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The design of intermodal hub networks often requires the satisfaction of service time requirements related to

the transportation times on the arcs of the network and the processing times at the hub nodes. In this study,

we characterize the probability distribution of the total service time in intermodal hub networks and intro-

duce associated probabilistic service level constraints. The resulting formulation incorporates a substantial

number of non-linear logical constraints involving indicator variables. Probabilistic service level constraints

are formulated in the form of perspective cuts, which are introduced in a cutting plane framework. Addition-

ally, we propose an approximated formulation along with an extended formulation and valid inequalities for

the problem. The approximated formulation produces high-quality solutions and is solved more e�ciently.

For its part, the extended exact formulation can solve a larger number of instances and requires a smaller

number of cuts to be added during the cutting plane process. Extensive computational experiments are

performed on the Australian Post (AP) and Colombian (COL) datasets to evaluate the e�ciency and lim-

itations of the proposed formulations and solution algorithms. Results obtained on 480 problem instances

under di↵erent service level scenarios confirm the e↵ectiveness of the proposed formulations. We also pro-

vide managerial insights based on detailed sensitivity analyses to assess the e↵ect of varying service level

requirements on the optimal network configurations.

Key words : Hub network design, intermodal transportation, probabilistic service level constraints, cutting

plane algorithm, hypo-exponential distribution.

1. Introduction

Intermodal transportation plays a crucial role in satisfying the demand for shipments in many-

to-many distribution networks. Under this concept, two or more transportation modes are used

alongside specialized facilities or hubs to consolidate shipments and transship goods using di↵erent

modes. Inter-hub transportation involves high-capacity vehicles, such as trains or ships, leveraging

economies of scale in transportation operations, making intermodal transportation attractive in

practice. Some reviews on intermodal transportation include Crainic and Kim (2007), Steadieseifi

et al. (2014), and Basallo-Triana et al. (2021).
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Despite the economic benefits of intermodal transportation, the quality of service perceived by

customers is usually impacted by longer transit times. Intermodal transportation generally results

in longer transportation times compared to direct transportation. Congestion at hubs is another

significant issue. For example, only 53% of freight trains reach their destination with fewer than

30 minutes delay (Boysen et al. 2013). Service times are notably increased predominantly due

to long waiting times at hubs. A customer service level of this magnitude drastically reduces

competitiveness in intermodal transportation.

This work aims to design intermodal hub networks considering the quality of service, which

is measured as the probability of satisfying a service time requirement for transportation from

origin to destination. The total service time is the primary determinant of the network’s service

quality. This comprises transportation time as well as waiting and processing times at hubs. The

service time encompasses various sources of uncertainty, making it imperative to adopt a holistic

stochastic approach to simultaneously integrate all sources of uncertainty into a hub network

design model. The design of intermodal hub networks seeks to determine the optimal number and

locations of hubs, the routing of flows from origin to destination nodes through the hubs, and direct

transportation. Recent surveys on hub location include Contreras and O’Kelly (2019), and Alumur

et al. (2021).

Uncertainty in the hub network design literature is usually addressed as robust or stochastic

models. Contributions to the robust optimization approach include Zetina et al. (2017), Martins de

Sá et al. (2018a), and Martins de Sá et al. (2018b), by considering uncertainty intervals for di↵erent

parameters. For their part, Merakli and Yaman (2016), Gha↵arinasab (2018) and Shahabi and

Unnikrishnan (2014) introduced more general uncertainty sets.

Some stochastic programming contributions utilizing the expected value criterion are Contreras

et al. (2011), Alumur et al. (2012), Taherkhani et al. (2020), and Taherkhani et al. (2021). Most

formulations employ sampling methods to estimate the expectations. In contrast, Gha↵arinasab

(2022) provided a mathematical expression for the expected value of Bernoulli-distributed demands.

The expected value approach has also been extensively applied in congestion-related formulations

through queueing models. Studies in this direction include Mohammadi et al. (2017), Azizi et al.

(2018), and Ishfaq and Sox (2012). More recently, some authors have suggested a measure related

to the variability of random variables instead of the expected value criterion (Gha↵arinasab et al.

2023).

Chance-constrained formulations for normally distributed parameters include Gao and Qin

(2016), Mohammadi et al. (2013), Hu et al. (2021). For their part Marianov and Serra (2003) and

Mohammadi et al. (2011) propose probabilistic (chance) constraints for the waiting time at hubs,

which is estimated using multiserver queuing models. Jayaswal and Vidyarthi (2023) introduced a
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hub location model with probabilistic service level constraints on the sojourn time hubs considering

a heterogeneous, preemptive priority M/M/1 queuing model with two customer classes.

We introduce the intermodal hub network design problem with probabilistic service level constri-

ants (IHNDP-SLC) on the intermodal transportation route. Probabilistic constraints ensure that

commodities using the intermodal routes are delivered within a prescribed service time limit, with a

probability greater than or equal to a threshold value. The service time includes the transportation

time, and the waiting and processing times at hubs, which are random variables.

The contributions of this paper are threefold. First, we describe the theoretical properties of

the total service time distribution function as the convolution of the total transport time density

function and the total sojourn time distribution at hubs. Hubs are modeled as M/M/1 queuing

systems, and the transportation time is assumed to follow an arbitrary probability density function.

Second, we exploit the theoretical properties of the total sojourn time distribution to simplify the

structure of probabilistic service level constraints, which are formulated as nonlinear constraints

involving indicator variables. We conjecture the convexity of the probabilistic service level con-

straints and validate this conjecture through several numerical experiments. We use perspective

cuts to reformulate the logical conditions imposed by indicator variables, which are added as cutting

planes during the execution of the branch-and-bound algorithm. The resulting optimization prob-

lem is highly challenging to solve because of the large number of indicator variables and perspective

cuts.

Third, we propose a method for obtaining a tractable approximation of probabilistic service level

constraints using a family of homothetic functions. The accuracy of the approximations is notably

high and the resulting approximation allows us to considerably reduce the number of cutting planes

needed to solve the problem. The approximated formulation relies on less accurate (coarse) per-

spective cuts and is solved between two and seven times faster than the exact formulation. Finally,

we propose an extended formulation for the exact problem by introducing coarse perspective cuts

as valid inequalities. The extended formulation is solved between one and two times faster than

our initial exact formulation. The e↵ectiveness of the approximated and extended formulations is

increased as the network size increases.

We report the results of extensive computational experiments based on the Australian Post (AP)

dataset and Colombian (COL) dataset to evaluate the e�ciency and limitations of the proposed

formulations and solution algorithms. We also provide managerial insights based on detailed sensi-

tivity analyses to assess the e↵ect of varying service level requirements on the optimal intermodal

hub network configurations.

The remainder of the paper is organized as follows: Section 2 presents the basic intermodal

hub network design model and introduces probabilistic service level constraints. Sections 3 and 4
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describe theoretical properties of the total sojourn time distribution and the total service time

distribution, respectively. Sections 5 and 6 present mixed integer linear programming formulations

and cutting plane algorithms for the hub network design problem with probabilistic service level

constraints. Section 7 discusses the results of numerical experiments. Finally, Section 8 concludes

the paper.

2. Model Formulation

In this section, we present a basic formulation of the intermodal hub network design problem and

introduce the probabilistic service level constraints.

2.1. Basic intermodal hub network design formulation

Let G = (N,A) be a complete digraph where N is the set of nodes and A is the set of directed

arcs. A hub arc is an ordered set a = {a1, a2} 2 A, where a1 and a2 (a1 6= a2) are potential hub

locations. Let K be the set of commodities or origin-destination (OD) pairs with strictly positive

demand: K =
�
(i, j)2N ⇥N |w(i,j) > 0, i 6= j

 
. We consider both direct (truck only) and inter-

modal transportation (truck-train-truck) options. In direct transportation, freight is transported

by trucks without using the intermediate hubs. Intermodal transportation involves moving freight

using a combination of trucks and trains, requiring transshipment at hubs. Hence, the demand

for commodity k 2K can be satisfied partially or completely using the intermodal transportation

option. The flow that is not routed through the intermodal option is transported using the direct

transportation option. We consider that intermodal transportation uses exactly two hubs, and

there are no single hub paths in the network.

Let cij be the distance between nodes i2N and j 2N . The total intermodal transportation cost

of commodity k 2K through hub arc a2A is given by Cka =C(i,j)(a1,a2) =wk(�cia1+�ca1a2+�ca2j),

where �,� and � are the unit collection, transfer and distribution costs, respectively. To account

for the economies of scale on the inter-hub link there is a discount factor such that � < � and � < �.

The total direct transportation cost of commodity k 2K is denoted by Ck =C(i,j) = ⇢wkck, where

⇢ is the unit transportation cost for direct shipment. We assume that ⇢> � and ⇢> �. For every

commodity k 2K, the most economical transportation route for satisfying the demand is always

considered (see Taherkhani et al. 2020). Hence, the set of relevant hub arcs for commodity k is

defined as follows:

Ak =
�
a | a2A,a1 6= a2,Ck(a1,a2) <Ck(a2,a1),Ck(a1,a2) <Ck

 
. (1)

Let zm 2 {0,1} be a binary decision variable that equals 1 if a hub facility is located at node m2N ,

and 0 otherwise. The fixed cost of opening a hub facility at node m2N is denoted by fm. Let ⇤m

denote the capacity of hub m. We will explain later the specific role of this parameter in the context
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of probabilistic service level constraints. Let xka be the fraction of demand of commodity k 2K

that is satisfied using the intermodal transportation option through hub arc a 2Ak. In that case,

the fraction of demand of commodity k 2K that is satisfied using the direct shipment is denoted

by 1�
P

a2Ak
xka. The formulation of the basic intermodal (capacitated) hub network design model

is as follows:

minimize
X

m2N

fmzm +
X

k2K

X

a2Ak

Ckaxka +
X

k2K

Ck

 
1�

X

a2Ak

xka

!
(2a)

subject to
X

a2Ak

xka  1, 8k 2K, (2b)

X

a2Ak,
m2a

xka  zm, 8m2N,k 2K, (2c)

X

k2K

X

a2Ak,
m2a

wkxka ⇤mzm, 8m2N, (2d)

xka 2 [0,1], 8k 2K,a2Ak (2e)

zm 2 {0,1}, 8m2N. (2f)

The objective function (2a) minimizes the sum of hub location and transportation costs. The first

term in the objective function is the total fixed cost of installing hub facilities. The second term

captures the total intermodal transportation cost, and the last term corresponds to the total direct

(truck-only) transportation cost. Note that the objective function can be equivalently written as:
X

m2N

fmzm�
X

k2K

X

a2Ak

(Ck�Cka)xka +
X

k2K

Ck, (3)

where Ck � Cka denotes the saving achieved by using intermodal transportation instead of the

direct transportation option for satisfying the demand of commodity k 2K using hub arc a 2Ak.

Note that, by the definition of set Ak in equation (1), we have Ck � Cka > 0, for all k 2K and

a2Ak.

Constraints (2b) ensure that the demand of commodity k 2 K is fully or partially satisfied

using the intermodal transportation option. For a commodity, if constraints (2b) are binding at

optimality, then the commodity is routed through intermodal transportation only. In that case,

the direct transportation option is discarded for such a commodity. Constraints (2c) prohibit flows

from being routed through a non-open hub. Constraints (2d) limit the total amount of flow that

can be processed at a hub. Finally, Constraints (2e)-(2f) define the domain of the decision variables.

