω then
4: if Ω is not full then
5: Add the route r into Ω
6: else if Ω is full then
7: χr ← Compute the reduced cost of r
8: if χr < 0 then
9: Using the filtering mechanism to add r into Ω

10: else
11: Add r into Ωback

12: end if
13: end if
14: end if
15: end for
16: if n mod nback ≡ 0 then
17: Using the filtering mechanism to choose the routes r ∈ Ωback into Ω
18: end if
19: if n mod nsp ≡ 0 then
20: S

′′

← S etPartitioning(Ω)
21: Update πi by solve the LP model of the routes in Ω
22: Improve the charging decisions for the routes in S

′′

by solving the FRVCP
23: end if
24: return S

′′

6. Computational results

Section 6.1 describes the newly designed HEVRP-NL benchmark instances and the public E-

VRP-NL benchmark instances from the literature. Section 6.2 provides details about the software

and hardware used in our experiments. Section 6.3 presents the parameter settings for the proposed

heuristic. Sections 6.4 to 6.7 present the computational results of HEVRP-NL instances. Sections 6.8

and 6.9 show the results of our heuristic when compared to state-of-the-art methods on E-VRP-NL

and E-FSMFTW-PR benchmark instances, respectively.

6.1. Benchmark Instances

6.1.1. HEVRP-NL instances

We design the HEVRP-NL benchmark instances by extending the public E-FSMFTW instances

of Hiermann et al. (2016). The E-FSMFTW instances only provide linear charging functions and

do not consider congestion at CSs. Therefore, we need to design non-linear charging functions and

time-dependent waiting functions for the CSs in each instance.

First, we introduce the E-FSMFTW instances. The instances are divided into three groups: A, B,

and C, which correspond to the case of high, moderate, and low fixed EV costs, respectively. Each
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group is divided into six categories, based on their spatial (C, R, RC) and temporal (type-1, type-2)

configurations. The customers in R instances are uniformly distributed, C instances contain clusters

of customers, and RC instances are composed of some clusters and some uniformly distributed cus-

tomers. In addition, the E-FSMFTW benchmark comprises a maximum of 6 EV types (ABCDEF) for

each instance type. The RC2 instances comprise six EV types: ABCDEF. The R1 instances comprise

five EV types: ABCDE. The R2, C2, and RC1 instances comprise four EV types: ABCD. The C1

instances comprise three EV types: ABC. There are 108 small-scale instances and 168 large-scale

E-FSMFTW instances, which are used as HEVRP-NL benchmark instances. The sizes of small-scale

instances are 5, 10, or 15 customers with 2 to 8 CSs. The size of large-scale instances is 100 customers

with 21 CSs. The parameter details are shown in Table 2.

Table 2: HEVRP-NL instance type parameters
Capacity/Electricity consumption modifier:
Group Inst. A B C D E F
ABC R1 30/0.8 50/0.9 80/1.0 120/1.1 200/1.5

C1 100/0.9 200/1.0 300/1.1
RC1 40/0.85 80/0.95 150/1.05 200/1.15
R2 300/0.85 400/0.95 600/1.05 1000/1.15
C2 400/0.85 500/0.95 600/1.05 700/1.15
RC2 100/0.75 200/0.85 300/0.95 400/1.05 500/1.15 1000/1.25

Fixed Cost:
Group Inst. A B C D E F
A/B/C R1 50/10/5 80/16/8 140/28/14 250/50/25 500/100/50

C1 300/60/30 800/160/80 1350/270/135
RC1 60/12/6 150/30/15 300/60/30 450/90/45
R2 450/90/45 700/140/70 1200/240/120 2500/500

/250
C2 1000/200 1400/280 2000/400/200 2700/540

/100 /140 /270
RC2 150/30/15 350/70/35 550/110/55 800/160/80 1100/220 2500/500

/110 /250

Second, we adopt the piecewise linear charging functions with multiple charging technologies

(fast, normal, slow) of Montoya et al. (2017). We formulate three distinct charging rates and set two

breakpoints at 0.95 and 0.85 of each EV type’s maximum driving distance, which are consistent with

Montoya et al. (2017). For each instance, the linear charging rate provided in E-FSMFTW is used

as the basis for designing the non-linear charging function of normal CS. Then, we proportionally

design the charging functions for fast CS and slow CS. Figure 4 illustrates the designed piecewise

linear charging function of EV type k for the HEVRP-NL instances.

Third, we use the time-dependent waiting time functions in Keskin et al. (2019), which provided

four waiting functions: TD-Steep-Long, TD-Steep-Short, TD-Smooth-Long, and TD-Smooth-Short,

as shown in Fig 5. Steep and Smooth represent the types of transitions between off-peak time intervals
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and peak time intervals. Each transition type has two subtypes: one with long waiting times (Long)

and the other with short waiting times (Short). The interval [α0, β0] is the time window of the depot.

Similar to Keskin et al. (2019), we divide the day into four intervals (morning, noon, late afternoon,

and evening) to simulate real-life waiting scenarios. The data of the depot opening time length in

Keskin et al. (2019) is used as the basis for proportionally designing the waiting time functions for

the HEVRP-NL instances.

0

SoC

Charging Time

Yk
0.95Yk

0.85Yk

Linear charging function of Hiermann et al. (2016)

Designed piecewise linear charging function

fast normal slow

Figure 4: Designed piecewise linear charging function of EV type k for the HEVRP-NL instances

Morning Noon Late afternoon Eveningα0

Waiting Time

Arrival Time at CS

TD-Steep-Long

TD-Steep-Short

TD-Smooth-Long

TD-Smooth-Short

β0

Figure 5: Designed time-dependent waiting functions at different CSs for the HEVRP-NL instances

Finally, the CSs in each HEVRP-NL instance are organized as follows. Regarding charging tech-

nologies, we arrange the CSs as fast CS, normal CS, and slow CS, in their order in the instances.
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Similarly, we arrange the waiting functions of CSs as TD-Smooth-Short, TD-Smooth-Long, TD-

Steep-Short, and TD-Steep-Long, in their order in the instances.

6.1.2. E-VRP-NL instances

The E-VRP-NL benchmark instances were provided by Montoya et al. (2017). This benchmark

includes a total of 120 instances. There are six sets of 20 instances, each with 10, 20, 40, 80, 160, or

320 customers. Each 10-customer instance contains 2 or 3 CSs. Each 20-customer instance contains

3 or 4 CSs. Each 40-customer instance contains 5 or 8 CSs. Each 80-customer instance contains 8 or

12 CSs. Each 160-customer instance contains 16 or 24 CSs. Each 320-customer instance contains 24

or 38 CSs. This benchmark provides a homogenous fleet of EVs and three piece-wise linear charging

functions (fast, normal, and slow).

6.2. Software and hardware specifications

Our heuristic algorithm is implemented in Java, and the mathematical model is solved using IBM

ILOG CPLEX 22.1.1.0. The experiments for the HEVRP-NL and the E-VRP-NL are conducted on

a platform equipped with a 3.80-GHz AMD Core 3900x processor, 32 GB of RAM, and running

Windows 10.

6.3. Parameter settings for the heuristic

The parameters of the heuristic algorithm are as follows: ηpenalty, ε, λ0, λmin, λmax, nsp, nback, ξ

and nmax. The parameters ηpenalty, ε, λ0, λmin, and λmax are used for local search and are described in

Section 5. The parameters nsp, nback, and ξ, described in Section 5.2.3, are used for managing the pool

of a set partitioning model. The parameter nmax is the stopping criterion.

After some preliminary experiments on HEVRP-NL instances, we set the parameters of the heuris-

tic as presented in Table 3.

Table 3: The paramters of the heuristic algorithm for the HEVRP-NL instances
ηpenalty ε λ0 λmin λmax nsp nback ξ nmax

50 1.5 100 0.1 10000 1500 1500 5000 50000

6.4. Results for the small-scale HEVRP-NL instances

We use the proposed model and heuristic to solve 108 small-scale HEVRP-NL instances. The

maximum running time for CPLEX is set to 3h. For each instance, our heuristic algorithm runs

10 times and we report the best result. The summary results are shown in Table 4, where “#Opt"

represents the number of optimal solutions found, “#Num" represents the total number of instances,

and “Avg Opt Gap" represents the average remaining optimal gap. In this table, “#Best" represents
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the number of best known solutions found by our heuristic algorithm, and “Best Gap" represents the

gap between the best solution found by CPLEX and the best solution found by heuristic.

The summary results show that our model faces difficulties in solving 15-customer instances, can

handle most of the 10-customer instances, and can solve all 5-customer instances. In the case of Group

A instances, CPLEX obtains 23 optimal solutions, while for Group B and C instances, it achieves 25

optimal solutions for each group. In total, CPLEX finds 73 optimal solutions out of 108 instances.