Formulation (2) does not account for the possibility that high utilization of the available hub

capacity could lead to congestion and, consequently, an increased waiting time at the hubs. Addi-

tionally, transportation consume a significant amount of time. These factors are pivotal in deter-

mining the quality of service o↵ered by the intermodal hub network. It is worthwhile to incorporate

a quality of service into the design of intermodal hub networks.
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2.2. Probabilistic service level constraints

The congestion at hubs may cause the delay of shipments resulting in missed promised delivery

times, penalties, or an expensive expedited delivery (to avoid any further delay and/or penalties)

(Jayaswal and Vidyarthi 2023). Hence, the transportation service provider should set its maximum

service time and a target service level as measures of service quality. The total service time of the

intermodal transportation comprises the transportation time on the collection arc, inter-hub arc,

and distribution arc as well as the waiting and processing times at hub facilities. Figure 1 illustrates

the components of the total service time in a hub network setting where the flow for commodity

k = (i, j) passes through exactly two hubs. The sojourn time at a hub represents the total time

the flow units spend in waiting and service at the hub facility. The sojourn times at hubs a1 and

a2 are denoted by Va1 and Va2 , respectively. The total sojourn time for a given commodity using

the hub arc a= (a1, a2)2A is denoted by Va = Va1 +Va2 . The collection time U 1
ka is defined as the

transportation time from origin node i to hub node a1. The transfer time U 2
ka denotes the time taken

for inter-hub transportation between hub nodes a1 and a2. The distribution time U 3
ka represents

the transportation time between hub node a2 and destination node j. The total transportation

time is denoted by Uka =U 1
ka +U 2

ka +U 3
ka.

i a1 a2 j

Origin
node

Hub 1 Hub 2

Va1 Va2

Destination
node

U 1
ka U 2

ka U 3
ka

Figure 1 The elements of the total service time of commodity k= (i, j)2K through hub arc a= (a1, a2)2Ak.

Let �a1 and �a2 denote the total flow that passes through hubs a1 and a2, respectively. The total

flow at hub node a1 and a2 are defined in terms of decision variables xka as in (4). It is important

to note that this flow includes both the collection and transfer flows through the respective hub.

�a1 =
X

k2K

X

a2Ak,
a12a

wkxka, 8a1 2N, �a2 =
X

k2K

X

a2Ak,
a22a

wkxka, 8a2 2N. (4)

Let Va and Uka be random variables, the total service time Va + Uka is also a random variable

with a distribution function denoted as STka
. If the maximum acceptable service time to fulfill the

demand of commodity k is ⌧k > 0, then the service level is defined as the probability that the total

service time Va +Uka does not exceed the maximum allowable service time ⌧k. If ↵2 [0,1] denotes
the (minimum) target service level, then the probabilistic service level constraints can be expressed

as follows:

STka
(⌧k|�a1 ,�a2) = P (Va +Uka  ⌧k|�a1 ,�a2)� ↵, for xka > 0, k 2K,a2Ak. (5)
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Note that these constraints are relevant only in the case when commodity k uses hub arc a to

satisfy its demand, i.e., xka > 0. We also emphasize that the probability on the left-hand side of

(5) depends on the total flow �a1 and �a2 that passes through hubs a1 and a2, respectively. This is

because the sojourn time in a hub depends on the level of congestion at the hub. We are interested

in analyzing the probability distribution of the total service time defined on the left-hand side

of (5). The fact that constraint (5) should be activated only if xka > 0, translates into a logical

condition that can be modeled as nonlinear disjunctive inequalities, rendering it challenging to

solve.

We introduce the notation in Table 1 for the probabilistic analysis.

Table 1: Notation used for the probabilistic analysis

Random variables
Uka Total transportation time, including the collection, transfer, and distribution

stages, k 2K,a2Ak.
Vm Sojourn time at hub m2N .
Va Total sojourn time Va = Va1 +Va2 , (a1, a2)2A.
Tka Total service time for commodity k 2K and hub arc a2Ak, Tka = Va +Uka.

Densities and distribution functions
wVm(vm|�m) PDF for the sojourn time (including waiting and service time) at hub m2N .
WVm(vm|�m) CDF for the sojourn time (including waiting and service time) at hub m2N .
WVa(va|�a1 ,�a2) CDF for the total sojourn time (including waiting and service times) on hub

arc a= (a1, a2)2A. Note that Va = Va1 +Va2 and va = va1 + va2 .
gUka

(uka) PDF of the total transport time for commodity k 2K at inter-hub link a2Ak.
GUka

(uka) CDF of the total transport time for commodity k 2K at inter-hub link a2Ak.
STka

(⌧k|�a1 ,�a2) CDF of the total service time for commodity k 2K and inter-hub link a =
(a1, a2)2Ak evaluated at the maximum allowed service time ⌧k.

Parameters of the probabilistic service level constraints
⌧k Maximum accpetable service time for commodity k 2K.
↵ Target (minimum) service level.
µm Processing rate at hub m2N .

Decision variables involved in the probabilistic service level constraints
�m Total flow that passes through hub m2N .

Level sets
CW⌧

↵ (a) The ↵-super level set of the total sojourn time distribution evaluated at time
⌧ concerning inter-hub link a.

C
S⌧k
↵ (a) The ↵-super level set of the total service time distribution concerning com-

modity k and inter-hub link a.
EW⌧

↵ (a) The ↵ level set of the total sojourn time distribution concerning inter-hub link
a.

E
S⌧k
↵ (a) The ↵ level set of the total service time distribution of commodity k and

inter-hub link a.
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3. Analysis of the total sojourn time distribution

If we assume that the flow rates between di↵erent origin node-destination node pairs (i, j) are

independent random variables that follow a Poisson process with a mean wk, then the aggregate flow

rate through hub m also follows a Poisson process with a mean given by �m =
P

k2K

P
a2Ak,
m2a

wkxka.

Further, we assume that the service times at the hub follow an exponential distribution with a

mean of 1/µm. Then, the hub can be modeled as an M/M/1 queuing system with flexible service

capacity µm. The queuing system’s stability condition requires 0 �m <µm. The sojourn time is a

random variable, that has an exponential distribution, with the probability density function (PDF)

defined by wVm(vm|�m) = (µm � �m)e�(µm��m)vm . The PDF of the total sojourn time on hub arc

a= (a1, a2) 2A is the convolution of the densities for the sojourn time at hubs a1 and a2: wVa1
⇤

wVa2
(va|�a1 ,�a2), where the expression “⇤” refers to the convolution operation. For exponential

density functions, it is known that such a convolution corresponds to a hypo-exponential density

with parameters (µa1 � �a1) and (µa2 � �a2) (Ross 2010, p. 308). The corresponding cumulative

distribution function (CDF) of the total sojourn time (hypo-exponential distribution) on hub arc

a is given by:

WVa(va|�a1 ,�a2) =WVa1
⇤wVa2

(va|�a1 ,�a2),

= 1� (µa1 ��a1)e
�(µa2��a2 )va

(µa1 ��a1)� (µa2 ��a2)
� (µa2 ��a2)e

�(µa1��a1 )va

(µa2 ��a2)� (µa1 ��a1)
, (6)

where va � 0. Recall that the average processing rates at each hub, µa1 and µa2 , are parameters

of the model. However, the average demand rates �a1 and �a2 are decision variables as they are

functions of decision variables (xka) as in Equation (4).

It should be noted that Equation (6) has singularities (points where the evaluation of function

WVa is indeterminate) at the line µa1��a1 = µa2��a2 . To overcome these indeterminate computa-

tions, we exploit the fact that when µa1 ��a1 = µa2 ��a2 , the corresponding convolution produces

an Erlang density function (Ibe 2009, p. 22). Hence, we can rewrite the expression for the total

sojourn time distribution as follows:

WVa(va|�a1 ,�a2) =

(
1� (µa1��a1 )e

�(µa2��a2 )va

(µa1��a1 )�(µa2��a2 )
� (µa2��a2 )e

�(µa1��a1 )va

(µa2��a2 )�(µa1��a1 )
, for µa1 ��a1 6= µa2 ��a2 ,

1� e�(µa1��a1 )va � (µa1 ��a1)vae
�(µa1��a1 )va , for µa1 ��a1 = µa2 ��a2 .

(7)

The relevant domain of the total sojourn time distribution as a function of flows (decision variables)

is as follows:

D= {(�a1 ,�a2) | 0 �a1 <µa1 ,0 �a2 <µa2}. (8)
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Proposition 1. The total sojourn time distribution WVa(va | �a1 ,�a2) defined for (�a1 ,�a2)2D

has the following properties:

1. WVa(�a1 ,�a2) is symmetric around the singularity line µa1 ��a1 = µa2 ��a2.

2. WVa(�a1 ,�a2) is continuous and di↵erentiable everywhere on D.

3. WVa(�a1 ,�a2) is strictly decreasing.

Proof See Appendix A. ⇤

Conjecture 1. Additional properties of the total sojourn time distribution.

1. WVa(�a1 ,�a2) is concave at its 100(1� 2/e)⇡ 26.4-th percentile or higher.

2. WVa(�a1 ,�a2) is quasiconcave.

Appendix B discusses the concavity of the total sojourn time distribution. We validate numerically

the validity of Conjecture 1.

Levels sets

A useful tool for analyzing probabilistic service level constraints is the concept of level sets.

Definition 1 (Level sets). The ↵-super level set CW⌧
↵ (a) and ↵-level set EW⌧

↵ (a) of the total

sojourn time distribution evaluated at va = ⌧ are

CW⌧
↵ (a) := {(�a1 ,�a2) |WVa(⌧ |�a1 ,�a2)� ↵, (�a1 ,�a2)2D} , and (9)

EW⌧
↵ (a) := {(�a1 ,�a2) |WVa(⌧ |�a1 ,�a2) = ↵, (�a1 ,�a2)2D} , (10)

respectively.

Proposition 2. Consider that EW⌧
↵ (a) 6= ;. If (�a1 ,�a2) 2EW⌧

↵ (a), then there exists a bijective

relation between �a1 and �a2.

Proof We want to show that if (�a1 ,�a2)2EW⌧
↵ (a), then �a1 is associated to one and only one �a2

in EW⌧
↵ (a), and vice-versa. We proced by contradiction. Suppose that �1

a1
< �2

a1
and that (�1

a1
,�a2)2

EW⌧
↵ (a) and (�2

a1
,�a2)2EW⌧

↵ (a). This cannot be possible since, by property 3 of Proposition 1, we

have WVa(⌧ |�1
a1
,�a2)>WVa(⌧ |�2

a1
,�a2). ⇤

According to Proposition 2, there exists a function fa for which �a1 = fa(�a2). Appendix C

derives a closed-form expression for fa, which is shown in Figure 2. In the figure, a blue color

represents the case when the branch r =�1 of the Lambert W function is chosen, and an orange

color when the branch r= 0 is chosen. See Appendix C for details.

Remark 1. Function fa can be defined as a function of either �a1 or �a2 . One convention is to

consider �a1 as the dependent variable and �a2 as the independent variable, i.e., �a1 = fa(�a2), if

a1 <a2. For the definition of fa the arc direction is irrelevant.
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Proposition 3. An equivalent representation of the ↵-super level set CW⌧
↵ (a) is given by:

CW⌧
↵ (a) = {(�a1 ,�a2) | �a1  fa(�a2), (�a1 ,�a2)2D} , for a= (a1, a2). (11)

Proof Suppose that �1
a1

< �2
a1

and that �2
a1

= f(�a2), which is equivalent to (�2
a1
,�a2)2EW⌧

↵ (a).

Given that (�2
a1
,�a2) 2 EW⌧

↵ a) and EW⌧
↵ (a) ⇢ CW⌧

↵ (a), we have that (�2
a1
,�a2) 2 CW⌧

↵ (a). Also,

by Property 3 in Proposition 1, we have that WVa(⌧ |�1
a1
,�a2) > WVa(⌧ |�2

a1
,�a2) = ↵, hence, by

Definition 1, (�1
a1
,�a2)2CW⌧

↵ (a). ⇤

Figure 2 Plot of function �a1 = f
a(�a2) for inter-hub arc a= (a1, a2).

Proposition 4. Consider parameters ⌧ and ⌧ 0 such that 0 < ⌧ and 0 < ⌧ 0 6= ⌧ . The ↵-level

sets of functions WVa(⌧ | �a1 ,�a2) and WVa(⌧
0 | �a1 ,�a2) are homothetic with respect to the point

(µa1 , µa2).

Proof See Appendix D ⇤

4. Analysis of the total service time distribution

The total service time distribution is the convolution of the total sojourn time distribution and the

total transportation time density function. We assume that the probability density function for the

total transportation time gUka
(uka) is independent of the flows at each stage of the transportation,

and it is symmetric for the transportation path, that is, if k = (i, j), k̄ = (j, i), a = (a1, a2), ā =

Page 10 of 46

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1.434.964.4100



Authors’ names blinded for peer review
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 11

(a2, a1), then gUka
(uka) = gUk̄ā

(uk̄ā). Using the convolution integral, and assuming that the total

transportation time and the total sojourn time are independent random variables, the total service

time distribution is given by:

STka
(tka | �a1 ,�a2) =WV a ⇤ gUka

(tka | �a1 ,�a2) =

Z tka

0

WV a(tka�x | �a1 ,�a2)gUka
(x)dx, (12)

where (�a1 ,�a2)2D. Given that gUka
(x)� 0, the total service time distribution STka

(tka | �a1 ,�a2)

satisfies properties outlined in Proposition 1. Moreover, if Conjecture 1 is valid, then the total

service time distribution is concave in the region where the total sojourn time distribution is

concave. This is because concavity is preserved under integration. According to this, probabilistic

service level constraints for the total service time in Equation (5) are convex constraints for high

values of service levels, i.e., ↵> 0.26.