Table 4: The summary results for small-scale HEVRP-NL instances

Group N CPLEX Heuristic

#Opt/#Num Avg Opt Gap #Best Avg Time (s) Best Gap

A 5 12/12 0.00% 0.00%

10 9/12 4.53% -0.03%

15 2/12 37.54% -19.33%

All 23/36 14.02% 36 1.92 -6.45%

B 5 12/12 0.00% 0.00%

10 11/12 1.38% 0.00%

15 2/12 28.49% -15.19%

All 25/36 9.96% 36 1.85 -5.06%

C 5 12/12 0.00% 0.00%

10 11/12 0.54% 0.00%

15 2/12 24.41% -13.07%

All 25/36 8.32% 36 1.70 -4.36%

Our heuristic algorithm is also capable of finding 73 optimal solutions which were determined

by CPLEX in a very short time. For the remaining instances where CPLEX did not find the optimal

solution, the heuristic finds high-quality local optimal solutions. Specifically, for the instances of

Group A, Group B, and Group C, the heuristic algorithm provides solutions that are, on average,

6.45%, 5.06%, and 4.36% less costly than CPLEX. The detailed results for the small-scale HEVRP-

NL instances are shown in Appendix B, which demonstrate the high performance of the heuristic.

6.5. Results for the large-scale HEVRP-NL instances

We conduct experiments on 168 large-scale HEVRP-NL instances, which are grouped into types

A, B, and C. Each group contains 56 instances. We ran the heuristic algorithm 10 times for each

instance, taking the best result as the Best Known Solution (BKS) for each instance. Table 5 presents

a summary of the BKS for HEVRP-NL instances. “Cost" represents the average BKS value for each

instance type. “Time" represents the average running time (minutes). “Fleet" shows the average

number of each EV type used in the BKS. “NV" indicates the average number of EVs used in the
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BKS. “FC," “CC," and “TC" represent the proportions of fixed costs, charging time costs, and travel

time costs to the total costs of BKS, respectively. The detailed results for the large-scale HEVRP-NL

instances are shown in Appendix B.

The HEVRP-NL instances include up to six EV types labeled from A to F, where A is the smallest

and F is the largest EV type. In the R1 instances, The BKS of R1 instances require 3 to 5 EV types,

with a focus on middle-size types C and D. This suggests that scenarios with randomly distributed

customers and tight time windows require a combination of multiple EV types, particularly middle-

size ones, to achieve high-quality solutions. The BKS of RC1 and RC2 instances require 3 to 4 EV

types, primarily focusing on types B and C. The BKS of C1 instances only require two relatively

small EV types, A and B. This is likely due to concentrated customer distributions and tight time

windows, making it possible to achieve high-quality solutions with smaller vehicles. The BKS of C2

instances, with concentrated customer distributions and more lenient time windows, require only the

smallest EV type A.

Table 5: The summary results of BKS for the large-scale HEVRP-NL instances (100 customers and 21 CSs)
Group Instance Cost Time (min) NV Fleet FC CC TC

A C1 7520.56 13.81 19.00 A19.00 75.79% 4.74% 19.46%

C2 6588.85 17.53 5.63 A5.63 85.37% 2.93% 11.70%

R1 4177.63 16.54 20.17 B4.58C15.42D0.17 61.44% 2.19% 36.37%

R2 3152.58 12.79 5.00 A5.00 71.37% 0.23% 28.40%

RC1 5119.78 21.06 18.25 A4.63B6.63C7.00 65.85% 1.81% 32.35%

RC2 4204.28 22.51 11.63 A5.88B5.13C0.63 71.80% 0.02% 28.18%

B C1 2729.56 12.48 13.00 A7.00B6.00 50.56% 9.95% 39.50%

C2 2101.42 22.26 5.75 A5.75 54.72% 8.67% 36.61%

R1 1987.65 13.60 14.75 B1.00C5.25D7.83E0.67 31.26% 4.27% 64.48%

R2 1347.27 15.37 5.00 A5.00 33.40% 0.56% 66.04%

RC1 2304.75 12.76 14.50 A0.63B4.63C7.75D1.5 32.38% 3.90% 63.72%

RC2 1687.40 11.82 7.38 A1.13B1.88C4.38 38.30% 0.09% 61.61%

C C1 2035.22 11.30 12.67 A6.33B6.33 34.23% 13.40% 52.37%

C2 1524.91 23.12 5.63 A4.88B0.75 38.85% 11.75% 49.40%

R1 1665.56 13.30 14.58 A0.17B1.25C3.75D8.25E1.17 19.69% 4.86% 75.45%

R2 1119.78 14.93 5.09 A5.09 20.46% 0.49% 79.05%

RC1 1914.88 12.51 14.13 A0.50B3.13C7.88D2.63 21.11% 4.15% 74.74%

RC2 1361.22 11.73 7.00 A1.00B1.63C3.75D0.63 24.11% 0.18% 75.72%

FC: Fixed cost. CC: Charging time cost. TC: Travel time cost.

In terms of charging costs, The BKS of C1 instances have the highest proportion. This is because

of tight time windows and low driving distance, necessitating frequent visits to CSs. The BKS of C2

and R2 instances have the next highest proportions. The BKS of R2 and RC2 instances have very

low charging cost proportions (less than 1%), possibly due to their lenient time windows and driving

28



distance, requiring almost no visits to CSs. Overall, the proportion of charging costs tends to increase

from Group A to Group C instances. Travel time costs are highest in the R instances, followed by

the RC instances, and are the lowest in the C instances. This aligns with intuition, as scenarios with

randomly distributed customers require more time to serve customers, while cases with concentrated

customer distributions require less time.

6.6. Impact of non-linear charging functions for the large-scale HEVRP instances

In this section, we aim to investigate the benefits of incorporating non-linear charging functions,

a key motivation in this study. Our approach involves the linearization of charging functions for each

CS within the HEVRP instances while maintaining the original objective function. Subsequently, we

applied our heuristic algorithm to each instance 10 times, selecting the best result as the BKS. We

then conducted a detailed comparison of these outcomes with those derived from non-linear charg-

ing functions, as elaborated in Table 6. “NC-BKS" denotes the average BKS value considering the

non-linear charging functions. “LC-BKS” represents the average BKS value considering the linear

charging functions. Here, “Gap” represents the gap between “NC-BKS” and “LC-BKS”.

Table 6: Comparison results of LC-BKS VS. NC-BKS for the large-scale HEVRP instances

Group Instace NC-BKS LC-BKS Gap Instace NC-BKS LC-BKS Gap

A C1 7520.56 7656.35 -1.81% C2 6588.85 6676.07 -1.32%

R1 4177.63 4261.38 -2.00% R2 3152.58 3154.50 -0.06%

RC1 5119.78 5210.91 -1.78% RC2 4204.28 4204.53 -0.01%

B C1 2729.56 2866.55 -5.02% C2 2101.42 2175.89 -3.54%

R1 1987.65 2024.04 -1.83% R2 1347.27 1349.57 -0.17%

RC1 2304.75 2339.92 -1.53% RC2 1687.40 1687.98 -0.03%

C C1 2035.22 2149.98 -5.64% C2 1524.91 1596.00 -4.66%

R1 1665.56 1695.22 -1.78% R2 1119.78 1121.87 -0.19%

RC1 1914.88 1930.27 -0.80% RC2 1361.22 1362.30 -0.08%

The results indicate that considering non-linear charging functions can significantly reduce costs

for instances C1, C2, R1, and RC1. This suggests that for instances with tight time windows or

concentrated customer distributions, incorporating non-linear charging (NC) functions can result in

lower costs compared to linear charging (LC) functions. NC functions require less time for charging

while potentially avoiding time window violations. For R2 and RC2 instances, the cost reduction from

considering NC functions is also notable but relatively less significant. In summary, when considering

NC functions, the average cost reduction for Group A, Group B, and Group C is on average 1.16%,

2.02%, and 2.19%, respectively.
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We also report the total number of CSs visited in BKS of each instance type, which is shown in

Table 7. Since the CSs have multiple charging technologies (fast, normal, slow), and we consider the

charging time costs in objective function, it is expected that fast CSs have the highest frequency of

visits, while slow CSs have the lowest.

Table 7: Number of CSs visited in each instance type

Charging Technologies C1 C2 R1 R2 RC1 RC2 Total
Fast 213 109 319 59 177 2 879

Normal 79 31 236 19 163 10 538
Slow 0 3 50 12 34 1 100

6.7. Analysis of CS congestion on the large-scale HEVRP instances

We explore four levels of CS congestion, modeled as time-dependent waiting functions: TD-

Smooth-Short, TD-Smooth-Long, TD-Steep-Short, and TD-Steep-Long. Based on the BKS results

of large-scale HEVRP-NL instances, we conducted a statistical analysis of the frequency of EVs

visiting CS for charging during different time intervals, which are shown in Table 8.

Table 8: Number of CSs visited during different time intervals
CS Congestion Morning Noon Late Noon Evening
TD-Smooth-Short 4 114 56 1
TD-Smooth-Long 142 147 223 10
TD-Steep-Short 31 205 59 0
TD-Steep-Long 201 107 214 3
Toal 378 573 552 14

The table shows that the majority of EVs tend to visit CSs during the noon and late noon time

intervals, aligning with our intuition. This is because EVs depart from the depot fully charged in

the morning, and by the evening, they are heading back to the depot without visiting any customers.

However, we have also observed that the CSs with the shortest waiting times and least congestion

(TD-Smooth-Short) are not the most frequently visited ones. This suggests that, when not considering

waiting time costs, the charging technologies and geographic location of CSs have the most significant

impact on routing costs, while the waiting time at CSs only needs to ensure compliance with time

window constraints.