Analogously to the case of the total sojourn time distribution, it is possible to write the ↵-level

and ↵-super level sets, respectively, in terms of a function fka, defined for each commodity k 2K

and inter-hub arc a2A:

E
S⌧k
↵ (a) =

�
(�a1 ,�a2) | �a1 = fka(�a2), (�a1 ,�a2)2D

 
, for k 2K,a2A, (13)

C
S⌧k
↵ (a) =

�
(�a1 ,�a2) | �a1  fka(�a2), (�a1 ,�a2)2D

 
, for k 2K,a2A. (14)

However, it might be di�cult, or impossible, to obtain a closed form expression for fka, as it was

done for fa in Section 3. This is due to the complexity that the total transportation time density

gUka
(uka) imposes on the analytical treatment of the convolution integral. In this case, function

fka is computed using numerical methods, for further details see Appendix E.

The set C
S⌧k
↵ (a) constitutes an alternative way to conceive probabilistic service level constraints

(5) as the ↵-super level set of the total service time distribution.

5. Probabilistic service level constraints for the total service time

In light of probabilistic service level constraints, certain inter-hub arcs may become infeasible. Such

infeasibilities are detected during a pre-processing phase, as described below.

5.1. Preprocessing

We define the set of feasible hub arcs for commodity k as follows:

Ak =
n
(a1, a2) | (a1, a2)2Ak, STk(a1,a2)

(⌧k |wk,wk)> ↵
o
, 8k 2K. (15)

The set of commodities that are allowed to use hub m is:

Km = {k | k 2K,9a2Ak such that m2 a} , 8m2N . (16)
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The set of feasible hubs is:

N =

⇢
m |m2N, max

k2K,(m,a2)2Bk

n
STk(m,a2)

(⌧k |wk,wk)
o
> ↵

�
. (17)

Probabilistic constraints (5) are reformulated according to the ↵-super level set C
S⌧k
↵ (a) as follows:

�a1  fka(�a2), if xka > 0, k 2K,a= (a1, a2)2Ak, (18)

where the non-negativity of flow variables was already imposed by the non-negativity constraints

in Formulation (2). Let

�max
ka1

(a2) = fka(0), 8k 2K,a= (a1, a2)2Ak, (19)

⇤m = max
k2K,n2N

{�max
km (n)} , 8m2N . (20)

Note that parameter �max
ka1

(a2) is an upper bound for �a1 when hub arc (a1, a2) is open and commod-

ity k uses such a hub arc. For its part, ⇤m is a valid upper bound for �m regardless of which hub

arcs are open and which commodity is considered. From Equation (20), we note that parameter

⇤m varies depending on the service level requirement ↵.

5.2. Linear reformulation

We introduce auxiliary binary variables to reformulate the logical condition xka > 0 in constraints

(18). To keep the problem tractable, it is desirable to introduce a small number of binary variables,

and we resort to the symmetry of the probability density function for the total transportation

time to this end. Consider that commodity k = (i, j) uses hub arc a = (a1, a2) and commodity

k̄ = (j, i) uses hub arc ā = (a2, a1). Transport paths i! a1 ! a2 ! j and j ! a2 ! a1 ! i have

the same transport time density function, and consequently the same probabilistic service level

constraints. Indeed, inequalities �a1  fka(�a2) and �a2  inv(fka)(�a1) = f k̄ā(�a1) produce the

same feasible set. This implies that only one auxiliary binary variable is necessary to represent the

logical condition in each transport path.

We say that two transport paths are indistinguishable in terms of probabilistic service level

constraints if one transport path is the reverse of the other and both transport paths have the

same transport time density function. Otherwise, we say that the paths are distinguishable.

Let B be the set of undirected hub arcs, and let Lo be the set of strictly distinguishable paths

associated with hub arc o 2B. Let l 2Lo, then l is associated with at most two transport paths,

i.e., the path for commodity k using hub arc a and the path for commodity k̄ using hub arc ā.

Since paths ka and k̄ā are indistinguishable, there is only one distinguishable path l associated

with them. We use function e(·) to map a given path into a distinguishable path, for example,

e(ka) = e(k̄ā) = l.
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Let yl 2 {0,1}, for l 2Lo, o 2 B. Then ye(ka) = 1 if commodity k is allowed to use hub arc a

(the same applies for commodity k̄ and hub arc ā if the path k̄ā does exist); otherwise ye(ka) = 0.

Constraints (18) are equivalent to

�a1  fka(�a2), if ye(ka) = 1, k 2K,a2Ak, (21)

xka  ye(ka), 8k 2K,a2Ak. (22)

The function fka is approximated by a set of tangent lines at breakpoints �r
a2
, for r 2R, as shown

in Figure 3. Assuming the convexity of probabilistic service level constraints, fka is concave, and

its piece-wise linear approximation is given by:

fka(�a2)⇡min
r2R

�
fka(�r

a2
)+
�
�a2 ��r

a2

�
fka
1 (�r

a2
)
 
, 8r 2R,

which is a strictly decreasing outer approximation of fka. Then, an approximation of probabilistic

service level (21) constraints is obtained by the following set of disjunctive linear inequalities:

�a1  fka(�r
a2
)+
�
�a2 ��r

a2

�
fka
1 (�r

a2
), if ye(ka) = 1, k 2K,a2Ak, r 2R. (23)

Figure 3 Piece-wise linear approximation of function f
ka

using four line segments with tangent points

{(�r
a2
, f

ka(�r
a2
))}, for r 2R= {1, . . . ,4}.
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5.3. Perspective cuts

From the logical condition in Constraints (23), we have two sets that represent feasible regions for

the pair (�a1 ,�a2), depending on the value of the binary variable ye(ka):

R0a =
�
(�a1 ,�a2)2R2 | �a1 2 [0,⇤a1 ],�a2 2 [0,⇤a2 ]

 
, (24)

Rka =
�
(�a1 ,�a2)2R2 | �a1  fka(�a2),�a1 � 0,�a2 � 0

 
. (25)

Assuming the validity of Conjecture 1, the set Rka is convex and defines the feasible set for �a1 and

�a2 when ye(ka) = 1. For its part, the set R0a is convex and it is considered as an alternative when

ye(ka) = 0. It is of interest to produce a formulation whose relaxation coincides with the convex

hull of set R0a [ Rka, which is denoted as conv(R0a [ Rka) (see Figure 4a). Given that such a

formulation is nonlinear, in this paper, we approximate conv(R0a [Rka) using linear inequalities.

Proposition 5 (Fine perspective cuts). Let �r
a2

be a valid breakpoint for fka and assume

the validity of Conjecture 1. The following inequalities are valid and represent the strongest linear

cuts for conv(R0a [Rka):

�a1 +
��fka

1 (�r
a2
)
���a2 

⇥
fka(�r

a2
)+�r

a2

��fka
1 (�r

a2
)
��⇤ye(ka) +

⇥
⇤a1 +

��fka
1 (�r

a2
)
��⇤a2

⇤
(1� ye(ka)), (26)

�a1  �max
ka1

(a2)ye(ka) +⇤a1(1� ye(ka)), (27)

�a2  �max
ka2

(a1)ye(ka) +⇤a2(1� ye(ka)), (28)

where | · | is the absolute value function.

Proof We present a proof for Inequality (26). The proof for the other inequalities holds similarly.

Consider points O = (⇤a1 ,⇤a2 ,0) 2 R0a and Q =
�
fka(�r

a1
),�r

a2
,1
�
2 Rka, let ȳka 2 [0,1], and P =

ȳkaQ+ (1� ȳka)O, hence P 2 conv(R0a [Rka). Let � be the set of points that satisfy Inequality

(26) as strict equality. Evaluating P in Inequality (26) produces a strict equality implying that

P 2 �. Now hyperplane � is tangent to R0a and Rka at points Q and O, respectively, and given

that R0a and Rka are convex, we conclude that inequality (29) is valid and is the strongest possible

inequality for conv(R0a [Rka) at break point �r
a2
. ⇤

Figure 4 illustrates Proposition 5. We refer to constraints of the form (29) as perspective cuts.

Frangioni and Gentile (2006) introduced these cuts for approximating the convex hull of the union

of a convex set and a point. We use perspective cuts for the convex hull of the union of a convex

set and a box. The formulation of the convex hull using non-linear constraints is not considered in

this paper, but the interested reader is referred to Hijazi et al. (2012).
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(a) Convex hull of the set Ra [Rka. (b) Perspective cut.

Figure 4 Nature of perspective cuts.

Inequality (26) can be rewritten considering the impact of location variables zm, as shown below.

This is valid since the left-hand side is non-negative and, by Constraints (2c) and (2d), �a1 (�a2)

is zero when za1 (za2) is zero, and ye(ka) is zero when za1 or za2 is zero.

�a1 +
��fka

1 (�r
a2
)
���a2 +

⇥
⇤a1 � fka(�r

a2
)+
�
⇤a2 ��r

a2

� ��fka
1 (�r

a2
)
��⇤ye(ka) ⇤a1za1 +

��fka
1 (�r

a2
)
��⇤a2za2

8k 2K,a2Ak, r 2R. (29)

Similarly, Constraints (27) and(30) are written as

⇥
⇤a1 ��max

ka1
(a2)

⇤
ye(ka) +�a1 ⇤a1za1 , 8k 2K,a2Ak, a1 2 a. (30)

It is important to note that Proposition 5 establishes the strongest possible linear cuts for

conv(R0a [ Rka). However, it does not imply that these cuts are the strongest possible for the

entire optimization problem because the problem contains similar disjunctive constraints for other

hub arcs, which are considered in an isolated way. Another issue is that there is a large number of

inequalities (29), and it is ine�cient to include all of them at the root node of the branch-and-bound

algorithm.

5.4. Cutting plane algorithm

With the new definitions of sets, parameters, and valid inequalities, Formulation (2) is modified as

follows.

(M1) : minimize
X

m2N

fmzm�
X

k2K

X

a2Ak

(Ck�Cka)xka +
X

k2K

Ck (31a)

subject to
X

a2Ak

xka  1, 8k 2K, (31b)

X

a2Ak,
m2a

xka  zm, 8m2N , k 2K, (31c)
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X

k2K

X

a2Ak,
m2a

wkxka ⇤mzm, 8m2N , (31d)

xka  ye(ka), 8k 2K,a2Ak (31e)

(29), (30)

xka 2 [0,1], 8k 2K,a2Ak (31f)

zm 2 {0,1}, 8m2N , (31g)

yl 2 {0,1}, 8l 2Lo, o2B. (31h)

We do not include cuts (29) and (30) in the root-node relaxation. Those cuts are added as cutting

planes during the branch-and-bound process when it is necessary to produce feasible solutions.

These feasibility cuts are added only at integer nodes of the branching tree.

Let " be the tolerance error for probabilistic service level constraints. Let (x̄, ȳ, z̄) be a feasible

solution of a node of the branching tree, where ȳ and z̄ are integer. The procedure for generating

cutting planes at integer nodes of the branching tree is described in Algorithm 1.

Algorithm 1: Generating cutting planes at integer nodes of the branching tree of (M1)

Data: B,Lo,",↵, (x̄, ȳ, z̄), parameters related to the total service time distribution.

1 for o= (m,n)2B do
2 CutCnt 0;

3 if z̄m = 1 and z̄n = 1 then
4 �m 

P
k2K

P
a2Ak,
m2a

wkx̄ka;

5 �n 
P

k2K

P
a2Ak,
n2a

wkx̄ka;

6 for l 2Lo do
7 if ȳl = 1 then
8 if �n > �max

ln (m) or �m > �max
lm (n) then

9 Add cuts (30);

10 else if STlo
(⌧l | �m,�n)< ↵� " then

11 Add cut (29);

12 end
13 end
14 end
15 end
16 end

6. Approximations and valid inequalities

In this section, we present an approximated formulation for probabilistic service level constraints

using a set of homothetic functions to approximate the ↵-level sets of the total service time dis-
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tribution for the di↵erent commodities. We then propose an extended formulation for the exact

problem.