6.8. Computational comparisons on E-VRP-NL benchmark instances

The E-VRP-NL can be seen as a special case of the HEVRP-NL. To assess the performance of the

proposed heuristic algorithm, we compared it with the state-of-the-art algorithms on the E-VRP-NL

benchmark instances. Table 9 reports the summary results of the ILS with a heuristic concentration

(ILS+HC) of Montoya et al. (2017), the large neighborhood search (LNS) of Koç et al. (2019), the
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ILS of Froger et al. (2022) and the ILS with a set partitioning model (ILS+SP) of our heuristic. “Best”

represents the average value of the best solutions obtained by each algorithm. “Avg” represents the

average value of the solutions obtained by each algorithm in 10 runs. “Time” is the average running

time in seconds. The best values are indicated in bold.

Table 9: Comparison of the results obtained by the algorithms for the E-VRP-NL
N ILS+HC LNS ILS ILS+SP

Best Avg Time Best Avg Time Best Avg Time Best Avg Time

10 14.25 14.31 5.65 14.25 14.27 8.25 14.25 14.25 4.60 14.25 14.25 3.90
20 19.44 19.52 10.50 19.43 19.47 14.35 19.40 19.40 8.40 19.40 19.40 7.55
40 31.48 31.99 35.45 31.49 31.56 45.45 31.17 31.18 20.00 31.17 31.17 19.75
80 38.01 38.79 80.10 38.04 38.27 99.30 36.61 36.83 64.15 36.47 36.75 77.90

160 70.24 71.38 568.05 70.51 71.17 631.85 65.41 66.01 295.00 65.39 65.96 378.05

320 132.47 134.97 4397.70 133.11 134.59 4555.15 118.66 119.33 1117.65 118.54 119.32 1472.55

CPU Intel (2.33 GHz) Intel (3.60 GHz) Intel (3.06 GHz) AMD (3.80 GHz)

ILS+HC: Montoya et al. (2017), LNS: Koç et al. (2019), ILS: Froger et al. (2022).

The results presented in Table 9 demonstrate that our heuristic outperforms all existing methods

in terms of solution quality. However, due to the multiple uses of the set partitioning model (SP) in

our algorithm, as the problem size increases, the time required for solving SP also increases. This

may lead to our algorithm having an average running time that appears to be higher than that of

Froger et al. (2022) on 80-, 160- and 320-customer instances. Nevertheless, it is challenging to draw

definitive conclusions about the time used by each algorithm since they were tested on different CPUs.

The detailed results are reported in Appendix C.

Table 10: Comparison of the best solutions obtained by the algorithms for the E-VRP-NL
N ILS+HC LNS ILS ILS+SP

#BKS Gap BKS #BKS Gap BKS #BKS Gap BKS #Better #Tie #Worse Gap BKS
10 20 0.00% 20 0.10% 20 0.00% 0 20 0 0.00%
20 11 0.30% 12 0.20% 20 0.00% 0 20 0 0.00%
40 3 1.00% 6 0.90% 20 0.00% 0 20 0 0.00%
80 0 3.80% 0 3.80% 20 0.00% 11 8 1 -0.35%
160 0 7.30% 0 7.70% 20 0.00% 7 7 6 -0.02%
320 0 11.20% 0 11.70% 20 0.00% 14 1 5 -0.11%
All 3.90% 4.10% 0.00% 32 76 12 -0.10%
ILS+HC: Montoya et al. (2017), LNS: Koç et al. (2019), ILS: Froger et al. (2022).

Finally, we report the best solutions found by each algorithm in Table 10. In this table, we define

“BKS” as the best solutions found by algorithms in Montoya et al. (2017), Koç et al. (2019) and

Froger et al. (2022) for each instance, “#BKS” denotes the number of BKS obtained, “Gap BKS”

represents the average gap between the best solutions and the BKS for each algorithm, “#Better”

is the number of solutions better than BKS, “#Tie” is the number of solutions same as BKS, and

“#Worse” is the number of solutions worse than BKS.

31



Prior to this study, Froger et al. (2022) obtained the BKS for all instances. In this paper, our

algorithm finds BKS for all 10-, 20-, and 40-customer instances. For the 80-, 160-, and 320-customer

instances, we discovered 11 new best solutions, 7 new best solutions, and 14 new best solutions,

respectively. In total, we identify the best known solutions for 108 instances, 32 of which are new

best solutions.

6.9. Computational comparisons with the algorithm of Wang & Zhao (2023)

Our heuristic is based upon the ILS framework introduced by Wang & Zhao (2023) but incor-

porates several enhancements. Consequently, we conduct a performance comparison of these two

algorithms on relevant benchmarks.

First, we compare the proposed heuristic with the algorithm of Wang & Zhao (2023) on 168 large-

scale E-FSMFTW-PR instances. The E-FSMFTW-PR is a special case of HEVRP-NL when utilizing

a partial charging policy, a linear charging function, and when waiting time is not allowed at CS. Table

11 reports the summary results. “Best 10” represents the average value of the best solutions obtained

by each algorithm in 10 runs. “Time” is the average running time in minutes. “Gap” represents the

average gap between these two algorithms.

It can be observed from the table that our algorithm outperforms the algorithm of Wang & Zhao

(2023) in both solution quality and solution time on the E-FSMFTW-PR benchmark. In total, we

identify the best-known solutions for 163 instances, 33 of which are new best solutions. The detailed

comparison results of the best-known solutions (BKS) are reported in Appendix D.

Table 11: Comparison of the best solutions obtained by the algorithms for the large-scale E-FSMFTW-PR instances
Group Instance Wang & Zhao (2023) This paper

Best 10 Time (min) Best 10 Time (min) Gap (%)
A C 6450.82 17.19 6450.72 17.09 0.00%

R 3615.21 20.07 3614.63 9.62 -0.02%
RC 4576.41 13.13 4573.92 8.00 -0.05%

B C 2079.87 22.34 2079.35 9.99 -0.02%
R 1608.84 24.10 1605.67 9.28 -0.20%

RC 1910.60 18.64 1905.81 8.65 -0.25%
C C 1476.27 19.79 1476.27 9.89 0.00%

R 1331.89 21.05 1330.69 9.10 -0.09%
RC 1553.17 14.58 1552.27 8.30 -0.06%

However, we also notice that on the E-FSMFTW-PR benchmark, our algorithm shows a margin

improvement of 0.07% on average over Wang & Zhao (2023)’s. This could be because the solution

is already close to optimality with a scale of 100 customers. To further validate this, we conducted

experiments on two algorithms using the E-VRP-NL benchmark under different customer scales,

which are shown in Table 12. The results demonstrate that for instances with less than 80 customers,
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the performance of the two algorithms is very close, but as the number of customers increases to 160

and 320, our algorithm significantly outperforms Wang & Zhao (2023)’s algorithm.

Table 12: Comparison of the best solutions obtained by the algorithms for the E-VRP-NL instances
N Wang & Zhao (2023) This paper

Best Gap
Best Time (s) Best Time (s)

10 14.25 7.20 14.25 3.90 0.00%
20 19.40 16.80 19.40 7.55 0.00%
40 31.17 31.85 31.17 19.75 0.00%
80 36.78 133.65 36.47 77.90 -0.84%

160 67.10 671.35 65.39 378.05 -2.55%
320 122.61 1788.75 118.54 1472.55 -3.32%

7. Conclusion

This paper introduces a Heterogeneous-Fleet Electric Vehicle Routing Problem that incorporates

nonlinear charging and waiting time functions, which represents a very realistic scenario in practice.

First, we formulate a MILP model capable of solving small-scale instances to optimality or providing

good feasible solutions. Subsequently, we propose a hybrid heuristic algorithm that comprises two

critical components: a route evaluation function for efficient cost computation of a fixed route, and a

pool for storing feasible routes which are assembled into a new solution by using a set-partitioning

model. The heuristic algorithm finds optimal solutions for small-scale instances rapidly, while for

large-scale instances, we provide detailed information on local optimal solutions. We analyze the fleet

composition and demonstrate the benefits of considering non-linear charging functions. To assess the

performance of our algorithm, we conducted experiments on 120 public E-VRP-NL instances and

168 public E-FSMFTW-PR instances. Our algorithm finds 32 new best solutions for E-VRP-NL and

33 new best solutions for E-FSMFTW-PR, respectively.
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Appendix A. Algorithmic details for the Route Evaluation

Algorithm 6 illustrates the methodology for determining the current maximum available charging

time at a CS node. Algorithm 7 details the process of obtaining the maximum shift time at a CS node,

which can be used for charging or waiting. Algorithm 8 provides a detailed description to perform

the charging time at a CS node.

Appendix B. Detailed results for the HEVRP-NL instances

The detailed results for the small-scale HEVRP-NL instances are shown in Tables B1, B2 and B3.

“UB" represents the optimal solution or upper-bound solution found by CPLEX. “LB" represents the

lower-bound solution of CPLEX. “∆opt” represents the remaining optimality gap of CPLEX. “Cost"

represents the best solution found by heuristic. “Gap" represents the gap between “UB" and “Cost".

The detailed results for the large-scale HEVRP-NL instances are shown in Tables B4, B5, and

B6. For each instance, our heuristic algorithm will run 10 times. “Avg 10”, “Best 10” and “Time”

represent the average result, the best result, and the average running time, respectively.

Appendix C. Detailed comparison results for the E-VRP-NL instances

E-VRP-NL Instances are labeled according to the convention tcAcBsCcDE, where:

A represents the method used for customer placement (0: random uniform, 1: clustered, 2: mix-

ture of both), B indicates the number of customers, C represents the number of charging stations

(CSs), D is ’t’ if the CSs are located using a p-median heuristic and ’f’ if the CSs were randomly

located, E signifies the instance number for each combination of parameters (i.e., E=0,1,2,3,4).

The detailed comparison results for 120 E-VRP-NL benchmark instances are shown in Tables C1

and C2. These two tables report the detailed results obtained by our heuristic (ILS+SP), the ILS with

a heuristic concentration (ILS+HC) of Montoya et al. (2017), the large neighborhood search (LNS)

of Koç et al. (2019), and the ILS of Froger et al. (2022).

“Best” and “Avg” represent the values of the best solutions and the average values of solutions

obtained by an algorithm in 10 runs. “T” is the average running time in seconds. For each instance,

“Best Gap” represents the gap between the best-known solution prior to this paper and the best solu-

tion obtained by our heuristic. For the column “Best” of our algorithm, the values of the best solutions

are indicated in boldface, and the values of the new best solutions are underlined.

Appendix D. Detailed comparison results for the large-scale E-FSMFTW-PR instances

The detailed results for the large-scale E-FSMFTW-PR instances are shown in Table D1. We refer

to the algorithm of Wang & Zhao (2023) as "W&Z", and refer to our heuristic as "This paper". The
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values of the best solutions are indicated in boldface, and the values of the new best solutions are

underlined.

Algorithm 6 Get_Max_Charging_Time(c, q)
1: Input: CS node c, the maximum chargeable amount of SoC q, qlea

c is within the piecewise linear
SoC interval of

[
q, q
]

and the corresponding charging slope is ρ

2: Output: the maximum charging time T charge
c at CS node c

3: T charge
c ← Min(q, (q − qlea

c ))/ρ
4: T temp ← T charge

c

5: for i ∈ {CS c, . . . ,CS n, 0} do
6: T shi f t

i ← Get_Max_S hi f t_Time(i) · · · · · · · · · · · · · · · · · · · · · (see Algorithm 7)
7: if T temp > T shi f t

i then
8: T charge

c ← T charge
c − (T temp − T shi f t

i )
9: T temp ← Max(0,T shi f t

i − T slack
i )

10: else
11: T temp ← Max(0,T temp − T slack

i )
12: end if
13: if T temp = 0 then
14: break
15: end if
16: end for
17: return T charge

c
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Algorithm 7 Get_Max_S hi f t_Time(c)
1: Input: the time intervalsMc of the Wc(t) function at CS c, the mth arrival time interval

[
am, am

]
and the

corresponding waiting slope is ρm, T max
i , T arr

i , T W
i

2: Output: the maximum shift time T shi f t
i at CS node c

3: T shi f t
i ← 0, T max ← T max

i , T W ← T W
i , T arr ← T arr

i
4: for m ∈ {0, . . . ,Mc} do
5: if am ≤ T arr ≤ am then
6: T rest ← am − T arr

7: T newwait ← T W + ρm ∗ T rest

8: if T newwait + T rest ≤ T max then
9: T max ← T max − T rest

10: T W ← T newwait

11: T arr ← am

12: T shi f t
i ← T shi f t

i + T rest

13: else
14: T temp ← (T max − T W)/(1 + ρm)
15: if T temp ≤ 0 then
16: return 0
17: end if
18: T shi f t

i ← T shi f t
i + T temp

19: return T shi f t
i

20: end if
21: end if
22: end for

Algorithm 8 Pe f ormChargeTime(c,T charge)
1: ρ← the current charging slope at CS c
2: for i ∈ {CS c+1, . . . ,CS n, 0} do
3: qarr

i ← qarr
i + ρ ∗ T charge

4: qlea
i ← qlea

i + ρ ∗ T charge

5: end for
6: for i ∈ {CS c, . . . ,CS n, 0} do
7: if i , CS c then
8: T arr

i ← T arr
i + T charge

9: end if
10: T max

i ← T max
i − T charge,

11: T temp ← T charge, T charge ← Max(0,T charge − T slack
i )

12: T slack
i ← Max(0,T slack

i − T temp)
13: if T charge = 0 then
14: break
15: end if
16: end for
17: for i ∈ {CS c, . . . ,CS n} do
18: T W

i ← Wi(T arr
i )

19: end for
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Table B1: Detailed results for the small-scale HEVRP-NL instances of Group A

Instance CPLEX Heuristic
UB LB ∆opt Time (s) Cost Time (s) Gap

C101-5 1158.68 – 0.00% 0.41 1158.68 0.45 0.00%
C103-5 644.60 – 0.00% 1.41 644.60 0.44 0.00%
C206-5 2108.06 – 0.00% 8.59 2108.06 0.67 0.00%
C208-5 1528.38 – 0.00% 1.98 1528.38 0.31 0.00%
R104-5 338.58 – 0.00% 6.30 338.58 0.35 0.00%
R105-5 363.85 – 0.00% 0.39 363.85 0.38 0.00%
R202-5 643.85 – 0.00% 10.77 643.85 0.53 0.00%
R203-5 692.27 – 0.00% 10.17 692.27 0.79 0.00%
RC105-5 524.49 – 0.00% 0.39 524.49 0.48 0.00%
RC108-5 648.05 – 0.00% 4.33 648.05 0.41 0.00%
RC204-5 514.12 – 0.00% 12.91 514.12 0.69 0.00%
RC208-5 385.74 – 0.00% 11.53 385.74 0.66 0.00%
C101-10 1769.04 – 0.00% 5.00 1769.04 1.18 0.00%
C104-10 1276.97 1197.44 6.23% 10800 1272.33 1.13 -0.36%
C202-10 1759.69 – 0.00% 86.31 1759.69 1.98 0.00%
C205-10 2967.77 – 0.00% 270.20 2967.77 1.03 0.00%
R102-10 628.69 – 0.00% 544.80 628.69 0.72 0.00%
R103-10 495.60 – 0.00% 5244.55 495.60 0.79 0.00%
R201-10 1196.28 – 0.00% 151.50 1196.28 1.61 0.00%
R203-10 1034.19 757.84 26.72% 10800 1034.19 1.38 0.00%
RC102-10 1134.92 – 0.00% 7.76 1134.92 0.85 0.00%
RC108-10 763.22 – 0.00% 5317.58 763.22 0.91 0.00%
RC201-10 753.18 – 0.00% 38.55 752.20 1.78 -0.13%
RC205-10 1113.32 875.42 21.37% 10800 1113.32 1.76 0.00%
C103-15 1825.18 1360.77 25.44% 10800 1684.63 2.66 -7.70%
C106-15 1640.55 – 0.00% 526.67 1640.55 2.52 0.00%
C202-15 6399.68 1570.13 75.47% 10800 4003.95 2.57 -37.44%
C208-15 2987.92 1845.83 38.22% 10800 2987.92 3.86 0.00%
R102-15 950.45 825.78 13.12% 10800 950.45 3.86 0.00%
R105-15 806.78 – 0.00% 520.80 806.78 2.83 0.00%
R202-15 5267.87 781.51 85.16% 10800 1855.00 6.11 -64.79%
R209-15 3812.99 688.67 81.94% 10800 1569.44 6.72 -58.84%
RC103-15 886.50 781.91 11.80% 10800 884.56 2.42 -0.22%
RC108-15 1156.62 910.63 21.27% 10800 1091.44 2.01 -5.64%
RC202-15 1659.11 787.80 52.52% 10800 1358.46 4.86 -18.12%
RC204-15 1434.37 780.82 45.56% 10800 871.71 7.46 -39.23%
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Table B2: Detailed results for the small-scale HEVRP-NL instances of Group B