6.1. Homothetic outer approximations

We propose to approximate functions fka, for k 2K,a 2Ak, using homothetic functions f̃ka with

common homothetic center. Function fka defines the ↵-level set of the total sojourn time distribu-

tion STka
(⌧k | �a1 ,�a2) (see Section 4). For its part, STka

(⌧k | �a1 ,�a2) is related to the total sojourn

time distribution WVa(⌧k | �a1 ,�a2) by means of the Convolution Integral (12). From this integral,

STka
can be interpreted as a sort of “incomplete” expectation of functions WVa defined for parame-

ter ⌧ 2 [0, ⌧k], where the expectation is taken considering some a�ne transformation of the density

function gUka
. Because of the convolution operation, it is not surprising that STka

and WVa share

many similarities.

Intending to exploit the homothetic properties of the total sojourn time distribution (see Propo-

sition 4), we propose the approximation STka
(⌧k | �a1 ,�a2)⇡WVa(⌧̃ka | �a1 ,�a2), for some ⌧̃ka. Let

f̃ka be the function that defines the ↵-level set of WVa(⌧̃ka | �a1 ,�a2). It is convenient to define

parameter ⌧̃ka such that f̃ka � fka. By the monotonicity properties of WVa , there always exists

⌧̃ka 2 [0, ⌧k] for which such inequality (outer approximation) is met. To see this, note that given

that WVa is strictly increasing to time we have

STka
(⌧k | �a1 ,�a2) =

Z ⌧k

0

WVa(⌧k�x | �a1 ,�a2)gUka
(x)dx<

Z ⌧k

0

WVa(⌧k | �a1 ,�a2)gUka
(x)dx,

<WVa(⌧k | �a1 ,�a2).

Given that the total service time and the total sojourn time distributions are strictly decreasing

and continuous to �a1 and �a2 , we have that C
STka

(⌧k)
↵ ✓C

WVa (⌧k)
↵ , see Proposition 6 below for an

analogous reasoning. As a consequence, f̃ka > fka, for ⌧̃ka = ⌧k. Algorithm 2 in Appendix F is a

heuristic suggested for determining a convenient value for ⌧̃ka.

Proposition 6. Let a= (a1, a2) and k, l 2Ka1 \Ka2. If ⌧̃ka  ⌧̃la, then f̃ka  f̃ la, equivalently,

R̃la ◆ R̃ka.

Proof Given that WVa is increasing with respect to time, we have WVa(⌧̃ka | �a1 ,�a2)WVa(⌧̃la |
�a1 ,�a2). Now, given that WVa is strictly decreasing and continuous with respect to �a1 and �a2 ,

there exist ✏ � 0 such that ↵ = WVa(⌧̃ka | �a1 ,�a2) = WVa(⌧̃la | �a1 + ✏,�a2), implying that �a1 =

f̃ka(�a2) �a1 + ✏= f̃ la(�a2). ⇤
Definition 2 (Homothetic ordering). The homothetic ordering of commodities concerning

hub arc a is the list of commodities ordered such that

R̃[1]a ◆ R̃[2]a ◆ · · ·◆ R̃[k]a ◆ · · ·◆ R̃[|Ka1\Ka2 |]a, (32)

where [k] refers to the commodity at the k-th position of the list, and a2B.
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6.2. Incremental formulation for the approximated problem

Let

�̃max
ka1

(a2) = f̃ka(0), 8k 2K,a= (a1, a2)2Ak,

Lm =max

⇢
⇤m, max

k2K,n2N

n
�̃max
km (n)

o�
, 8m2N .

Figure 5 illustrates the family of functions
n
f̃ka
o
for hub arc a. A ray r from the homothetic center

(µa1 , µa2) cuts each curve at points (�r
kia1

,�r
kia2

), for i = 1,2, . . ., with the same derivative sra. In

this approximation, a valid upper bound for �m is Lm. This upper bound is valid irrespective of

which hubs are open. The bounds imposed to flow variables imply that rays r are also bounded.

To formalize the definition of this bound, we represent a ray as a vector with origin at the point

(µa1 , µa2). Let ra = (La2 � µa2 ,�µa1) and ra = (�µa2 ,La1 � µa1) be the vectors representing the

rays that contain the points (0,La1) and (La2 ,0), respectively, as shown in Figure 5.

Figure 5 Geometric construction considering the homothetic outer approximations.

Definition 3 (Relevant rays). We say that ray r is relevant for hub arc a if r 2 Ca =

{c1ra + c2ra | c1, c2 � 0}.
From the geometric construction in Figure 5 and Definition 3, we note that a relevant ray r intersect

function f̃ka at a point

(�r
ka1

,�r
ka2

)2 {(�a1 ,�a2) | �a1 2 (�1,La1 ],�a2 2 (�1,La2 ]}\ Ca. (33)
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Let ve(ka) 2 {0,1} be an indicator variable with result ve(ka) = 1 if commodity k is allowed to use hub

arc a in the approximated problem; otherwise ve(ka) = 0. By considering the homothetic ordering

of commodities, variables ve(ka) can be interpreted as incremental variables.

Proposition 7. Consider the list of transport paths La for hub arc a 2 B ordered following

Definition 2 for strictly distinguishable commodities. Let [l] 2La be the l-th element of the list.

The inequalities: v[l]  v[l�1], v[1]  za1, and v[1]  za2, for [1]2La, are valid.

Proof Consider the proof for the incremental inequality v[l]  v[l�1] first. Let transport path

[l] be associated with commodity k, and transport path [l� 1] be associated with commodity k0.

Assume that commodity k is allowed to use hub arc a, i.e., v[l] = 1. By Proposition 6 we have that

f̃ka(�a2) f̃k0a(�a2), implying that commodity k0 is also allowed to use hub arc a.

Now consider inequalities v[1]  za1 and v[1]  za2 . If either hub a1 or hub a2 is closed, then v[1] = 0

and v[1] = 0, by the incremental inequalities, we also have that vl = 0 for all l 2La. This implies

that no commodity is allowed to use hub arc (a1, a2), as it is required when at least one of the hubs

at the ends of the arc is closed. ⇤

Proposition 8 (Coarse perspective cut). Let r 2 Ca, (�r
ka1

,�r
ka2

) be the intersection point

of ray r and function f̃ka, sra be the common derivative or slope of the tangent lines at intersec-

tion points, and consider that v[l]  v[l�1], for [l] 2 La. The following inequality is valid for the

approximated version of probabilistic service level constraints:

�a1 + |sra|�a2 +
X

l2La

�̃r
l vl La1za1 + |sra|La2za2 , 8a2B,r2 Ca. (34)

where

�̃r
[l] =

(
�̃r[l]� �̃r[l�1], for l > 1,

�̃r[l], for l= 1

)
� 0, 8[l]2La,

and �̃rl = �̃re(ka) =La1 ��r
ka1

+ |sra|
�
La2 ��r

ka2

�
.

Proof See Appendix G. ⇤
An important di↵erence between the coarse perspective cut (34) compared to the fine perspective

cut (29) is that the former does not need to be defined for each commodity. This reduces the

number of constraints required considerably. The formulation for the approximated problem is as

follows:

(M2) : minimize
X

m2N

fmzm�
X

k2K

X

a2Ak

(Ck�Cka)xka +
X

k2K

Ck (35a)

subject to (31b)� (31d), (31f), (31g), (34)

xka  ve(ka), 8k 2K,a2Ak, (35b)
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v[l]  v[l�1], 8a2B, [l]2La, (35c)

v[1]  zm, 8a2B, [1]2La,m2 a, (35d)

vl 2 {0,1}, 8a2B, l 2La. (35e)

We do not include any Coarse perspective cuts (34) in the root relaxation. These cuts are added if

the approximated probabilistic service level constraints are not satisfied up to a tolerance error "̃.

Omitting lines 20–22 from Algorithm 3 in Appendix J, this algorithm is used to solve the approx-

imated formulation. Lines 20–22 are reserved only for the solution of model (M3), as discussed

below.

There is an alternative formulation for the approximated problem. We refer to this formulation

as the multiple choice formulation and it is described in Appendix H. According to our experience,

the incremental formulation outperforms the multiple-choice formulation in terms of processing

time.

6.3. Introducing finer cuts

The e↵ectiveness of the coarse perspective cuts in the approximated formulation relies on the

reduced number of cuts required for each hub arc and in the incremental nature of binary vari-

ables vl, which is a consequence of the homothetic ordering of commodities (see Proposition 7).

Unfortunately, we cannot establish a similar ordering for the exact version of probabilistic service

level constraints. In this case, we might have some commodities that violate such an ordering at

some points (�a1 ,�a2) 2D. Consequently, Proposition 7 is no longer valid for the exact formula-

tion (M1). Appendix I presents some valid inequalities for formulation (M1), but considering such

inequalities does not seem to improve the computational performance.

A di↵erent approach is to consider an extended formulation with two sets of binary variables,

the binary variables yl used to model fine perspective cuts, along with the binary variables vl used

to model coarse perspective cuts. We use a cutting plane algorithm by introducing coarse and fine

perspective cuts. The idea is to introduce coarse perspective cuts (34) at integer solutions of the

branching tree with a tolerance error "̃. Fine perspective cuts (29) are introduced with a tolerance

error of "< "̃ when the approximated version of probabilistic service level constraints is satisfied

for all commodities and hub arcs in the current integer node of the branching three. We start with

Formulation (36):

(M3) : minimize
X

m2N

fmzm�
X

k2K

X

a2Ak

(Ck�Cka)xka +
X

k2K

Ck (36a)

subject to (31b)� (31e), (31f)� (31h), (35b)� (35e), (34).

We do not include constraints xka  ye(ka) and any fine or coarse perspective cut in the root

relaxation. Previous constraints are added when necessary during the branch-and-bound algorithm.
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To solve formulation (M3), we use Algorithm 3 including lines 22–23. The procedure is described

in Algorithm 4 in Appendix J.

6.4. Numerical validation of the convexity of probabilistic service level constraints

It has been shown that probabilistic service level constraints are of the form �1  f(�2). Assuming

the validity of Conjecture 1, these constraints are convex, implying that f is concave. We propose

the linear outer approximation: �1 minr2R {f(�r
2)+ (�2��r

2)f1(�
r
2)}, where �r

2 are sample points

in the domain of f . This linear outer approximation is concave if, for a strictly increasing sequence

{�1
2,�

2
2, . . .�

|R|
2 }, the associated slope sequence {f1(�1

2), f1(�
2
2), . . . f1(�

|R|
2 )} is strictly decreasing.

We also check the convexity of the homothetic outer approximation �1  f̃(�2). In this case, the

sequence {r} corresponds to the list of rays ordered in a counterclockwise manner. The correspond-

ing sequence of slopes {sra} must follow a strictly decreasing sequence for validating convexity.

Convexity was verified in this way for all instances of our numerical experiments.

7. Computational experiments

We conducted an extensive computational study to assess the performance of the three formulations

over problem instances under di↵erent service levels. The proposed formulations are coded in C

and executed on a Dell PowerEdge R740 PC, 2 Intel Xeon Gold 6258R, CPU running at 2.70 GHz,

and 60 GB RAM. The formulations are solved using the CPLEX 22.1.1 Callable Library with its

default settings using one thread. We utilize the GNU Scientific Library for the required numerical

computations.

7.1. Test Instances

We performed our experiments on a total of 480 instances generated from two datasets - the

Australian Post (AP) dataset (Ernst and Krishnamoorthy 1996) and the Colombian (COL) dataset

Basallo-Triana et al. (2023). We considered 240 problem instances for each dataset. The AP dataset

consists of postal flow and Euclidean distances between 200 districts in an Australian city and can

be downloaded from the OR library. In the AP dataset, the capacities and fixed costs are defined

in two distinct scenarios: loose (L) and tight (T), respectively. For the AP dataset, we set the unit

transportation costs as follows: �= 3, ⌧ = 0.75, �= 2, ⇢= 7. Additionally, the hub installation costs

fm from the original dataset are multiplied by a factor of 0.5.

The Colombian (COL) dataset, introduced by Basallo-Triana et al. (2023), contains the fixed

installation costs of hubs for various capacity levels. The processing rate of the flow that arrives

at a hub from non-hub nodes (export flow) di↵ers from the processing rate of the flow that arrives

at a hub from other hubs (import flow). Given that here we are assuming that import and export

flows are processed at the same rate, we use the average processing rate (of import and export
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units) to define the hub capacity. In all our experiments, we have considered the second capacity

level of the COL dataset to define the hub capacity. In this case, we set the unit transportation

cost as follows: �= 1, ⌧ = 0.75, � = 1, ⇢= 1.5. The dataset is available at https://github.com/

MarioBasallo/COL_dataset.git.

The maximum service time requirement ⌧k is defined as a factor r of the 100`-th percentile

of the direct transportation time density function of commodity k. We assume that the direct

transport time of commodity k has a gamma density function with shape parameter ak = 1/CV 2

and scale parameter bk = (ck/v)(1/ak), where CV is the coe�cient of variation of the density

function, ck is the direct transportation distance, and v is the travel speed of a vehicle. The travel

speed is computed as v = 0.2µ̄d̄, where µ̄ and d̄ are the average processing rate and the average

direct transportation distance, respectively. The maximum service time requirement is computed

as follows:

⌧k = rG�1
k (` | ak, bk) , (37)

whereG�1
k is the inverse of the cumulative gamma distribution function for the direct transportation

time of commodity k. We set `= 0.7 and consider that r > 1, which is motivated by a situation

where direct transport is faster than combined rail-road transport. A small value of r leads to a

tighter service time requirement ⌧k for combined rail-road transportation.

To compute the intermodal transportation time, we use a gamma density function with param-

eters aka = 1/CV 2 and bka = E[Uka]/aka, where E[Uka] is the expected total transportation time

for commodity k using hub arc a, which is computed as follows:

E[Uka] =E[U(i,j)(a1,a2)] =
1

v
(cia1 + ⌘ca1a2 + ca2j) . (38)

In this case, ⌘ is a time correction factor used to account for the di↵erences in travel speeds between

trucks and trains. We set ⌘ = 1.5, implying that trains (inter-hub vehicles) are slower than trucks

(hub-and-spoke vehicles).

Service levels are selected from the set ↵= {0.80,0.85,0.90,0.95,0.99}. The factor r varies within

the set r 2 {2,3,4}. In the AP dataset, the instances are labeled as nFC, where n2 {10,20,25,40}
and FC 2 {ll, lt, tl, tt}. Note that the AP dataset does not include networks with n= 30 nodes,

hence we do not consider n= 30 in our experiments. For the COL dataset, the instances are labeled

as n-m, where m 2 {1,2,3,4}, and n 2 {10,20,25,40}. The tolerance error for the probabilistic

service level constraints is set to " = 10�6. We conducted experiments with three formulations:

(M1) (31), (M2) (35) and (M3) (36). For (M2), we set the error to "̃= 10�5, and for (M3), we set

the error to "̃= 10�1. In Formulation (M1), we add fine perspective cuts during the branch-and-

bound algorithm. Formulation (M2) considers the addition of coarse perspective cuts exclusively. In

formulation (M3), we add both fine and coarse perspective cuts. The source code for the algorithms

is available at https://github.com/MarioBasallo/IHND.git.
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7.2. Accuracy of the homothetic approximations

Appendix K shows an analysis of the accuracy of Algorithm 2 for obtaining homothetic approxima-

tions. The average absolute error for approximating the service level is of the order of 10�3, which

demonstrates the e↵ectiveness of the algorithm by providing highly accurate approximations.

We compare the optimal solutions of the approximated formulation (M2) with that of the exact

formulation (M1). The results are reported in Tables 2 and 3. We note that the intermodal hub

networks produced by the approximate formulation di↵er slightly from the exact formulation in

terms of the minimum service level guarantee, but the di↵erence is rather small (less than 1.0%).

Furthermore, only a small fraction of commodities violate probabilistic service level constraints.

For its part, the average gap between the objective function values of the optimal solution and the

solution of the approximate formulation is also small (less than 0.9%). The fact that the gap is

non-negative and that probabilistic service level constraints are violated slightly in the approximate

formulation reinforces the idea that Algorithm 2 produces an accurate outer approximation for the

non-linear probabilistic service level constraints.

Table 2 Summary of results for the approximated and the exact model for the AP dataset.

Minimum network service level (%) Gap⇤ (%)
r ↵ (%) (M1) (M2)† Minimum Maximum

2

80 80.000 79.945 (98.3) 0.000 0.064
85 85.000 84.969 (98.2) 0.000 0.311
90 90.000 89.942 (98.7) 0.000 0.111
95 95.022 95.022 (100) 0.000 0.000
99 NH⇤⇤ NH⇤⇤ 0.000 0.000

3

80 80.000 79.810 (99.1) 0.000 0.049
85 85.000 84.905 (98.5) 0.000 0.043
90 90.000 89.864 (98.6) 0.000 0.105
95 95.000 94.836 (97.8) 0.000 0.369
99 99.000 98.935 (98.2) 0.000 0.593

4

80 80.000 79.766 (99.2) 0.000 0.031
85 85.000 84.787 (98.5) 0.000 0.055
90 90.000 89.709 (98.2) 0.000 0.229
95 95.000 94.730 (98.2) 0.000 0.351
99 99.000 98.894 (96.3) 0.009 0.809

⇤ Gap: 100(M1� M2)/M1.
⇤⇤ No hubs open.
† The numbers in parenthesis refer to the percentage of commodities that
satisfy probabilistic service level constraints.

Page 23 of 46

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1.434.964.4100



Authors’ names blinded for peer review
24 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Table 3 Summary of results of the approximated and the exact model for the COL dataset.

Minimum network service level (%) Gap (%)
r ↵ (%) (M1) (M2) Minimum Maximum

2

80 80.000 79.900 (93.2) 0.000 0.042
85 85.000 84.915 (96.5) 0.000 0.029
90 90.000 89.893 (97.7) 0.000 0.159
95 NH 94.970 (98.7) 0.000 0.008
99 NH NH 0.000 0.000

3

80 80.000 79.768 (94.7) 0.002 0.038
85 85.000 84.872 (94.3) 0.003 0.029
90 90.000 89.872 (94.8) 0.007 0.076
95 95.000 94.773 (92.4) 0.023 0.217
99 99.000 98.915 (93.2) 0.000 0.343

4

80 80.000 79.815 (95.2) 0.004 0.127
85 85.000 84.794 (95.0) 0.004 0.054
90 90.000 89.767 (94.8) 0.010 0.088
95 95.000 94.770 (94.8) 0.000 0.204
99 99.000 98.878 (90.6) 0.048 0.601

7.3. Computational performance

Tables 4 and 5 show the descriptive statistics for the numerical results, for the AP and COL

datasets, respectively. The columns labeled Min, Avg, Max, and St. Dev. refer to the minimum,

average, maximum, and standard deviation of the computational time (in seconds) of the instances

solved to optimality. The column labeled Cut time shows the average time of the execution of

the lazy constraint function in CPLEX including the addition of (coarse and fine) perspective

cuts during the solution process. The column labeled Time factor M1/M2�M1/M3 refers to the

average ratio between the processing time of model (M1) and the processing time of models (M2)

and (M3), respectively. The columns labeled #FPC and #CPC report the average number of

fine and coarse perspective cuts, respectively, added during the optimization. The column labeled

Opt. Gap. (%) report the average optimality gap in percentage. The column labeled B&B nodes

reports the average number of nodes explored in the branching tree. Finally, the column labeled

Fail shows the number of times a given formulation fails to solve the instance to optimality within

the solution time limit. A file showing the detailed results for the (M1) and (M3) formulations is

available at https://github.com/MarioBasallo/IHND.git.

Formulation (M2) provides an approximate solution faster than other formulations in most of

the instances. On average, this formulation is 7.5 (6.8) times faster than formulation (M1), for

the AP (COL) dataset. For its part, formulation (M3) is 1.3 (1.0) times faster than formulation

(M1) for the AP (COL) dataset. It is noted that this factor tends to increase as the size of the

network increases. Formulation (M3) can solve a higher number of instances to optimality than
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formulation (M1) for the AP dataset, but has a similar performance to formulation (M1) for the

COL dataset. This suggests that the consideration of coarse perspective cuts in formulation (M3)

has a positive impact on reducing the computational time and increasing the number of instances

solved to optimality compared to formulation (M1).

The total time used for the lazy constraints function (Cut time) is notably smaller for Formulation

(M2), which only considers the addition of coarse perspective cuts. This is due to two reasons.

On the one hand, for formulation (M2) there is a known closed-form expression of the ↵-level set

and its first derivative, which can be computed e�ciently. On the other hand, coarse perspective

cuts do not need to be defined for each commodity, contrary to fine perspective cuts. In general,

formulation (M1) requires on average 2.8(3.2) times more cuts than Formulation (M3), for the

AP(COL) dataset.

Formulation (M3) is an extended formulation that introduces coarse perspective cuts to approx-

imate the feasible set of probabilistic service level constraints. Then fine perspective cuts are

introduced to improve this approximation. The total number of binary variables in formulation

(M3) is twice the number of binary variables in formulation (M1). Despite this di↵erence in the

number of binary variables, the results show that formulation (M3) outperforms formulation (M1)

for the AP dataset, and it has a similar performance for the COL dataset. This could be explained

in di↵erent ways. The homothetic approximation of probabilistic service level constraints provides

a high approximation accuracy. Also, the cut-generation process is more e�cient since adding fine

perspective cuts is avoided at the beginning of the optimization.

7.4. Managerial insights

Tables 6 and 7 present the characteristics of the intermodal hub network for di↵erent probabilistic

service level requirements for the AP and COL datasets. Note that for higher service levels (e.g.

95% and 99%), only a few or no hubs are located, and the total cost is primarily comprised of direct

transportation costs, as will be discussed later. The high probabilistic service level requirements

in such scenarios allow only a small fraction of the total flow to utilize intermodal transportation

options, thereby limiting potential savings achievable through combined rail-road transportation.
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Table 6 Impact of probabilistic service level constraints on the hub network characteristics - AP dataset.

r 100↵ # hubs
Network service

level (%)
Modal shift (%)

Network
connectivity (%)⇤

Total Cost

2
(Tight)

80 3.7 87.0 27.3 93.6 321,604
85 3.6 89.7 21.8 86.6 340,897
90 2.8 92.5 12.4 91.6 372,645
95 0 0 0 0 394,492
99 0 0 0 0 394,492

3
(Moderate)

80 5.1 93.6 58.4 100.0 251,724
85 5.0 94.9 53.5 99.4 261,407
90 5.2 96.1 48.7 100.0 272,152
95 4.1 97.7 37.5 99.2 295,072
99 2.8 99.4 14.7 85.9 359,508

4
(Loose)

80 4.8 96.3 70.7 100.0 233,632
85 4.7 96.9 66.8 99.7 236,585
90 5.1 98.0 64.3 98.5 242,604
95 5.1 98.9 58.6 100.0 252,331
99 4.8 99.7 42.8 97.6 283,730

⇤ Network connectivity refers to the fraction of inter-hub links that are activated.

Table 7 Impact of probabilistic service level constraints on the hub network characteristics - COL dataset.

r 100↵ # hubs
Network service

level (%)
Modal shift (%)

Network
connectivity (%)

Total cost

2
(Tight)

80 2.8 85.7 15.7 100.0 530,533
85 2.3 89.3 12.4 100.0 539,103
90 2.1 92.3 9.3 100.0 548,805
95 0.0 0.0 0.0 0.0 550,847
99 0.0 0.0 0.0 0.0 550,847

3
(Moderate)

80 6.2 91.5 41.2 92.1 485,317
85 6.0 93.5 37.8 89.0 491,525
90 5.3 95.4 30.8 89.5 500,772
95 3.7 97.2 21.1 97.8 516,561
99 2.3 99.4 11.0 100.0 545,225

4
(Loose)

80 6.3 93.9 47.4 92.5 470,949
85 6.2 95.6 45.8 91.8 474,253
90 6.3 97.0 44.5 89.7 478,253
95 6.1 98.5 40.1 90.0 486,497
99 4.6 99.6 25.8 90.8 509,185

7.4.1. E↵ect of varying service levels on total cost We analyze the e↵ect of varying

the service level requirement on the total cost. In Figure 6, dashed lines depict the total cost

for the solution when probabilistic service level constraints are dropped and only simple capacity
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constraints (31d) are considered. The capacity parameter ⇤m is computed as in Equation (20) and

is a↵ected by the choice of the service level ↵, as discussed before. Solid lines correspond to the case

when the model is solved including the probabilistic service level constraints. Figure 6 shows that

the total cost increases monotonically as the service level increases. Similarly, the total cost for the

model with simple capacity constraints increases monotonically with ↵, which is a consequence of

the fact that parameter ⇤m is a↵ected by the choice of the service level. It is noted that the total

cost for the model without probabilistic service level constraints is smaller and it grows at a slower

rate than the total cost of the model with probabilistic service level constraints. The reason for this

is that probabilistic service level constraints are more restrictive than simple capacity constraints.