Instance CPLEX Heuristic
UB LB ∆opt Time (s) Cost Time (s) Gap

C101-5 566.40 – 0.00% 0.33 566.40 0.48 0.00%
C103-5 323.23 – 0.00% 0.39 323.23 0.41 0.00%
C206-5 917.70 – 0.00% 8.22 917.70 0.69 0.00%
C208-5 728.38 – 0.00% 5.11 728.38 0.31 0.00%
R104-5 186.58 – 0.00% 3.05 186.58 0.34 0.00%
R105-5 211.85 – 0.00% 0.31 211.85 0.4 0.00%
R202-5 283.85 – 0.00% 10.56 283.85 0.54 0.00%
R203-5 332.27 – 0.00% 9.05 332.27 0.68 0.00%
RC105-5 308.49 – 0.00% 0.38 308.49 0.45 0.00%
RC108-5 396.65 – 0.00% 3.91 396.65 0.37 0.00%
RC204-5 274.12 – 0.00% 21.64 274.12 0.63 0.00%
RC208-5 265.74 – 0.00% 21.91 265.74 0.83 0.00%
C101-10 990.91 – 0.00% 6.81 990.91 1.49 0.00%
C104-10 760.59 – 0.00% 10311.05 760.59 1.72 0.00%
C202-10 948.51 – 0.00% 605.56 948.51 1.63 0.00%
C205-10 1047.77 – 0.00% 35.70 1047.77 1.21 0.00%
R102-10 348.69 – 0.00% 42.25 348.69 0.95 0.00%
R103-10 279.60 – 0.00% 7206.00 279.60 1.12 0.00%
R201-10 476.28 – 0.00% 119.83 476.28 2.51 0.00%
R203-10 448.87 374.45 16.58% 10800 448.87 2.55 0.00%
RC102-10 606.92 – 0.00% 11.17 606.92 1.24 0.00%
RC108-10 475.22 – 0.00% 463.00 475.22 1.34 0.00%
RC201-10 491.03 – 0.00% 33.17 491.03 2.37 0.00%
RC205-10 553.32 – 0.00% 1958.94 553.32 2.51 0.00%
C103-15 861.62 769.97 10.64% 10800 861.62 2.01 0.00%
C106-15 828.75 – 0.00% 60.69 828.75 1.51 0.00%
C202-15 2074.92 991.17 52.23% 10800 1547.55 3.41 -25.42%
C208-15 1376.56 1033.46 24.92% 10800 1330.95 2.14 -3.31%
R102-15 594.82 561.68 5.57% 10800 594.82 2.62 0.00%
R105-15 479.25 – 0.00% 222.72 479.25 2.04 0.00%
R202-15 1397.14 480.65 65.60% 10800 784.61 5.69 -43.84%
R209-15 1369.69 402.41 70.62% 10800 649.44 7.29 -52.59%
RC103-15 530.63 503.23 5.16% 10800 530.63 2.05 0.00%
RC108-15 580.62 488.35 15.89% 10800 580.62 1.63 0.00%
RC202-15 728.77 518.06 28.91% 10800 707.82 5.37 -2.87%
RC204-15 1021.18 384.67 62.33% 10800 467.65 4.11 -54.21%
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Table B3: Detailed results for the small-scale HEVRP-NL instances of Group C

Instance CPLEX Heuristic
UB LB ∆opt Time (s) Cost Time (s) Gap

C101-5 467.91 – 0.00% 0.33 467.91 0.49 0.00%
C103-5 263.23 – 0.00% 0.42 263.23 0.39 0.00%
C206-5 716.50 – 0.00% 9.16 716.50 0.54 0.00%
C208-5 609.85 – 0.00% 6.38 609.85 0.34 0.00%
R104-5 167.58 – 0.00% 2.25 167.58 0.36 0.00%
R105-5 192.85 – 0.00% 0.33 192.85 0.38 0.00%
R202-5 238.85 – 0.00% 10.19 238.85 0.53 0.00%
R203-5 287.27 – 0.00% 7.80 287.27 0.64 0.00%
RC105-5 281.49 – 0.00% 0.42 281.49 0.43 0.00%
RC108-5 336.65 – 0.00% 4.00 336.65 0.41 0.00%
RC204-5 244.12 – 0.00% 24.13 244.12 0.54 0.00%
RC208-5 250.74 – 0.00% 26.25 250.74 0.54 0.00%
C101-10 840.91 – 0.00% 8.78 840.91 1.64 0.00%
C104-10 621.02 – 0.00% 2031.41 621.02 1.22 0.00%
C202-10 748.37 – 0.00% 705.81 748.37 1.48 0.00%
C205-10 806.09 – 0.00% 19.64 806.09 0.95 0.00%
R102-10 313.69 – 0.00% 31.38 313.69 1.04 0.00%
R103-10 249.81 233.82 6.40% 10800 249.81 1.08 0.00%
R201-10 386.28 – 0.00% 133.03 386.28 2.26 0.00%
R203-10 378.34 – 0.00% 10656.06 378.34 3.16 0.00%
RC102-10 540.56 – 0.00% 6.45 540.56 1.26 0.00%
RC108-10 439.22 – 0.00% 543.73 439.22 1.16 0.00%
RC201-10 436.85 – 0.00% 62.56 436.85 1.99 0.00%
RC205-10 483.32 – 0.00% 844.84 483.32 2.21 0.00%
C103-15 741.62 684.87 7.65% 10800 741.62 1.95 0.00%
C106-15 678.75 – 0.00% 470.03 678.75 1.51 0.00%
C202-15 1354.35 898.08 33.69% 10800 1184.43 2.97 -12.55%
C208-15 1071.96 851.02 20.61% 10800 1016.76 2.16 -5.15%
R102-15 533.47 508.67 4.65% 10800 533.47 2.26 0.00%
R105-15 430.25 – 0.00% 40.47 430.25 1.87 0.00%
R202-15 1234.34 430.49 65.12% 10800 649.24 5.76 -47.40%
R209-15 927.91 355.92 61.64% 10800 534.41 4.99 -42.41%
RC103-15 479.63 457.01 4.72% 10800 479.63 2.29 0.00%
RC108-15 508.62 428.50 15.75% 10800 508.62 1.59 0.00%
RC202-15 656.75 473.09 27.97% 10800 592.31 4.69 -9.81%
RC204-15 691.01 337.50 51.16% 10800 417.65 4.15 -39.56%
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Table B4: Detailed results for the large-scale HEVRP-NL instances of Group A (100 customers and 21 CSs)

Instance Avg 10 Best 10 Time (min) Instance Avg 10 Best 10 Time (min)
C101 7563.73 7552.46 13.64 R201 3453.39 3436.27 19.89
C102 7519.84 7517.74 11.83 R202 3294.12 3266.96 15.96
C103 7519.19 7508.28 13.64 R203 3171.46 3137.78 12.53
C104 7487.80 7476.00 13.46 R204 3012.95 3007.93 8.48
C105 7554.46 7547.23 11.12 R205 3279.31 3259.05 15.41
C106 7554.90 7543.88 14.47 R206 3197.73 3173.24 14.31
C107 7540.01 7537.97 14.71 R207 3120.56 3079.41 9.56
C108 7529.81 7518.01 15.77 R208 3008.75 2996.15 10.12
C109 7495.28 7483.44 15.67 R209 3173.94 3150.90 14.83
C201 7009.37 6972.00 17.68 R210 3145.03 3128.62 11.43
C202 6997.06 6969.87 15.31 R211 3065.42 3042.10 10.21
C203 6953.61 6945.76 16.25 RC101 5510.76 5428.90 24.14
C204 5981.87 5976.95 18.06 RC102 5307.93 5271.71 22.36
C205 6957.16 6946.43 19.81 RC103 5187.91 5066.96 19.36
C206 6046.60 6033.21 21.05 RC104 4964.80 4899.06 20.11
C207 6965.93 6926.88 14.71 RC105 5293.55 5249.05 21.16
C208 5978.59 5939.74 17.33 RC106 5182.91 5093.75 22.15
R101 4578.31 4545.94 17.14 RC107 5023.67 4999.00 20.25
R102 4379.10 4353.04 16.41 RC108 5078.33 4949.81 18.96
R103 4212.40 4190.24 18.33 RC201 4392.84 4337.60 24.24
R104 4093.72 4085.60 16.20 RC202 4301.79 4261.89 24.08
R105 4304.99 4283.87 18.43 RC203 4201.06 4147.68 24.72
R106 4211.95 4192.88 16.90 RC204 4196.91 4107.84 18.16
R107 4131.21 4106.38 18.01 RC205 4353.32 4254.70 23.94
R108 4091.55 4062.28 17.05 RC206 4252.53 4237.42 26.14
R109 4148.20 4122.12 17.15 RC207 4275.85 4181.92 18.06
R110 4093.20 4070.78 16.04 RC208 4156.17 4105.21 20.72
R111 4196.45 4069.45 12.32
R112 4064.08 4048.95 14.46
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Table B5: Detailed results for the large-scale HEVRP-NL instances of Group B (100 customers and 21 CSs)

Instance Avg 10 Best 10 Time (min) Instance Avg 10 Best 10 Time (min)
C101 2873.71 2812.79 12.88 R201 1656.81 1628.76 24.72
C102 2800.46 2728.82 12.16 R202 1482.30 1473.24 15.69
C103 2767.06 2727.58 12.81 R203 1354.73 1337.64 14.68
C104 2659.14 2570.26 12.24 R204 1234.59 1207.03 10.14
C105 2877.10 2772.03 12.26 R205 1479.85 1451.64 19.90
C106 2802.08 2764.59 12.73 R206 1396.23 1374.71 19.21
C107 2831.84 2766.26 13.57 R207 1264.74 1256.22 10.47
C108 2828.69 2743.48 12.91 R208 1226.37 1197.64 10.82
C109 2722.68 2680.25 10.78 R209 1347.05 1340.94 15.91
C201 2219.36 2172.00 21.67 R210 1324.15 1317.29 17.31
C202 2181.98 2146.84 27.20 R211 1249.87 1234.88 10.25
C203 2200.48 2164.29 18.55 RC101 2706.54 2692.87 15.27
C204 1986.42 1965.23 20.71 RC102 2510.28 2491.92 14.52
C205 2187.12 2146.43 25.25 RC103 2241.36 2225.65 12.18
C206 2191.19 2131.93 22.49 RC104 2113.59 2096.31 11.66
C207 2209.41 2144.89 20.55 RC105 2444.51 2411.61 12.53
C208 1953.13 1939.74 21.62 RC106 2313.97 2297.32 12.80
R101 2503.41 2474.84 15.02 RC107 2149.40 2137.05 12.07
R102 2243.48 2203.63 14.44 RC108 2098.20 2085.27 11.03
R103 2064.96 2010.20 14.21 RC201 1910.04 1899.99 10.48
R104 1859.18 1823.57 11.79 RC202 1827.69 1805.97 10.34
R105 2172.92 2144.85 15.19 RC203 1650.80 1635.48 10.78
R106 2077.54 2050.30 13.61 RC204 1540.14 1528.16 15.05
R107 1896.07 1885.73 13.14 RC205 1775.22 1762.93 14.36
R108 1837.45 1821.86 13.04 RC206 1761.74 1758.77 12.06
R109 2009.20 1980.36 15.46 RC207 1615.10 1606.18 10.77
R110 1853.51 1817.21 12.37 RC208 1515.21 1501.71 10.71
R111 1870.58 1845.14 12.65
R112 1811.04 1794.09 12.25
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Table B6: Detailed results for the large-scale HEVRP-NL instances of Group C (100 customers and 21 CSs)