For r = 3 and r = 4, the total cost increases exponentially as the service level ↵ increases.

This behavior is more pronounced for r = 3 because, in this scenario, probabilistic service level

constraints are tighter, diminishing the likelihood of achieving intermodal transport savings through

combined rail-road transportation.

Conversely, when r = 2, the total cost exhibits a S-shaped curve. Initially, there is exponential

growth, but at a certain point, the cost starts to increase at a decreasing rate, eventually stabilizing

at a limiting value. This limiting value represents the cost when the demand is entirely satisfied

using direct transportation. In this case, probabilistic service level constraints are too restrictive,

making it unviable to use a more economical combined transport alternative (see also Figure 8).
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Figure 6 Average total cost. Solid lines are the results including probabilistic service level constraints. Dashed

lines are the results without probabilistic service level constraints.
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Figure 7 Components of the total cost.

7.4.2. E↵ect of varying service levels on cost components and modal shift: Figure 7

depicts the e↵ect of varying service levels on cost components, i.e., hub installation cost, intermodal

transportation cost, and direct transportation cost. As shown in the figures, as the service level

increases, the direct transportation costs increase, the intermodal transportation costs decrease,

and the hub installation cost decreases. However, the extent of changes in each cost component is

comparatively less pronounced when r= 4. In this scenario, the average investment in hub facilities

remains relatively stable across di↵erent service levels, except for ↵= 0.99. An explanation for this

behavior is that the average number of open hubs is relatively stable over all instances, as shown

in Tables 6 and 7. For r= 4, the intermodal transportation costs surpass the direct transportation

costs, except when ↵= 0.99. This implies that when the service time requirement is high, i.e., high

values of r, the cost structure is expected to be less sensitive to changes in the service level and

the intermodal transportation costs constitute a significant fraction of the total costs.

The modal shift represents the fraction of flow captured by the intermodal transportation (rail-

road transportation) and calculated as
⇣P

k2K

P
a2Ak

wkxka

⌘
⇥ 100%/

P
k2K wk. Figure 8 shows

the e↵ect of increasing service level requirements on the modal shift. As expected, as the service

level requirement increases, the volume of flows through intermodal transportation decreases. For

r= 3 and r= 4, the modal shift decreases at a diminishing rate when the service level ↵ increases.

This decrease in modal shift is more pronounced at elevated service levels and strict service time

requirements. Conversely, for r= 2, the modal shift curve exhibits an inverted S-shape pattern. In

this scenario, the modal shift rapidly decreases up to a certain point, after which it decreases more

gradually, reaching a modal shift of zero where the intermodal transportation alternative becomes

non-viable. The modal shift demonstrates an opposite behavior compared to the total cost.

Figure 9 shows the minimum and average network service levels for formulations with and without

probabilistic service level constraints. When probabilistic service level constraints are considered,
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Figure 8 Average modal shift. Solid lines are the results with probabilistic service level constraints. Dashed lines

are the results without probabilistic service level constraints.
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Figure 9 Minimum and average network service levels. Solid lines are the results with probabilistic service level

constraints. Dashed lines are the results without probabilistic service level constraints.

the minimum service level achieved by the network either coincides with or is higher than the

required service level ↵, with a tolerance error of " = 10�6. The actual service level attained by

most inter-hub links in the network exceeds ↵. Some inter-hub links may o↵er a high service level

approaching 100%, particularly those connecting highly capacitated hubs. Note that a hub’s total

capacity is limited by the hub with the smallest capacity to which the first hub is connected. In con-

trast, when probabilistic service level constraints are relaxed, and the model is solved using simple

capacity constraints, the network’s quality of service deteriorates significantly. In such instances,
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the network service level can fall below 10% for certain inter-hub links. The service quality of net-

works designed without probabilistic service level constraints experiences a considerable decline,

particularly for the COL dataset.
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Figure 10 Intermodal hub network for the 25-3 instance of the COL dataset with 100↵= 80%.
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Figure 11 Intermodal hub network for the 25-3 instance of the COL dataset with 100↵= 90%.

7.4.3. E↵ect of varying service levels on the configuration of intermodel hub net-

work: Figures 10 to 12 depict the configuration of the intermodal hub networks for service level

requirements of 80%, 90%, and 99%, respectively with the 25-3 COL instance (where r= 3). Note
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Figure 12 Intermodal hub network for the 25-3 instance of the COL dataset with 100↵= 99%.

that at a service level of 80%, the inter-hub network is fully connected, with key inter-hub links

including Barranquilla-Bucaramanga and Buenaventura-Bogotá. Conversely, at a service level of

90%, the optimal inter-hub network is incomplete, excluding the Barranquilla-Cartagena link, even

though it is feasible. In this case, the important inter-hub links shift to Barranquilla-Aguachica

and Barranquilla-Bogotá.

In scenarios with lower service levels, hubs are dispersed over a broad geographic area. As the

service level increases, hub locations tend to concentrate within a smaller geographic region, specif-

ically the north-central part of Colombia. Several optimal inter-hub networks appear incomplete

across di↵erent instances, with the number of missing arcs typically being small relative to the

total number of feasible hub arcs.

At a service level of 99%, only two hubs (Aguachica and Bucaramanga) are open, resulting in

a substantial reduction in modal shift. In this scenario, some origin nodes, located in the cen-

tral region of the country, do not use any hub at all to satisfy their demand. The numbers in

parenthesis in front of the node selected as a hub correspond to the hub utilization, computed

as 100
⇣P

k2K

P
a2Ak,m2awkxka

⌘
/µm, for hub m. In general, hub capacity utilization is less than

70%, and it tends to decrease as the service level increases.

8. Conclusion

We studied the intermodal hub network design problem with probabilistic service level constraints

on the total service time of the intermodel transportation route. The probabilistic service level

constraints ensure that commodities using the intermodal routes are delivered within a prescribed

total service time (transportation time on the three arcs plus the waiting time and processing time
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at hubs), with a probability greater or equal to a threshold value. To capture the variability in the

arrival and service processes of commodities and the resulting delays due to congestion at hubs,

we modeled hubs as spatially distributed M/M/1 queues. Several important properties of the total

sojourn time and the total service time distribution were analyzed to simplify the probabilistic

service level constraints. The resulting formulation contains many logical constraints with indica-

tor variables, which are formulated using perspective cuts. We also propose a homothetic outer

approximation for logical constraints and valid inequalities providing a notorious computational

advantage over the traditional perspective cuts. The proposed formulations were solved using a

cutting plane algorithm. Through sensitivity analyses, we analyze the e↵ect of varying service level

requirements on the optimal network configurations. We demonstrate that optimal network con-

figuration that accounts for the service levels may di↵er significantly from the one that does not

consider the service level constraints.
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Appendix A: Proof of Proposition 1

To simplify our analysis, we introduce a change of variables and rewrite the total sojourn time distribution

function accordingly. Let x= (µa1
��a1

)va and y= (µa2
��a2

)va, where x> 0 and y > 0, then, Equation (7)

is transformed to:

W̃ (x, y) =

(
1� xe�y/va�ye�x/va

x/va�y/va
, for x 6= y,

1� e�x�xe�x, for x= y,

=

(
1� xe�y�ye�x

x�y
, for x 6= y,

1� e�x�xe�x, for x= y.

Proof of Property 1

It is easily verified that W̃ (x, y) = W̃ (y,x), then W̃ (x, y) is symmetric along the line x= y. We can conclude

that the total sojourn time distribution WVa(va|�a1
,�a2

) is symmetric along the line µa1
��a1

= µa2
��a2

.

Proof of Property 2

For a given strictly positive constant c, we have

lim
(x,y)!(c,c)

W̃ (x, y) = 1� e�c� ce�c = W̃ (c, c),

where the previous limit is computed assuming that x 6= y. This implies that W̃ (x, y) is continuous and so is

the total sojourn time distribution WVa(va|�a1
,�a2

).

The partial derivatives of W̃ are

@W̃

@x
=

y

(x� y)2
[e�y � e�x(1+x� y)] , and

@W̃

@y
=

x

(x� y)2
[e�x + e�y(�1+x� y)] , (39)

which have a finite limit of ce�c/2 when (x, y)! (c, c). In particular, we are interested in the derivative of

the level sets of W̃ , which is computed as:

�@W̃/@x

@W̃/@y
=

y

x

e�y � e�x(1+x� y)

e�x + e�y(�1+x� y)
.

This derivative has a limiting value of �1 at singularity points, as it is expected by the symmetry of W̃ .

Proof of property 3

First, we prove that W̃ (x, y) is a strictly increasing function. Consider the case x = y, we have @W̃/@x =

xe�x > 0, so W̃ is strictly increasing on the line x= y.

Now consider that x 6= y, then @W̃/@x, given in Equation (39), is non-negative if and only if e�y +e�x(y�

x�1)� 0, which is equivalent to ex�y � x�y+1. Given that ex�y is convex and x�y+1 is tangent to ex�y,

then the inequality holds, with a strict equality when x= y. Moreover, it is known that W̃ is strictly increasing

at x = y, hence @W̃/@x > 0. An analogous procedure is followed to show that @W̃/@y > 0. According to

this W̃ is strictly increasing. Finally, we have that @WVa/@�a1 = (@W̃/@x)(@x/@�a1
)+(@W̃/@y)(@y/@�a1

) =

�va@W̃/@x < 0, and analogously it is shown that @WVa/@�a2 < 0. We conclude that the total sojourn time

distribution WVa(va|�a1
,�a2

) is strictly decreasing.
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Appendix B: Concavity analysis of the total sojourn time distribution

We follow the change of variables suggested in Appendix A. Given that x and y are an a�ne transformation

of the original variables �a1
and �a2

, the concavity of the total sojourn time distribution is not altered after

the transformation. As a consequence of the transformation, W̃ (x, y) is a strictly increasing function. Now,

the proof of concavity for W̃ (x, y) is equivalent to the proof of convexity for the function:

f(x, y) =

(
xe�y�ye�x

x�y
, for x> 0, y > 0, x 6= y,

e�x +xe�x, for x> 0, y > 0, x= y.

The convexity of f(x, y) can be assessed by determining whether the corresponding Hessian matrix Hf (x, y)

is positive (semi)definite in the domain of f . To this end, we use the leading principal minors criteria. Then,

Hf is positive (semi)definite if all its leading principal minors are non-negative. The minor of order 1 of Hf

is:

|Hf (x, y)|1 =
ye�x�y {2ex� [(1+x� y)2 +1]ey}

(x� y)3
.

Since f is symmetric, it is enough to show that |Hf (x, y)|1 is non-negative in the region defined by x� y,x > 0,

and y > 0. According to this, |Hf (x, y)|1 is non-negative if and only if 2ex � [(1+x� y)2 +1]ey � 0, which

is equivalent to 2ex�y � 1� (1+ x� y)2 � 0. Let z = x� y � 0, the left-hand side of the previous inequality

becomes 2ez�1� (1+z)2. This expression has a minimum value of 0, which is obtained when z = 0 or x= y.

This result can be verified using the first and second derivative criteria. Then, the inequality holds, and we

conclude that |Hf (x, y)|1 is non-negative everywhere in the domain of f .

On the other hand, the minor of order 2 of Hf is:

|Hf (x, y)|2 =
e�2(x+y)

⇢
�e2y [(1+x)2� 2xy]� e2x [(1+ y)2� 2xy]+

ex+y [2+ 2x+2y� 2xy� (x� y)2xy]

�

(x� y)4
.