Instance Avg 10 BKS Time (min) Instance Avg 10 Best 10 Time (min)
C101 2130.07 2122.79 11.71 R201 1419.85 1408.99 22.50
C102 2053.76 2042.43 11.16 R202 1251.24 1242.21 17.27
C103 2030.14 2025.88 10.71 R203 1127.75 1112.64 15.60
C104 1872.26 1861.43 9.80 R204 984.07 977.72 10.43
C105 2100.78 2082.03 11.47 R205 1222.34 1213.20 18.32
C106 2088.40 2077.03 12.26 R206 1165.35 1148.24 17.23
C107 2079.10 2069.54 12.03 R207 1053.21 1031.22 10.33
C108 2067.39 2053.48 11.59 R208 987.20 972.67 10.89
C109 1998.03 1982.39 11.00 R209 1132.23 1125.83 16.42
C201 1614.64 1594.90 23.98 R210 1119.55 1083.10 15.17
C202 1764.10 1748.93 17.75 R211 1028.30 1001.74 10.03
C203 1538.58 1522.12 22.45 RC101 2296.80 2289.97 14.85
C204 1475.09 1446.88 24.10 RC102 2089.81 2078.69 13.46
C205 1576.58 1550.86 22.33 RC103 1861.40 1853.01 11.03
C206 1465.44 1451.94 26.72 RC104 1716.97 1703.78 11.30
C207 1451.59 1443.92 26.04 RC105 2029.13 2018.77 12.31
C208 1447.63 1439.74 21.59 RC106 1947.77 1920.73 12.91
R101 2175.69 2154.77 15.19 RC107 1770.20 1757.14 12.17
R102 1916.49 1899.94 13.96 RC108 1712.16 1696.97 12.06
R103 1712.27 1694.55 15.25 RC201 1615.78 1589.99 10.04
R104 1518.11 1509.26 11.83 RC202 1494.37 1481.90 10.29
R105 1850.94 1837.85 14.79 RC203 1325.15 1310.48 10.69
R106 1751.07 1744.79 13.79 RC204 1202.57 1190.72 15.54
R107 1586.44 1575.83 12.74 RC205 1468.89 1440.36 14.85
R108 1478.55 1465.58 11.05 RC206 1445.14 1431.41 10.72
R109 1647.12 1634.29 12.52 RC207 1291.75 1273.23 10.95
R110 1519.37 1505.30 11.39 RC208 1183.73 1171.71 10.79
R111 1524.64 1511.15 14.83
R112 1473.96 1453.34 12.23
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Table C1: Detailed comparison results for the E-VRP-NL benchmark (instances with 10, 20, or 40 customers)
Instance ILS+HC LNS ILS ILS+SP

Best Avg T Best Avg T Best Avg T Best Avg T Best Gap
tc0c10s2cf1 19.75 20.12 4 19.75 19.77 8 19.75 19.75 5 19.75 19.75 5 0.00%
tc0c10s2ct1 12.30 12.34 4 12.30 12.31 8 12.30 12.30 3 12.30 12.30 4 0.00%
tc0c10s3cf1 19.75 20.12 4 19.75 19.76 7 19.75 19.75 5 19.75 19.75 4 0.00%
tc0c10s3ct1 10.80 10.80 5 10.80 10.81 8 10.80 10.80 5 10.80 10.80 3 0.00%
tc1c10s2cf2 9.03 9.07 2 9.03 9.04 9 9.03 9.03 4 9.03 9.03 3 0.00%
tc1c10s2cf3 16.37 16.37 6 16.37 16.38 9 16.37 16.37 5 16.37 16.37 5 0.00%
tc1c10s2cf4 16.10 16.10 5 16.10 16.11 7 16.10 16.10 5 16.10 16.10 4 0.00%
tc1c10s2ct2 10.75 10.75 4 10.75 10.76 8 10.75 10.75 3 10.75 10.75 4 0.00%
tc1c10s2ct3 13.17 13.18 8 13.17 13.18 9 13.17 13.17 6 13.17 13.17 4 0.00%
tc1c10s2ct4 13.83 13.83 5 13.83 13.84 9 13.83 13.83 5 13.83 13.83 4 0.00%
tc1c10s3cf2 9.03 9.06 2 9.03 9.04 10 9.03 9.03 5 9.03 9.03 3 0.00%
tc1c10s3cf3 16.37 16.37 6 16.37 16.39 8 16.37 16.37 3 16.37 16.37 5 0.00%
tc1c10s3cf4 14.90 14.90 7 14.90 14.91 8 14.90 14.90 2 14.90 14.90 5 0.00%
tc1c10s3ct2 9.20 9.34 5 9.20 9.21 9 9.20 9.20 6 9.20 9.20 3 0.00%
tc1c10s3ct3 13.02 13.02 10 13.02 13.03 7 13.02 13.02 5 13.02 13.02 4 0.00%
tc1c10s3ct4 13.21 13.21 6 13.21 13.22 9 13.21 13.21 5 13.21 13.21 4 0.00%
tc2c10s2cf0 21.77 21.77 9 21.77 21.78 8 21.77 21.77 6 21.77 21.77 4 0.00%
tc2c10s2ct0 12.45 12.45 5 12.45 12.46 8 12.45 12.45 6 12.45 12.45 3 0.00%
tc2c10s3cf0 21.77 21.77 9 21.77 21.79 7 21.77 21.77 3 21.77 21.77 4 0.00%
tc2c10s3ct0 11.51 11.54 7 11.51 11.52 9 11.51 11.51 5 11.51 11.51 3 0.00%
tc0c20s3cf2 27.60 27.66 12 27.47 27.52 12 27.47 27.47 10 27.47 27.47 7 0.00%
tc0c20s3ct2 17.08 17.13 8 17.08 17.11 18 17.08 17.08 6 17.08 17.08 6 0.00%
tc0c20s4cf2 27.48 27.61 13 27.60 27.65 14 27.47 27.47 9 27.47 27.47 7 0.00%
tc0c20s4ct2 16.99 17.10 9 16.99 17.02 16 16.99 16.99 9 16.99 16.99 6 0.00%
tc1c20s3cf1 17.50 17.53 12 17.50 17.53 13 17.49 17.49 10 17.49 17.49 6 0.00%
tc1c20s3cf3 16.63 16.78 8 16.48 16.50 17 16.44 16.44 7 16.44 16.44 8 0.00%
tc1c20s3cf4 17.00 17.00 4 17.00 17.03 15 17.00 17.00 5 17.00 17.00 7 0.00%
tc1c20s3ct1 18.95 19.38 15 18.95 18.97 14 18.94 18.94 9 18.94 18.94 8 0.00%
tc1c20s3ct3 12.65 12.72 9 12.60 12.62 17 12.60 12.60 9 12.60 12.60 7 0.00%
tc1c20s3ct4 16.21 16.25 5 16.21 16.24 11 16.21 16.21 8 16.21 16.21 8 0.00%
tc1c20s4cf1 16.39 16.40 13 16.47 16.49 18 16.38 16.38 6 16.38 16.38 9 0.00%
tc1c20s4cf3 16.56 16.80 9 16.48 16.51 11 16.44 16.44 11 16.44 16.44 8 0.00%
tc1c20s4cf4 17.00 17.00 4 17.00 17.03 15 17.00 17.00 8 17.00 17.00 7 0.00%
tc1c20s4ct1 18.25 18.32 16 18.25 18.28 18 17.80 17.80 11 17.80 17.80 6 0.00%
tc1c20s4ct3 14.43 14.50 8 14.43 14.46 12 14.43 14.43 7 14.43 14.43 8 0.00%
tc1c20s4ct4 17.00 17.00 6 17.00 17.03 11 17.00 17.00 6 17.00 17.00 8 0.00%
tc2c20s3cf0 24.68 24.68 14 24.68 24.70 11 24.68 24.68 7 24.68 24.68 8 0.00%
tc2c20s3ct0 25.79 25.79 15 25.79 25.83 15 25.79 25.79 10 25.79 25.79 10 0.00%
tc2c20s4cf0 24.67 24.69 15 24.67 24.71 13 24.67 24.67 11 24.67 24.67 9 0.00%
tc2c20s4ct0 26.02 26.02 15 26.03 26.07 16 26.02 26.02 9 26.02 26.02 8 0.00%
tc0c40s5cf0 32.67 33.25 24 32.67 32.75 52 32.20 32.30 16 32.20 32.20 17 0.00%
tc0c40s5cf4 30.77 31.49 33 30.60 30.69 49 30.25 30.25 22 30.25 30.25 20 0.00%
tc0c40s5ct0 28.72 29.35 25 28.70 28.78 46 27.91 27.91 17 27.91 27.91 20 0.00%
tc0c40s5ct4 28.63 28.72 33 29.17 29.25 59 28.63 28.63 18 28.63 28.63 29 0.00%
tc0c40s8cf0 31.28 32.02 34 31.23 31.31 63 30.40 30.40 18 30.40 30.40 24 0.00%
tc0c40s8cf4 29.32 29.86 43 28.25 28.30 52 28.11 28.23 25 28.11 28.11 26 0.00%
tc0c40s8ct0 26.35 26.89 29 26.22 26.27 58 26.22 26.22 17 26.22 26.22 22 0.00%
tc0c40s8ct4 29.20 29.27 47 29.22 29.28 48 29.07 29.07 22 29.07 29.07 24 0.00%
tc1c40s5cf1 65.16 66.03 44 65.52 65.67 33 64.51 64.51 25 64.51 64.78 26 0.00%
tc1c40s5ct1 52.68 53.36 59 52.60 52.72 40 52.33 52.33 23 52.33 52.33 19 0.00%
tc1c40s8cf1 40.75 42.33 70 41.63 41.71 34 40.64 40.64 21 40.64 40.64 18 0.00%
tc1c40s8ct1 40.56 41.19 71 40.56 40.67 49 40.18 40.18 24 40.18 40.18 19 0.00%
tc2c40s5cf2 27.54 27.67 32 27.54 27.62 42 27.54 27.54 17 27.54 27.54 14 0.00%
tc2c40s5cf3 19.74 20.18 17 19.65 19.70 50 19.65 19.65 21 19.65 19.65 12 0.00%
tc2c40s5ct2 26.91 27.02 23 26.91 26.99 42 26.91 26.91 14 26.91 26.91 15 0.00%
tc2c40s5ct3 23.54 23.77 26 23.71 23.75 51 23.39 23.39 22 23.39 23.39 22 0.00%
tc2c40s8cf2 27.15 27.31 29 27.14 27.20 35 27.13 27.13 16 27.13 27.13 15 0.00%
tc2c40s8cf3 19.66 20.24 19 19.65 19.69 36 19.65 19.65 22 19.65 19.65 17 0.00%
tc2c40s8ct2 26.33 26.71 26 26.29 26.34 40 26.28 26.28 16 26.28 26.28 16 0.00%
tc2c40s8ct3 22.71 23.23 25 22.45 22.52 30 22.45 22.45 24 22.45 22.45 20 0.00%
ILS+HC: Montoya et al. (2017), LNS: Koç et al. (2019), ILS: Froger et al. (2022).
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Table C2: Detailed comparison results for the E-VRP-NL benchmark (instances with 80, 160, or 320 customers)
Instance ILS+HC LNS ILS ILS+SP