In this case, |Hf (x, y)|2 can be negative in the domain of f , as it is shown in Figure 13. According to this, f

is not convex everywhere in its domain. It is of interest to explicitly define a region where f is convex. Note

that the second leading principal minor is non-negative if and only if:

�e2y
⇥
(1+x)2� 2xy

⇤
� e2x

⇥
(1+ y)2� 2xy

⇤
+ ex+y

⇥
2+2x+2y� 2xy� (x� y)2xy

⇤
� 0. (40)

We conjecture that the previous inequality is satisfied in the region y � 1/x and x > 0. We show that

|Hf (x, y)|2 is non-negative along the curve y= 1/x. Replacing y= 1/x in Inequality (40) and simplifying we

get:

e�
1
x

�
ex� e1/xx2

�h
ex�

1
x

�
x� 1

x
� 2
�
+x� 1

x
+2
i

x3
� 0. (41)

By the symmetry of f and given that y � 1/x, we note that x� 1 in the region of interest. In this sense,

each factor in the numerator of the left-hand side of Inequality (41) is non-negative, as can be easily verified

using the first and second derivative criteria. Then, the inequality holds, and the strict equality is obtained

only when x= 1. This allows us to conclude that Hf is positive (semi)definite on the curve y= 1/x.

Page 37 of 46

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1.434.964.4100



Authors’ names blinded for peer review
38 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Figure 13 The shaded area shows the region where |Hf (x, y)|2 is non-negative, or, equivalently, the region where

Hf is positive (semi)definite.

Based on the conjecture that f is convex (equivalently: W̃ is concave) for y � 1/x and x > 0, and given

that W̃ (x, y) is a strictly increasing function, it is of interest to find the maximum of W̃ (x, y) constrained

to y= 1/x. We have the following univariate optimization problem:

max
x>0

W̃

✓
x,

1

x

◆
= 1� e�x� e�

1
xx2

1�x2
,

which has solution W̃ ⇤ = 1� 2/e, x⇤ = 1. This suggests that a lower bound for the minimum percentile of

the total sojourn time distribution at which such distribution remains concave is (1� 2/e)100⇡ 26.4. Given

that, in practical applications, the desired service level ↵ is much greater than 1� 2/e, probabilistic service

level constraints can be considered to be convex for relevant practical applications.

Appendix C: A closed form expression for fa

Consider the case when µa1
� �a1

6= µa2
� �a2

, from Equation (10) we know that at the ↵-level set the

following relation must hold:

1� (µa1
��a1

)e�(µa2��a2 )⌧

(µa1
��a1

)� (µa2
��a2

)
� (µa2

��a2
)e�(µa1��a1 )⌧

(µa2
��a2

)� (µa1
��a1

)
= ↵.

After some algebraic manipulations, the previous expression can be rewritten as:
⇥
e�(µa2��a2 )⌧ � (1�↵)

⇤
�a1

+(µa2��a2
)e�µa1⌧e�a1⌧ =

h
e�(µa2��a2

)⌧ � (1�↵)
i
µa1

+(1�↵) (µa2
��a2

) . (42)

Let

d= e�(µa2��a2 )⌧ � (1�↵),

b= (µa2
��a2

)e�µa1⌧ ,

c=
h
e�(µa2��a2

)⌧ � (1�↵)
i
µa1

+(1�↵) (µa2
��a2

) .
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Equation (42) is rewritten as d�a1
+ be�a1⌧ = c, and we want to solve for �a1

theis equation. Using algebraic

manipulations we have a�a1
+ be�a1 t = c =) b

a
te�a1 t = t c

a
� �a1

t =) b
a
t =

�
c
a
t��a1

t
�
e��a1 t =) b

a
te

c
a t =

�
c
a
��a1

�
te(

c
a��a1)t. Taking the Lambert W function to both sides of the previous equation we obtain

W
�

b
a
te

c
a t
�
=
�

c
a
��a1

�
t. After solving for �a1

we obtain

�a1
= fa(�a2

) =
c

d
� 1

⌧
Wr

✓
⌧
b

d
e⌧

c
d

◆
, (43)

where Wr(·) is the Lambert W function evaluated at branch r 2 {�1,0}. Selecting the appropriate branch in

the Lambert W function is not trivial. The criterion to select r is the analysis of the singularity that occurs

at the ↵-level set of the total sojourn time distribution. Let (�⇤
a1
,�⇤

a2
) be such a singularity. The following

equations must be satisfied at the ↵-level set:

1� e�(µa1��⇤
a1

)⌧ � (µa1
��⇤

a1
)⌧e�(µa1��⇤

a1
)⌧ = ↵,

1� e�(µa2��⇤
a2

)⌧ � (µa2
��⇤

a2
)⌧e�(µa2��⇤

a2
)⌧ = ↵.

The solution for �⇤
a1

and �⇤
a2

in previous equations is:

�⇤
a1

=
1

⌧


1+µa1

⌧ +W�1

✓
↵� 1

e

◆�
, (44)

�⇤
a2

=
1

⌧


1+µa2

⌧ +W�1

✓
↵� 1

e

◆�
. (45)

To understand why branch W�1 should be used, note that the first equation can be written as (�⇤
a1
�µa1

)⌧ =

1 +W�1 [(↵� 1)/e], by Equation (8), the left-hand side of such equation is strictly negative, so it is the

right-hand side. Then, we must have Wr [(↵� 1)/e] < �1. Given that �1/e < (↵� 1)/e < 0, the previous

inequality is satisfied only when the branch r=�1 is considered. According to the previous analysis, we have

found that the correct branch selection in the Lambert W function in Equation (43) can be done according

to the following rule:

r=

(
�1, if �a2

 �⇤
a2
,

0, if �a2
> �⇤

a2
.

Function fa has asymptotes at �a1
= ln(1�↵)/⌧ + µa1 and �a2

= ln(1�↵)/⌧ + µa2. An explicit expression

for fa and its first derivative is

fa(�a2
) = µa1

+
(1�↵)(µa2

��a2
)

e�(µa2��a2 )⌧ � (1�↵)
� 1

⌧
Wr

⇢
(µa2

��a2
)⌧

e�(µa2��a2 )⌧ � (1�↵)
Exp


(1�↵)(µa2

��a2
)⌧

e�(µa2��a2 )⌧ � (1�↵)

��
,

(46)

fa
1 (�a2

) =
(1�↵)2� (1�↵) [1+ (µa2

��a2
)⌧ ] e�(µa2��a2 )⌧

⇥
e�(µa2��a2 )⌧ � (1�↵)

⇤2 +

Wr

n
(µa2��a2 )⌧

e�(µa2��a2 )⌧�(1�↵)
Exp

h
(1�↵)(µa2��a2 )⌧

e�(µa2��a2 )⌧�(1�↵)

io

1+Wr

n
(µa2��a2 )⌧

e�(µa2��a2 )⌧�(1�↵)
Exp

h
(1�↵)(µa2��a2 )⌧

e�(µa2��a2 )⌧�(1�↵)

io⇥

�
(1�↵)� [1+ (µa2

��a2
)⌧ ] e�(µa2��a2 )⌧

 �
e�(µa2��a2 )⌧ � (1�↵) [1� (µa2

��a2
)⌧ ]
 

�⌧(µa2
��a2

)
⇥
e�(µa2��a2 )⌧ � (1�↵)

⇤2 . (47)
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Appendix D: Proof of Proposition 4

Consider parameter ⌧ and let g(x, y | ⌧) be a function of variables x and y defined as follows

g(x, y | ⌧) = xe�⌧y � ye�⌧x

x� y
.

The total service time distribution WVa(⌧ | �a1
,�a2

) is related to function g as WVa(⌧ | �a1
,�a2

) = 1�g(µa1
�

�a1
, µa2

� �a2
). This corresponds to translations and reflections of function g. The origin of coordinates

(0,0) is translated to the point (µa1
, µa2

). Given that WVa is an a�ne transformation of g, the homothetic

properties of the level sets of g are preserved after the transformation. We will show that the ↵-levels sets of

g(x, y | ⌧) and g(x, y | ⌧ 0), for 0< ⌧,0< ⌧ 0 6= ⌧ , are homothetic with respect to the origin. This is equivalent

to showing that any ray from the origin cuts each ↵-level set at points with equal slope.

Assume that ⌧ = a⌧ 0, for a> 0. According to this, we have the following relation

g(x, y | ⌧ 0) =
xe�⌧ 0y � ye�⌧ 0x

x� y
,

=
xe�(⌧/a)y � ye�(⌧/a)x

x� y
,

=
(x/a)e�⌧(y/a)� (y/a)e�⌧(x/a)

(x/a)� (y/a)
,

= g(x/a, y/a | ⌧).

(48)

At the ↵-level set we have g(x, y | ⌧ 0) = g(x/a, y/a | ⌧) = ↵. Consider points (x0, y0) and (x0/a, y0/a), which

are collinear to the origin, or are contained in a ray from the origin. If point (x0, y0) is in the ↵-level set

of g(x, y | ⌧ 0), and point (x0/a, y0/a) is in the ↵-level set of g(x, y | ⌧). In this sense, one level set can be

interpreted as the projection from the origin of the other level set, and the origin of coordinates is also

referred to as the homothetic center of g.

To verify that g(x, y | ⌧ 0) and g(x, y | ⌧) have an equal slope at points (x0, y0) and (x0/a, y0/a), respectively,

we use the closed-form expression of the first derivative of ↵-level set of g. First, we use Appendix C to

obtain the ↵-level set of g:

h(x | ⌧) = x+
x

↵e⌧x� 1
+

1

⌧
W


⌧x

1�↵e⌧x
Exp

✓
⌧x

1�↵e⌧x

◆�
,

which satisfies h(x | ⌧ 0)/a= h(x/a | ⌧), as it is expected from the previous discussion. Di↵erentiating h with

respect to x we obtain:

h1(x | ⌧) = (↵e⌧x� ⌧x� 1)
↵⌧xe⌧x +(↵e⌧x� 1)W

h
⌧x

1�↵e⌧xExp
⇣

⌧x
1�↵e⌧x

⌘i

⌧x (↵e⌧x� 1)
n
1+W

h
⌧x

1�↵e⌧xExp
⇣

⌧x
1�↵e⌧x

⌘io .

It is noted that h1(x | ⌧ 0) = h1(x/a | ⌧), in particular, h1(x0 | ⌧ 0) = h1(x0/a | ⌧), as desired.

Given that WVa transforms g in a way that the origin of coordinates is translated to the point (µa1
, µa2

),

we conclude that the ↵-level sets of WVa(⌧ | �a1
,�a2

) and WVa(⌧
0 | �a1

,�a2
) are homothetic concerning the

point (µa1
, µa2

). We refer to point (µa1
, µa2

) as the homothetic center of a family of ↵-level sets of WVa

defined for distinct values of parameter ⌧ .
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Appendix E: Numerical evaluation of fka

We describe a numerical method for evaluating the ↵-level set of the total service time distribution E
S⌧k
↵ .

First, we need a numerical method to evaluate the Convolution Integral (12). There are many available

numerical integration methods in the literature. In this paper, we have used the Gauss-Legendre Quadrature

method.

The idea is to compute �a1
for a given value of �0

a2
, with the condition that (�a1

,�0
a2
) 2E

S⌧k
↵ (a). In this

sense, �a1
is the solution of the equation

STka
(⌧k | �a1

,�0
a2
) = ↵. (49)

Note that the total service time distribution is evaluated at the service time requirement ⌧k, which is the

value of interest for establishing probabilistic service level constraints. In other words, we want to find the

root of the function STka
(⌧k | •,�0

a2
)�↵. We use Brent’s root finding algorithm to solve for �a1

in Equation

(49). By the monotonicity property of STka
(⌧k | •,�0

a2
), we know that at most one root can be found in the

interval (�µa1
, µa1

). No solution may exist for the previous equation. In that case, we say that �0
a2

is not

feasible.

We use the following notation to write function fka(�a2
):

fka(�a2
) =Root [STka

(⌧k | •,�a2
)�↵] . (50)

It will also be necessary to compute the first derivative of fka, which is denoted as fka
1 . We use the finite

di↵erence method to numerically compute such a derivative. Just as fa, fka has a singularity at point
�
�⇤
ka1

,�⇤
ka1

�
. There is no closed-form expression for such a singularity and it is computed using numerical

integration.