Best Avg T Best Avg T Best Avg T Best Avg T Best Gap
tc0c80s12cf0 34.64 35.59 57 35.24 35.40 105 34.16 34.16 66 34.06 34.34 80 -0.29%
tc0c80s12cf1 42.90 44.07 75 42.30 42.47 85 40.91 40.94 68 40.48 40.69 87 -1.05%
tc0c80s12ct0 39.31 39.83 66 39.27 39.41 86 37.51 38.08 65 37.57 38.21 76 0.16%
tc0c80s12ct1 41.94 43.03 73 41.64 41.83 103 39.91 40.06 59 39.72 39.75 72 -0.48%
tc0c80s8cf0 39.43 39.86 56 40.64 40.77 88 39.08 39.16 48 38.59 39.09 53 -1.25%
tc0c80s8cf1 45.23 45.73 121 46.65 46.80 98 43.38 43.95 73 43.38 43.78 85 0.00%
tc0c80s8ct0 41.90 42.76 54 41.44 41.59 87 40.52 41.44 61 40.52 41.36 54 0.00%
tc0c80s8ct1 45.27 45.85 130 45.25 45.37 100 43.85 44.07 73 43.85 43.85 83 0.00%

tc1c80s12cf2 29.54 30.73 61 29.54 29.66 113 28.65 28.77 52 28.58 28.68 72 -0.24%
tc1c80s12ct2 29.52 30.66 59 29.38 29.47 114 28.73 29.18 54 28.66 28.88 79 -0.24%
tc1c80s8cf2 30.81 31.83 51 31.38 31.47 94 29.15 29.15 51 29.03 29.16 78 -0.41%
tc1c80s8ct2 31.74 32.36 60 31.72 31.82 98 30.45 30.52 57 30.11 30.21 76 -1.12%

tc2c80s12cf3 31.97 32.70 76 31.28 31.37 105 30.60 30.60 57 30.60 30.60 68 0.00%
tc2c80s12cf4 43.89 44.97 131 43.69 43.81 86 42.10 42.14 83 42.10 42.13 111 0.00%
tc2c80s12ct3 30.83 31.59 58 30.31 30.39 114 29.90 29.90 54 29.90 29.91 71 0.00%
tc2c80s12ct4 42.40 42.82 134 42.56 44.68 103 40.27 40.27 74 40.27 40.75 90 0.00%
tc2c80s8cf3 32.44 32.60 64 31.94 32.06 87 31.70 31.93 55 31.60 31.95 66 -0.32%
tc2c80s8cf4 49.29 49.69 100 49.67 49.84 128 46.03 46.78 93 45.36 46.07 98 -1.46%
tc2c80s8ct3 32.31 32.55 65 32.71 32.82 89 31.38 31.43 65 31.38 31.68 76 0.00%
tc2c80s8ct4 44.83 46.61 111 44.16 44.31 103 43.83 44.00 75 43.72 43.92 83 -0.25%

tc0c160s16cf2 61.20 62.99 365 62.09 62.55 442 57.91 58.00 242 57.91 57.98 326 0.00%
tc0c160s16cf4 82.92 83.84 1213 82.77 83.41 709 76.90 77.55 367 76.83 77.29 450 -0.09%
tc0c160s16ct2 59.90 62.80 342 59.75 60.29 811 57.64 57.73 247 57.64 58.02 311 0.00%
tc0c160s16ct4 82.37 83.08 945 82.90 83.85 983 76.14 76.90 353 75.60 76.29 428 -0.71%
tc0c160s24cf2 59.27 60.92 403 59.26 59.79 732 56.32 56.76 253 56.12 56.55 341 -0.36%
tc0c160s24cf4 81.44 82.13 1209 81.43 82.33 595 75.53 76.30 370 75.63 76.60 494 0.13%
tc0c160s24ct2 59.25 60.19 410 59.67 60.21 915 55.42 56.47 253 55.61 56.64 305 0.34%
tc0c160s24ct4 80.96 82.11 957 81.38 82.21 436 75.05 75.87 372 75.25 76.22 468 0.27%
tc1c160s16cf0 79.80 80.75 766 79.76 80.52 420 74.54 75.32 327 74.54 75.39 395 0.00%
tc1c160s16cf3 71.76 72.75 462 71.98 72.77 729 66.45 67.20 307 66.72 67.17 312 0.41%
tc1c160s16ct0 79.04 79.90 643 80.21 80.99 472 74.20 75.31 326 74.20 75.14 470 0.00%
tc1c160s16ct3 73.29 75.11 279 73.24 73.82 750 65.31 66.20 289 65.30 65.67 384 -0.02%
tc1c160s24cf0 78.60 79.30 741 79.48 80.32 460 73.62 74.05 331 73.62 74.19 356 0.00%
tc1c160s24cf3 68.56 69.57 483 68.73 69.28 522 62.90 63.64 282 63.17 63.22 329 0.43%
tc1c160s24ct0 78.21 79.35 578 78.32 79.05 553 73.34 74.00 319 73.33 73.88 523 -0.01%
tc1c160s24ct3 68.72 69.98 358 69.17 69.76 889 63.19 63.66 280 62.86 63.36 384 -0.52%
tc2c160s16cf1 60.34 61.26 274 60.25 60.70 716 56.65 57.39 252 56.00 56.62 327 -1.15%
tc2c160s16ct1 60.27 60.62 288 59.86 60.40 408 55.37 55.52 232 55.37 55.54 321 0.00%
tc2c160s24cf1 59.82 61.14 305 60.01 60.63 564 56.70 57.27 260 57.16 58.05 386 0.81%
tc2c160s24ct1 59.13 59.72 340 59.97 60.53 531 55.03 55.15 238 55.03 55.41 351 0.00%
tc1c320s24cf2 152.13 153.99 7106 153.12 154.65 4155 133.32 133.99 1287 132.39 133.72 1667 -0.70%
tc1c320s24cf3 117.48 118.36 3066 117.39 118.43 3258 106.43 107.00 1060 105.98 106.69 1492 -0.42%
tc1c320s24ct2 148.77 154.13 6853 148.57 149.89 4727 131.63 132.49 1231 131.25 131.39 1206 -0.29%
tc1c320s24ct3 116.64 119.17 3274 117.50 118.53 5105 105.93 106.67 1045 105.99 106.82 1376 0.06%
tc1c320s38cf2 141.63 147.08 7236 142.25 144.17 4249 129.19 129.76 1178 129.02 129.74 1435 -0.13%
tc1c320s38cf3 116.22 117.74 3114 117.31 118.78 5978 106.01 106.36 1129 106.00 106.71 1405 -0.01%
tc1c320s38ct2 140.96 145.09 6974 142.75 144.50 6078 128.82 129.51 1167 128.45 128.47 1037 -0.29%
tc1c320s38ct3 116.07 117.71 3063 117.91 119.40 3157 105.73 106.74 1186 105.29 106.26 1566 -0.42%
tc2c320s24cf0 182.45 186.94 6566 182.90 185.27 4014 158.80 160.55 1343 159.32 161.16 1882 0.33%
tc2c320s24cf1 95.51 96.42 1456 95.71 96.81 5150 87.46 87.64 890 87.32 87.71 1197 -0.16%
tc2c320s24cf4 122.74 124.68 3681 122.83 124.51 3923 111.16 111.62 989 111.98 112.06 1210 0.74%
tc2c320s24ct0 181.45 186.23 7204 182.29 183.80 6191 159.70 160.49 1309 159.70 162.20 1927 0.00%
tc2c320s24ct1 94.73 96.49 1259 94.97 95.96 3530 87.25 87.83 863 87.51 88.12 1037 0.30%
tc2c320s24ct4 121.94 123.85 4274 122.09 123.45 5196 111.09 111.62 1041 111.07 111.43 1569 -0.02%
tc2c320s38cf0 176.92 182.31 6734 178.17 179.81 3350 158.70 159.53 1356 159.25 160.41 1951 0.35%
tc2c320s38cf1 94.29 95.07 1602 95.73 96.79 5343 86.92 87.25 890 86.91 87.37 1145 -0.01%
tc2c320s38cf4 122.32 123.47 2661 122.26 123.46 3724 109.80 110.66 1087 109.54 110.56 1838 -0.24%
tc2c320s38ct0 190.97 192.15 7637 192.23 194.66 4448 158.71 159.35 1374 157.89 159.45 2075 -0.52%
tc2c320s38ct1 94.53 95.29 1409 94.66 95.87 3973 86.59 86.97 894 86.34 86.53 1061 -0.29%
tc2c320s38ct4 121.66 123.15 2785 121.64 123.06 5554 110.05 110.55 1034 109.55 109.61 1375 -0.45%
ILS+HC: Montoya et al. (2017), LNS: Koç et al. (2019), ILS: Froger et al. (2022).
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Table D1: Comparision results of the BKS for the E-FSMFTW-PR instances (100 customers and 21 charging stations)