Appendix F: Heuristic algorithm for determining ⌧̃ka

The idea of this algorithm is to define ⌧̃ka such that the singularity point of f̃ka coincides with the singularity

point of fka. If this selection of ⌧̃ka leads to a situation where f̃ka � fka is not satisfied at the extreme points
�
�max
ka1

(a2),0
�
and

�
0,�max

ka2
(a1)

�
, then a new ⌧̃ka is recalculated so that the inequality at extreme points is

satisfied. The algorithm seems to produce a correct outer approximation, as it is noticed in our numerical

results obtaining a quite accurate outer approximation of probabilistic service level constraints.

Appendix G: Proof of Proposition 8

We first show that �̃r
l � 0. Let [l] = e(ka) and [l� 1] = e(k0a). By Equation (33), �̃r[l] = �̃rka = La1

� �r
ka1

+

|sra|
�
La2
��r

ka2

�
� 0. According to Proposition 4, the point

�
�r
ka1

,�r
ka2

�
is the projection from the homothetic

center (µa1
, µa2

) of the point
�
�r
k0a,�

r
k0a2

�
, which is computed as

�
�r
ka1

,�r
ka2

�
=


µa1

+
�
�r
k0a1
�µa1

� ⌧̃k0a

⌧̃ka
, µa2

+
�
�r
k0a2
�µa2

� ⌧̃k0a

⌧̃ka

�
.

By Proposition 6, ⌧̃ka  ⌧̃k0a, then �r
ka1
 �r

k0a1
and �r

ka2
 �r

k0a2
. This implies that �̃re(ka) � �̃re(k0a) and �̃r

e(ka) =

�̃r
[l] � 0.
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Algorithm 2: Heuristic algorithm for computing ⌧̃ka
Data: ↵, µa1 , µa2 , f

ka.

1 Compue the singularity point (�⇤
ka1

,�⇤
ka2

) of fka using numerical integration (see Section 4);

2 ⌧̃ka 1+W�1[(↵�1)/e]

�⇤
ka1

�µa1
; // Solution for ⌧ in Equation (44).

3 Define the function f̃ka as in Equation (46) as the ↵-level set of WVa(⌧̃ka | �a1 ,�a2);

4 if �max
ka1

(a2)> f̃ka(0) or 0> f̃ka
�
�max
ka2

(a1)
�
then

5 if �max
ka1

(a2)< �max
ka2

(a1) then
6 Solve for ⌧ in the Equation WVa

�
⌧ | �max

ka1
(a2),0

�
= ↵ using numerical methods;

7 ⌧̃ka ⌧ ;
8 else
9 Solve for ⌧ in the Equation WVa

�
⌧ | 0,�max

ka2
(a1)

�
= ↵ using numerical methods;

10 ⌧̃ka ⌧ ;
11 end
12 end

Assume that v[l] = 1, for l= 1,2, . . . , l0. From the perspective cut in Equation (26) we have

La1
��a1

+ |sra|(La2
��a2

)�
⇥
La1
��r

[k0]a1
+ |sra|

�
La2
��r

[k0]a2

�⇤
v[l0]

= �̃r[l0]v[l0],

=
|La|�1X

l=1

�̃r[l]
�
v[l]� v[l+1]

�
+ �̃r|La|v|La|,

= �̃r[1]v[1] +
|La|X

l=2

⇣
�̃r[l]� �̃r[l�1]

⌘
v[l],

=
|La|X

l=1

�̃r
[l]v[l],

=
X

l2La

�̃r
l vl,

where the second equality is valid due to the incremental nature of binary variables v[l]. Reorganizing terms

we get

�a1
+ |sra|�a2

+
X

l2La

�̃r
l vl La1

+ |sra|La2
. (51)

Multiplying La1
and La2

by za1
and za2

, respectively, in the right-hand side of the previous is valid and

allows to obtain Inequality (34), as desired.

Appendix H: The multiple choice formulation

Reconsider incremental variables vl and introduce new binary variables ul defined such that u[l] = v[l�1]�v[l],

where u[1] = v[1]. Using this definition, coarse perspective cuts are defined in terms of variables ul as follows:

�a1
+ |sra|�a2

+
X

l2La

�̃rl ul La1
za1

+ |sra|La2
za2

, 8a2B,r2 Ca. (52)
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Using this change of variables, the multiple-choice formulation is as follows

minimize
X

m2N

fmzm�
X

k2K

X

a2Ak

(Ck�Cka)xka +
X

k2K

Ck (53a)

subject to (31b)� (31d), (31f), (31g), (52),

xka 
Pos[e(ka)]X

l=1

v[l], 8k 2K,a2Ak, (53b)

X

l2La

vl  zm, 8a2B,m2 a, (53c)

vl 2 {0,1}, 8a2B, l 2La, (53d)

where the expression Pos(l) denotes the position occupied by the transport path l in the list of transport

paths ordered following the homothetic ordering of commodities in strictly distinguishable transport paths.

Appendix I: Valid inequalities for formulation (M1)

We note that coarse perspective cuts (34) are still valid for (M1) in the absence of incremental constraints

(see Proposition 9). However, these cuts are not strong enough in this case. It is possible to consider similar

incremental constraints for some subsets of commodities.

Proposition 9. Assume that f̃ka is a valid outer approximation of fka, then in the absence of incremental

constraints, Coarse Perspective Cuts (34) are still valid inequalities for model (M1).

Proof Assume that yl = 1, for l 2 Sa ✓La, and yl = 0, for l 62 Sa. Let [l0] = argmax[l]2Sa{�̃r[l]}. From the

perspective cut in Equation (26) we have

La1
��a1

+ |sra|(La2
��a2

)� �̃r[l0]ay[l0] �
X

[l]2Sa

⇣
�̃r[l]� �̃r[l�1]

⌘
y[l] =

X

l2La

�̃r
l yl.

Reorganizing terms and introducing binary variables za1
and za2

as in Proposition 9, we get Inequality (34).

⇤
It is important to note that incremental constraints of the form y[l]  y[l�1] given in Proposition 7 are not

valid for all transport paths. However, similar constraints might be determined for some subsets of transport

paths associated with commodities that can be ordered. A non-exhaustive approach to this end is given in

the following proposition.

Proposition 10. If ⌧k  ⌧l and GTka

⇣
⌧k
⌧l
x
⌘
GTla

(x), for x2 [0, ⌧l], then ye(ka)  ye(la) is a valid inequal-

ity for (M1).

Proof The total service time distribution for commodities k and l is:
Z ⌧k

0

WVa (⌧k�x | �a1
,�a2

)gUka
(x)dx and

Z ⌧l

0

WVa (⌧l�x | �a1
,�a2

)gUla
(x)dx,

respectively. Let ⌧l = a⌧k, a� 1, and consider an arbitrary point (�a1
,�a2

)2D, then
Z ⌧k

0

WVa (⌧k�x | �a1
,�a2

)gUka
(x)dx=

Z a⌧k

0

WVa

⇣
⌧k�

u

a
| �a1

,�a2

⌘
· 1
a
· gUka

⇣u
a

⌘
du,

=

Z ⌧l

0

WVa

✓
⌧l�u

a
| �a1

,�a2

◆
ĝUka

(u)du,


Z ⌧l

0

WVa (⌧l�u | �a1
,�a2

) ĝUka
(u)du,
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where the first equality comes from the substitution u= ax, the term ĝUka
in the second equality corresponds

to the density function gUka
scaled by a factor a. Now, we show that the following inequality holds:

Z ⌧l

0

WVa (⌧l�x | �a1
,�a2

) ĝUka
(x)dx

Z ⌧l

0

WVa (⌧k�x | �a1
,�a2

)gUla
(x)dx

Consider
Z ⌧l

0

WVa (⌧k�x | �a1
,�a2

)gUla
(x)dx�

Z ⌧l

0

WVa (⌧l�x | �a1
,�a2

) ĝUka
(x)dx,

=

Z ⌧l

0

WVa (⌧l�u | �a1
,�a2

) [gUla
(u)� ĝUka

]du,

=

Z ⌧l

0

wVa (⌧l�u | �a1
,�a2

)
h
GUla

(u)� ĜUka
(u)
i
du,

=

Z ⌧l

0

wVa (⌧l�u | �a1
,�a2

)
h
GUla

(u)�GUka

⇣u
a

⌘i
du,

� 0,

where the second inequality is the result of applying integration by parts. This allows us to conclude that
Z ⌧k

0

WVa (⌧k�x | �a1
,�a2

)gUka
(x)dx

Z ⌧l

0

WVa (⌧l�x | �a1
,�a2

)gUla
(x)dx.

Then STka
(⌧k | �a1

,�a2
)  STla

(⌧l | �a1
,�a2

), which implies that fka  f la showing that inequality ye(ka) 

ye(la) is valid. ⇤

Appendix J: Cutting plane algorithms for models M2 and M3

Algorithm 3 is the cutting plane algorithm for the solution of model M2. Algorithm 4 is the cutting plane

method for the solution of model M3.

Appendix K: Accuracy of the homothetic outer approximation

We analyze the accuracy in the computation of the service level when the homothetic approximation �a1
=

f̃ka(�a2
) is considered instead of the actual function �a1

= fka(�a2
). The point

⇣
f̃ka(�a2

),�a2

⌘
can be inter-

preted as an approximation to the point (fka(�a2
),�a2

) 2 E
STka
↵ . Hence, STka

⇣
⌧k | f̃ka(�a2

),�a2

⌘
= ↵̃ is an

approximation to the actual service level ↵. To analyze the error ↵� ↵̃, we compute ↵̃ from a sample of 100

points for f̃ka(�a2
) evenly distributed in the interval �a2

2 [0,�max
ka2

(a1)]. The computations are done for all

combinations of commodities and hub arcs on the 10 and 20-node instances of the AP and COL datasets,

respectively. Figure 14 shows that the average error is of the order of 10�3, the maximum error is 0.004, and

the minimum error is �1.0⇥10�6. The results suggest that the heuristic algorithm 2 is e↵ective in obtaining

an accurate outer approximation to the true function.
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Algorithm 3: Cutting plane generation at integer solutions of the branching three of M2

Data: B,Lo, "̃,↵, (x̄, v̄, z̄), parameters related to the computation of the total service time

distribution.

1 Cnt 0;

2 for o= (m,n)2B do
3 CutCnt 0;

4 if z̄m = 1 and z̄n = 1 then
5 �m 

P
k2K

P
a2Ak,
m2a

wkx̄ka;

6 �n 
P

k2K

P
a2Ak,
n2a

wkx̄ka;

7 for l 2Lo do
8 if v̄l = 1 then
9 if WVo(⌧̃lo | �m,�n)< ↵� "̃ then

10 (�r
lm,�

r
ln) 

h
f̃ lo
⇣
min

n
�n, �̃max

ln

o⌘
,min

n
�n, �̃max

ln

oi
;

11 Add cut (34);

12 CutCnt CutCnt+1;
13 end
14 end

15 if CutCnt > 0 then
16 Cnt Cnt+1;

17 end
18 end
19 end
20 end

// For model M3 only.

21 if Cnt= 0 then
22 Introduce fine perspective cuts if necessary;

23 end
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Algorithm 4: Generating fine perspective cuts for model M3 (line 22 of Algorithm 3)

Data: B,Lo,",↵, (x̄, ȳ, z̄), parameters related to the computation of the total service time

distribution.

1 for o= (m,n)2B do
2 CutCnt2 0;

3 if z̄m = 1 and z̄n = 1 then
4 �m 

P
k2K

P
a2Ak,
m2a

wkx̄ka;

5 �n 
P

k2K

P
a2Ak,
n2a

wkx̄ka;

6 for l 2Lo do
7 if v̄l = 1 then
8 if �n > �max

ln (m) or �m > �max
lm (n) then

9 Add cuts (30);

10 CutCnt2 CutCnt2+1;
11 else if STlo

(⌧l | �m,�n)< ↵� " then
12 Add cut (29);

13 CutCnt2 CutCnt2+1;
14 end
15 end

16 if CutCnt2> 0 then
17 Add constraint xka  yl, for l= e(ka), if such constraint has not been added

previously to the optimization problem;
18 end
19 end
20 end
21 end

80

85

90

95

99

Figure 14 Approximation error. Average errors are listed in ascending order.
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