Instance
Group A Group B Group C

W&Z This paper W&Z This paper W&Z This paper
Best Best 10 Time Best Best 10 Time Best Best 10 Time

C101 7158.74 7158.74 17.11 2481.50 2481.50 7.52 1791.50 1791.50 8.38
C102 7134.84 7134.84 18.02 2433.02 2433.02 7.78 1743.02 1743.02 8.15
C103 7113.05 7113.05 25.90 2412.04 2412.04 8.27 1735.62 1735.62 8.15
C104 7096.91 7096.91 36.35 2352.38 2352.22 8.39 1646.69 1646.69 7.15
C105 7138.85 7138.27 20.96 2452.22 2452.22 8.83 1760.56 1760.56 8.93
C106 7134.75 7134.75 26.20 2448.31 2448.31 9.21 1756.07 1756.07 8.31
C107 7137.57 7136.44 16.73 2446.00 2446.00 8.03 1756.00 1756.00 7.95
C108 7130.50 7130.50 17.37 2439.37 2435.32 8.29 1747.58 1747.58 8.21
C109 7113.94 7113.94 11.31 2388.13 2383.51 7.29 1688.99 1688.99 8.12
C201 5690.68 5690.68 12.67 1690.68 1690.68 11.88 1190.68 1190.68 11.79
C202 5690.68 5690.68 12.85 1690.68 1690.68 11.84 1190.68 1190.68 11.79
C203 5689.56 5689.56 13.45 1689.56 1689.56 11.50 1183.42 1183.42 12.95
C204 5688.58 5688.58 12.44 1688.58 1688.58 11.96 1174.05 1174.05 10.55
C205 5687.96 5687.96 12.10 1687.96 1687.96 12.03 1183.42 1183.42 13.11
C206 5687.96 5687.96 12.81 1687.96 1687.96 12.42 1183.42 1183.42 12.06
C207 5687.96 5687.96 12.88 1687.96 1687.96 12.86 1183.42 1183.42 12.09
C208 5681.47 5681.47 11.40 1681.47 1681.47 11.72 1181.47 1181.47 10.42
R101 4337.03 4333.42 9.71 2208.83 2204.22 9.47 1918.46 1918.46 12.24
R102 4175.17 4166.26 10.50 2030.15 2022.36 8.23 1737.57 1735.16 9.08
R103 4038.30 4038.30 9.95 1868.31 1868.31 8.64 1541.75 1541.39 9.59
R104 3966.74 3966.74 9.02 1739.69 1732.11 8.07 1410.83 1414.09 7.75
R105 4138.01 4138.01 10.52 1987.72 1987.72 10.21 1666.55 1666.55 10.30
R106 4063.48 4063.48 8.92 1915.27 1908.35 9.11 1590.78 1590.34 9.31
R107 4013.59 4013.59 9.55 1791.63 1791.63 9.04 1462.24 1458.32 8.65
R108 3963.85 3963.85 8.73 1715.41 1698.13 7.77 1381.43 1371.12 7.90
R109 4024.32 4024.32 9.43 1846.35 1848.60 9.11 1523.63 1523.63 9.27
R110 3975.70 3975.70 8.75 1740.14 1740.14 7.86 1412.69 1412.69 8.71
R111 3980.31 3980.31 9.58 1762.41 1738.10 7.88 1425.06 1425.06 8.52
R112 3953.02 3953.02 8.51 1703.83 1694.63 7.93 1381.48 1368.18 8.02
R201 3395.95 3395.95 11.93 1585.94 1585.06 13.61 1362.76 1362.76 12.26
R202 3262.42 3262.42 10.21 1461.58 1465.39 10.85 1236.59 1236.59 9.15
R203 3129.85 3129.85 10.17 1328.73 1328.41 11.22 1103.41 1103.41 10.41
R204 3007.93 3007.93 7.63 1207.03 1207.03 8.29 977.72 977.72 7.23
R205 3233.90 3233.90 11.82 1436.10 1436.10 11.65 1197.20 1197.20 10.44
R206 3156.58 3156.58 11.14 1356.87 1356.87 10.76 1131.92 1131.92 9.19
R207 3063.74 3063.74 8.06 1256.22 1256.22 7.72 1031.22 1031.22 7.37
R208 2997.62 2997.62 8.28 1195.96 1195.96 7.54 971.46 971.46 7.94
R209 3131.89 3131.13 10.27 1322.11 1322.11 10.64 1092.06 1092.06 9.60
R210 3108.36 3108.36 11.25 1308.13 1308.13 9.70 1074.83 1074.83 9.65
R211 3032.10 3032.10 7.40 1234.88 1234.88 8.23 1001.74 1001.74 6.68

RC101 5226.08 5226.08 9.28 2459.71 2455.43 10.54 2051.62 2051.62 10.46
RC102 5060.23 5057.16 9.46 2265.88 2265.88 8.95 1881.00 1881.00 9.48
RC103 4901.78 4901.78 9.09 2099.69 2085.24 8.77 1723.03 1709.10 8.10
RC104 4755.07 4755.07 9.74 1970.95 1942.66 7.91 1562.87 1560.56 7.44
RC105 5047.25 5047.25 9.34 2204.38 2204.38 7.76 1835.54 1835.54 8.16
RC106 4988.19 4988.19 9.25 2186.23 2156.34 8.91 1770.28 1770.28 9.51
RC107 4826.45 4802.43 8.38 1994.17 1990.76 8.83 1619.17 1619.17 8.20
RC108 4788.68 4786.90 9.10 1925.85 1925.85 8.42 1565.27 1565.27 8.57
RC201 4337.60 4337.60 6.92 1899.99 1899.99 6.52 1588.25 1588.25 6.80
RC202 4261.89 4261.89 5.71 1805.24 1805.24 7.19 1481.05 1481.05 7.59
RC203 4147.68 4147.68 6.57 1635.48 1635.48 8.61 1310.37 1310.37 7.13
RC204 4106.90 4106.90 7.69 1520.59 1520.59 9.75 1182.32 1182.32 9.84
RC205 4254.70 4243.62 6.78 1749.64 1749.64 10.09 1410.99 1410.99 8.26
RC206 4244.04 4244.04 6.39 1750.32 1754.00 8.14 1430.32 1430.32 7.60
RC207 4172.61 4172.61 6.69 1606.18 1606.18 8.59 1273.23 1273.23 7.76
RC208 4103.44 4103.44 7.57 1495.34 1495.34 9.44 1165.34 1167.19 7.94

Avg 4750.65 4749.67 11.43 1838.05 1835.22 9.32 1438.94 1438.19 9.11
W&Z: Wang & Zhao (2023)
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